
HAL Id: hal-01264285
https://hal.science/hal-01264285v2

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Online Data Aggregation in Dynamic
Graphs

Quentin Bramas, Toshimitsu Masuzawa, Sébastien Tixeuil

To cite this version:
Quentin Bramas, Toshimitsu Masuzawa, Sébastien Tixeuil. Distributed Online Data Aggregation in
Dynamic Graphs. [Research Report] Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR
7606, 4 place Jussieu 75005 Paris.; Osaka University, Japan. 2016. �hal-01264285v2�

https://hal.science/hal-01264285v2
https://hal.archives-ouvertes.fr

Distributed Online Data Aggregation

in Dynamic Graphs∗

Quentin Bramas1, Toshimitsu Masuzawa2 and Sébastien Tixeuil1

October 6, 2016

1 Sorbonne Universités, UPMC Univ Paris 06, France
2 Osaka University, Japan

Abstract

We consider the problem of aggregating data in a dynamic graph, that is, aggregating the
data that originates from all nodes in the graph to a specific node, the sink. We are interested
in giving lower bounds for this problem, under different kinds of adversaries.

In our model, nodes are endowed with unlimited memory and unlimited computational
power. Yet, we assume that communications between nodes are carried out with pairwise
interactions, where nodes can exchange control information before deciding whether they
transmit their data or not, given that each node is allowed to transmit its data at most once.
When a node receives a data from a neighbor, the node may aggregate it with its own data.

We consider three possible adversaries: the online adaptive adversary, the oblivious ad-
versary, and the randomized adversary that chooses the pairwise interactions uniformly at
random. For the online adaptive and the oblivious adversaries, we give impossibility results
when nodes have no knowledge about the graph and are not aware of the future. Also, we
give several tight bounds depending on the knowledge (be it topology related or time related)
of the nodes. For the randomized adversary, we show that the Gathering algorithm, which
always commands a node to transmit, is optimal if nodes have no knowledge at all. Also, we
propose an algorithm called Waiting Greedy, where a node either waits or transmits depend-
ing on some parameter, that is optimal when each node knows its future pairwise interactions
with the sink.

1 Introduction

Dynamic graphs, that is, graphs that evolve over time, can conveniently model dynamic networks,
which recently received a lot of interest from the academic community (e.g. mobile sensor net-
works, vehicular networks, disruption tolerant networks, interaction flows, etc.). Depending on
the problem considered, various models were used: among others, static graphs can be used to
represent a snapshot in time of a dynamic graph, functions can be used to define continuously
when an edge appears over time, and sequences of tuples can represent atomic interactions between
nodes over time.

The problem we consider in this paper assumes an arbitrary dynamic network, such as sensors
deployed on a human body, cars evolving in a city that communicate with each other in an ad hoc
manner, etc. We suppose that initially, each node in the network originates some data (e.g. that
originates from a sensor, or from computation), and that these data must be aggregated at some
designated node, the sink. To this goal, a node may send its data to a communication neighbor
at a given time (the duration of this communication is supposed to be one time unit). We assume
that there exists an aggregation function that takes two data as input and gives one data as output

∗This work was performed within the Labex SMART supported by French state funds managed by the ANR
within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02.

1

(the function is aggregating in the sense that the size of the output is supposed to be the same as
a single input, such functions include min, max, etc.).

The main constraint for communications between nodes is that a node is allowed to send its
data (be it its original data, or aggregated data) exactly once (e.g. to keep energy consumption
low). A direct consequence of this constraint is that a node must aggregate data anytime it receives
some, provided it did not send its data previously. It also implies that a node cannot participate to
the data aggregation protocol once it has transmitted its data. A nice property of any algorithm
implementing this constraint is that the number of communications is minimum. The problem of
aggregating all data at the sink with minimum duration is called the minimum data aggregation
time problem [4]. The essence of such a data aggregation algorithm is to decide whether or not to
send a node’s data when encountering a given communication neighbor: by waiting, a node may
be able to aggregate more data, while by sending a node disseminates data but excludes itself for
the rest of the computation.

In this paper, we consider that nodes may base their decision on their initial knowledge and
past experience (past interactions with other nodes) only. Then, an algorithm accommodating
those constraints is called an online distributed data aggregation algorithm. The existence of such
an algorithm is conditioned by the (dynamic) topology, initial knowledge of the nodes (e.g. about
their future communication neighbors), etc.

For simplicity, we assume that interactions between the nodes are carried out through pairwise
operations. Anytime two nodes a and b are communication neighbors (or, for short, are interact-
ing), either no data transfer happens, or one of them sends its data to the other, that executes
the aggregation function on both its previously stored data and the received data, the output is
then stored in the (new) stored data of the receiver. In the sequel, we use the term interaction to
refer to a pairwise interaction.

We assume that an adversary controls the dynamics of the network, that is, the adversary
decides which are the interactions. As we consider atomic interactions, the adversary decides
what sequence of interactions is to occur in a given execution. Then, the sequence of static graphs
to form the evolving graph can be seen as a sequence of single edge graphs, where the edge denotes
the interaction that is chosen by the scheduler at this particular moment. Hence, the time when
an interaction occurs is exactly its index in the sequence. Our model of dynamic graphs as a
sequence of interactions differs from existing models on several points. First, general models like
Time-varying-graph [6] make use of continuous time, which adds a lot of complexity. Also, discrete
time general models such as evolving graph [6] capture the network evolution as a sequence of static
graphs. Our model is a simplification of the evolving graph model where each static graph has
a single edge. Population protocols [2] also consider pairwise interactions, but focus on finite
state anonymous nodes with limited computational power and unlimited communication power
(a given node can transmit its information many times), while we consider powerful nodes (that
can record their past interactions) that are communication limited (they can send their data only
once). Finally, Dynamic edge-relabeling [5] is similar to population protocols, but the sequence of
pairwise interactions occurs inside an evolving graph. This model shares the same differences as
population protocols with our model.

1.1 Related Work

The problem of data aggregation has been widely studied in the context of wireless sensor networks.
The literature on this problem can be divided in two groups depending on the assumption made
about the collisions being handled by an underlying MAC layer.

In the case when collisions are not handled by the MAC layer, the goal is to find a collision-
free schedule that aggregates the data in minimum duration. The problem was first studied by
Annamalai et al. [3], and formally defined by Chen et al. [7], which proved that the problem is NP-
complete. Then, several papers [14, 12, 11, 10] proposed centralized and distributed approximation
algorithms for this problem. The best known algorithm is due to Nguyen et al. [10]. More recently,
Bramas et al. [4] considered the generalization of the problem to dynamic wireless sensor networks

2

(modeled by evolving graphs). Bramas et al. [4] show that the problem remains NP-complete
even when restricted to dynamic WSNs of degree at most 2 (compared to 3 in the static case).

When collisions are handled by the MAC layer, various problems related to data aggregation
have been investigated. The general term in-network aggregation includes several problems such as
gathering and routing information in WSNs, mostly in a practical way. For instance, a survey [9]
relates aggregation functions, routing protocols, and MAC layers with the objective of reducing
resource consumption. Continuous aggregation [1] assumes that data have to be aggregated, and
that the result of the aggregation is then disseminated to all participating nodes. The main metric
is then the delay before aggregated data is delivered to all nodes, as no particular node plays the
role of a sink. Most related to our concern is the work by Cornejo et al. [8]. In their work, each
node starts with a token, the time is finite and no particular node plays the role of a sink node.
Then, the topology evolves with time, and at each time instant, a node has at most one neighbor
with which it can interact and send or not its token. The goal is to minimize the number of nodes
that own at least one token. Assuming an algorithm does not know the future, Cornejo et al. [8]
prove that its competitive ratio is Ω(n) with high probability (w.r.t. the optimal offline algorithm)
against an oblivious adversary.

1.2 Our Contributions

In this paper we define the problem of distributed online data aggregation in dynamic graphs, and
study its complexity. It turns out that the problem difficulty strongly depends on the power of
the adversary (that chooses which interactions occur in a given execution).

For the oblivious and the online adaptive adversaries, we give several impossibility results
when nodes have no knowledge about the future evolution of the dynamic graph, nor about the
topology. Also, when nodes are aware of the underlying graph (where an edge between two nodes
exists if those nodes interact at least once in the execution), the data aggregation is impossible in
general. To examine the possibility cases, we define a cost function whose purpose is to compare
the performance of a distributed online algorithm to the optimal offline algorithm for the same
sequence of interactions. Our results show that if all interactions in the sequence occur infinitely
often, there exists a distributed online data aggregation algorithm whose cost is finite. Moreover,
if the underlying graph is a tree, we present an optimal algorithm.

For the randomized adversary, we first present tight bounds when nodes have full knowledge
about the future interactions in the whole graph. In this case, the best possible algorithm ter-
minates in Θ(n log(n)) interactions, in expectation and with high probability. Then, we consider
nodes with restricted knowledge, and we present two optimal distributed online data aggregation
algorithms that differ in the knowledge that is available to nodes. The first algorithm, called
Gathering, assumes nodes have no knowledge whatsoever, and terminates in O(n2) interactions
on average, which we prove is optimal with no knowledge. The second one, called Waiting Greedy,

terminates in O
(

n3/2
√

log(n)
)

interactions with high probability, which we show is optimal when

each node only knows the time of its next interaction with the sink (the knowledge assumed by
Waiting Greedy).

We believe our research paves the way for stimulating future researches, as our proof arguments
present techniques and analysis that can be of independent interest for studying dynamic networks.

2 Model

A dynamic graph is modeled as a couple (V, I), where V is a set of nodes and I = (It)t∈N
is a

sequence of pairwise interactions (or simply interactions). A special node in V is the sink node,
and is denoted by s in the sequel. In the sequence (It)t∈N

, the index t of an interaction also refers
to its time of occurrence. In the sequel V always denotes the set of nodes, n ≥ 3 its size, and
s ∈ V the sink node.

In general, we consider that nodes in V have unique identifiers, unlimited memory and un-
limited computational power. However, we sometimes consider nodes with no persistent memory

3

between interactions; those nodes are called oblivious.
Initially, each node in V receives a data. During an interaction It = {u, v}, if both nodes still

own data, then one of the node has the possibility to transmit its data to the other node. The
receiver aggregates the received data with its own data. The transmission and the aggregation
take exactly one time unit. If a node decides to transmit its data, then it does not own any data,
and is not able to receive other’s data anymore.

2.1 Problem Statement

The data aggregation problem consists in choosing at each interaction whether a node transmits
(and which one) or not so that after a finite number of interactions, the sink is the only node that
owns a data. In this paper we study distributed and online algorithms that solve this problem.
Such algorithms are called distributed online data aggregation (DODA) algorithms.

A DODA is an algorithm that takes as input an interaction It = {u, v}, and its time of
occurrence t ∈ N, and outputs either u, v or ⊥. If a DODA outputs a node, this node is the
receiver of the other node’s data. In more details, if u is the output, this means that before the
interaction both u and v own data, and the algorithm orders v to transmit its data to u. The
algorithm is able to change the memory of the interacting nodes, for instance to store information
that can be used in future interactions. In the sequel, DODA denotes the set of all DODA algorithms.
And D∅

ODA
denotes the set of DODA algorithms that only require oblivious nodes.

A DODA can require some knowledge to work. A knowledge is a function (or just an attribute)
given to every node that gives some information about the future, the topology or anything else.
By default, a node u ∈ V has two information: its identifier u.ID and a boolean u.isSink that
is true if u is the sink, and false otherwise. A DODA algorithm may use additional functions
associated with different knowledge. DODA(i1, i2, . . .) denotes the set of DODA algorithms that
use the functions i1, i2, For instance, we define for a node u ∈ V the function u.meetT ime
that maps a time t ∈ N with the smallest time t′ > t such that It′ = {u, s} i.e., the time of the
next interaction with the sink (for u = s, we define s.meetT ime as the identity, t 7→ t). Then
DODA(meetT ime) refers to the set of DODA algorithms that use the information meetT ime.

2.2 Adversary Models

In this paper we consider three models of adversaries:

• The oblivious adversary. This adversary knows the algorithm’s code, and must construct
the sequence of interactions before the execution starts.

• This adversary knows the algorithm’s code and can use the past execution of the algorithm
to construct the next interaction. However, it must make its own decision as it does not
know in advance the decision of the algorithm. In the case of deterministic algorithms, this
adversary is equivalent to the oblivious adversary.

• The randomized adversary. This adversary constructs the sequence of interactions by picking
pairwise interactions uniformly at random.

Section 3 presents our results with the oblivious and the adaptive online adversary. The results
with the randomized adversary are given in section 4.

2.3 Definition of Cost

To study and compare different DODA algorithms, we use a tool slightly different from the com-
petitive analysis that is generally used to study online algorithms. The competitive ratio of an
algorithm is the ratio between its performance and the optimal offline algorithm’s performance.
However, one can hardly define objectively the performance of an algorithm. For instance, if
we just consider the number of interactions before termination, then an oblivious adversary can
construct a sequence of interactions starting with the same interaction repeated an arbitrary

4

number of time. In this case, even the optimal algorithm has infinite duration. Moreover, the
adversary can choose the same interaction repeatedly after that the optimal offline algorithm ter-
minates. This can prevent any non optimal algorithm from terminating and make it have an
infinite competitive-ratio.

To prevent this we define the cost of an algorithm. Our cost is a way to define the per-
formance of an algorithm, depending on the performance of the optimal offline algorithm. We
believe our definition of cost is well-suited for a lots of problems where the adversary has a strong
power, especially in dynamic networks. One of its main advantage is that it is invariant by trivial
transformation of the sequence of interactions, like inserting or deleting duplicate interactions.

For the sake of simplicity, a data aggregation schedule with minimum duration (performed
by an offline optimal algorithm) is called a convergecast. Consider a sequence of interactions
I. Let opt(t) be the ending time of a convergecast on I, starting at time t ∈ N. If the ending
time is infinite (if the optimal offline algorithm does not terminate) we write opt(t) = ∞. Let
T : N≥1 7→ N ∪ {∞} be the function defined as follow:

T (1) = opt(0)

∀i ≥ 1 T (i+ 1) = opt(T (i) + 1)

T (i) is the duration of i successive convergecasts (two convergecasts are consecutive if the second
one starts just after the first one completes).

Let duration(A, I) be the termination time of algorithm A executed on the sequence of inter-
actions I. Now, we define the cost costA(I) of an algorithm A on the sequence I, as the smallest
integer i such that duration(A, I) ≤ T (i):

costA(I) = min{i | duration(A, I) ≤ T (i)}

This means that costA(I) is an upper bound on the number of successive convergecasts we can
perform during the execution of A, on the sequence I. It follows from the definition that an
algorithm performs an optimal data aggregation if and only if costA(I) = 1.

Also, if duration(A, I) = ∞, then it is possible that costA(I) < ∞. Indeed, if imax =
mini{i |T (i) = ∞} is well-defined, then costA(I) = imax, otherwise costA(I) = ∞.

3 Oblivious and Online Adaptive Adversaries

In this section we give several impossibility results when nodes have no knowledge, and then show
several results depending on the amount of knowledge. We choose to limit our study to some
specific knowledge, but one can be interested in studying the possible solutions for different kind
of knowledge.

3.1 Impossibility Results When Nodes Have no Knowledge

Theorem 1. For every algorithm A ∈ DODA, there exists an adaptive online adversary generating
a sequence of interactions I such that costA(I) = ∞.

Proof. Let I the sequence of interactions between 3 nodes a, b, and the sink s, defined as follows.
I0 = {a, b}. If a transmits, then for every i ∈ N, I2i+1 = {a, s} and I2i+2 = {a, b} so that b
will never be able to transmit. Symmetrically if b transmits the same thing happens. If no node
transmits, then I1 = {b, s}. If b transmits, then I2i+2 = {a, b} and I2i+3 = {b, s} so that a will
never be able to transmit. Otherwise I2 = {a, b} and continue as in the first time. A never
terminates, and a convergecast is always possible, so that costA(I) = ∞.

In the case of deterministic algorithm, the previous theorem is true even with an oblivious
adversary. However, for a randomized algorithm, the problem is more complex. The following

5

theorem states that the impossibility results for oblivious randomized algorithm, leaving the case
of general randomized algorithms against oblivious adversary as an open question.

Theorem 2. For every randomized algorithm A ∈ D∅
ODA

, there exists an oblivious adversary
generating a sequence of interactions I such that costA(I) = ∞ with high probability1.

Proof. Let V = {s, u0, . . . , un−2}. In the sequel, indexes are modulo n− 1 i.e., ∀i, j ≥ 0, ui = uj

with i ≡ j mod n−1. Let I∞ defined by, for all i ∈ N, I∞i = {ui, s}. Let I
l be the finite sequence,

prefix of length l > 0 of I∞. For every l > 0, the adversary can compute the probability Pl that no
node transmits its data when executing A on I l. (Pl)l>0 is a non-increasing sequence, it converges
to a limit P ≥ 0. For a given l, if Pl ≥ 1/n, there is at least two nodes whose probability not to

transmit when executing A on I l is at least n− 1

n−2 = 1 − O
(

1√
n

)

. To prove this, we can see the

probability Pl as the product of n − 1 probabilities p0, p1, . . ., pn−2 where pi is the probability
that node ui does not transmit during I l. Those events are independent since the algorithm is
oblivious. Let pd ≥ pd′ be the two greatest probabilities in {pi}0≤i≤n−2, we have:

(

n−2
∏

i=0

pi ≥
1

n

)

⇒

(

n−2
∑

i=0

log(pi) ≥ log

(

1

n

)

)

⇒

(

(n− 2) log(pd′) ≥ log

(

1

n

))

⇒
(

pd′ ≥ n− 1

n−2

)

This implies that, if P ≥ 1/n, then A does not terminate on the sequence I∞ with high
probability.

Otherwise, let l0 be the smallest index such that Pl0 < 1/n. So that with high probability,
at least one node transmits when executing A on I l0 . Also, Pl0−1 ≥ 1/n so that the previous
argument implies that there is at least two nodes ud and ud′ whose probability to still have a data

(after executing A on I l0−1) is at least n− 1

n−2 . If l0 = 0 we can choose {ud, ud′} = {u1, u2}. We
have ud 6= ul0 or ud′ 6= ul0 . Without loss of generality, we can suppose ud 6= ul0 , so that the
probability that ud transmits is the same in I l0−1 and in I l0 .

Now, ud is a node whose probability not to transmit when executing A on I l0 is at least

n− 1

n−2 = 1−O
(

1√
n

)

. Let I ′ be the sequence of interactions defined as follow:

∀i ∈ [0, n− 2] \ {d− 1}, I ′i = {ui, ui+1}, I
′
d−1 = {ud−1, s}

I ′ is constructed such that ud (the node that has data with high probability) must send its
data along a path that contains all the other nodes in order to reach the sink. But this path
contains a node that does not have a data.

Let I be the sequence of interaction starting with I l0 and followed by I ′ infinitely often. We
have shown that with high probability, after l0 interactions, at least one node transmits its data
and the node ud still has a data. The node that does not have data prevents the data owned by
ud from reaching s. So that A does not terminate, and since a convergecast is always possible,
then costA(I) = ∞.

3.2 When Nodes Know The Underlying Graph

Let Ḡ be the underlying graph i.e., Ḡ = (V,E) with E = {(u, v) | ∃t ∈ N, It = {u, v}}. The
following results assume that the underlying graph is given initially to every node.

Theorem 3. If n ≥ 4, then, for every algorithm A ∈ DODA(Ḡ), there exists an online adaptive
adversary generating a sequence of interactions I such that costA(I) = ∞.

Proof. V = {s, u1, u2, u3}. We create a sequence of interactions with the underlying graph Ḡ =
(V, {(s, u1), (u1, u2), (u2, u3), (u3, s)}). We start with the following interactions:

({u1, s}, {u3, s}, {u2, u1}, {u2, u3}) . (1)

1An event A occurs with high probability, when n tends to infinity, if P (A) > 1− o

(

1

log(n)

)

6

If u2 transmits to u1 in I2, then we repeat infinitely often the three following interactions:

({u1, u2}, {u2, u3}, {u3, s}, ...) .

Else, if u2 transmits to u3 in I3, then we repeat infinitely often the three following interactions:

({u3, u2}, {u2, u1}, {u1, s}, ...) .

Otherwise, we repeat the four interactions (1), and apply the previous reasoning. Then, A never
terminates, and a convergecast is always possible, so that costA(I) = ∞.

Theorem 4. If the interactions occurring at least once, occur infinity often, then there exists
A ∈ D∅

ODA
(Ḡ) such that costA(I) < ∞ for every sequence of interactions I. However, costA(I) is

unbounded.

Proof. Nodes can compute a spanning tree T rooted at s (they compute the same tree, using
nodes identifiers). Then, each node waits to receive the data from its children and then transmits
to its parent as soon as possible. All transmissions are done in finite time because each edge of
the spanning tree appears infinitely often. However, when Ḡ is not a tree, there exists another
spanning tree T ′. Let e be an edge of T that is not in T ′. By repeated interactions of edges of T ′,
an arbitrary amount of convergecasts can be performed while a node is waiting for sending data
to its parent through e in execution of A.

Theorem 5. If Ḡ is a tree, there exists A ∈ D∅
ODA

(Ḡ) that is optimal.

Proof. Each node waits to receive the data from its children, then transmits to its parent as soon
as possible.

3.3 If Nodes Know Their Own Future

For a node u ∈ V , u.future denotes the future of u i.e., the sequence of interactions involving
u, with their times of occurrences. In this case, according to the model, two interacting nodes
exchange their future and non-oblivious nodes can store it. This may seem in contradiction with
the motivation of the problem that aims to reduce the number of transmissions. However, it is
possible that the data must be sent only once for reasons not related to energy (such as data that
cannot be duplicated, tokens, etc.). That is why we consider this case, for the sake of completeness,
even if oblivious algorithms should be favored.

Theorem 6. There exists A ∈ DODA(future) such that costA(I) ≤ n for every sequence of
interactions I.

Proof. One can show that the duration of n − 1 successive convergecasts is sufficient to perform
a broadcast from any source. So every node broadcasts its future to the other nodes. After that,
all the nodes are aware of the future of every node and can compute the optimal data aggregation
schedule. So that it takes only one convergecast to aggregate the data of the whole network. In
total, n successive convergecasts are sufficient.

4 Randomized Adversary

The randomized adversary constructs the sequence of interactions by picking a couple of nodes
among all possible couples, uniformly at random. Thus, the underlying graph is a complete graph
of n nodes (including the sink) and every interaction occurs with the same probability p = 2

n(n−1) .

In this section, the complexity is computed on average (because the adversary is randomized)
and no more “in the worst case” as previously. In this case, considering the number of interactions
is sufficient to represent the complexity of an algorithm. We see in Theorem 8 that an offline
algorithm terminates in Θ(n log(n)) interactions w.h.p. This bound gives a way to convert the

7

complexity in terms of number of interactions to a cost. Indeed, if an algorithm A terminates in
O(n2) interactions, then its performance is O(n/ log(n)) times worse than the offline algorithm
and costA(I) = O(n/ log(n)) for a randomly generated sequence of interactions I. For the sake
of simplicity, in the remaining of the section, we give the complexity in terms of number of
interactions.

Since an interaction does not depend on previous interactions, the algorithms we propose here
are oblivious i.e., they do not modify the memory of the nodes. In more details, the output of our
algorithms depends only on the current interaction and on the information available in the node.

First, we introduce three oblivious DODA algorithms. For the sake of simplicity, we assume
that the output is ignored if the interacting nodes do not both have data. Also, to break symmetry,
we suppose the nodes that interact are given as input ordered by their identifiers.

• Waiting (W ∈ D∅
ODA

): A node transmits only when it is connected to the sink s:

W : (u1, u2, t) =

{

ui if ui.isSink
⊥ otherwise

• Gathering (GA ∈ D∅
ODA

): A node transmits its data when it is connected to the sink s or to
a node having data.:

GA : (u1, u2, t) =

{

ui if ui.is.Sink
u1 otherwise

• Waiting Greedy with parameter τ ∈ N (WGτ ∈ D∅
ODA

(meetT ime)): The node with the
greatest meet time transmits, if its meet time is greater than τ :

m1 = u1.meetT ime(t)

m2 = u2.meetT ime(t)

WGτ : (u1, u2, t)=







u1 if m1 ≤ m2 ∧ τ < m2

u2 if m1 > m2 ∧ τ < m1

⊥ otherwise

One can observe that after time τ , the algorithm acts as the Gathering algorithm.

4.1 Lower Bounds

We show a lower bound Ω(n2) on the number of interactions required for DODA against the
randomized adversary. The lower bound holds for all algorithms (including randomized ones) that
do not have knowledge about future of the evolving network. The lower bound matches the upper
bound of the Gathering algorithm given in the next subsection. This implies that this bound is
tight.

Theorem 7. The expected number of interactions required for DODA is Ω(n2).

Proof. We show that the last data transmission requires Ω(n2) interactions in expectation.
We consider any (randomized) algorithm A and its execution for DODA. Before the last trans-

mission (from some node, say v, to the sink s), only v has data except for s.
The probability that v and s interacts in the next interaction is 2

n(n−1) . Thus, the expected

number EI of interactions required for v to transmit to s is:

EI =
n(n− 1)

2

So that the whole aggregation requires at least EI = Ω(n2).

8

We also give a tight bound for algorithms that know the full sequence of interactions.

Theorem 8. The best algorithm in D∅
ODA

(full knowledge) terminates in Θ(n log(n)) interactions,
in expectation and with high probability.

Proof. First, we show that the expected number of interactions of a broadcast algorithm is
Θ(n log(n)). The first data transmission occurs when the source node (say v0) interacts with

another node. The probability of occurrence of the first data transmission is 2(n−1)
n(n−1) . After the

(i − 1)-th data transmission, i nodes (say Vi−1 = {v0, v1, . . . , vi−1}) have the data and the i-th
data transmission occurs when a node in Vi−1 interacts with a node not in Vi−1. This happens

with probability 2i(n−i)
n(n−1) .

Thus, if X is the number of interactions required to perform a broadcast, then we have:

E(X) =

n−1
∑

i=1

n(n− 1)

2i(n− i)
=

n(n− 1)

2

n−1
∑

i=1

1

i(n− i)

=
n(n− 1)

2n

n−1
∑

i=1

(
1

i
+

1

n− i
)

= (n− 1)

n−1
∑

i=1

1

i
∈ Θ(n log(n)).

And the variance is

V ar(X) =

n−1
∑

i=1

(

1−
2i(n− i)

n(n− 1)

)

/

(

2i(n− i)

n(n− 1)

)2

= n(n− 1)

n−1
∑

i=1

n(n− 1)− 2i(n− i)

(2i(n− i))
2

= O



n4

⌊n/2⌋−1
∑

i=1

(

1

i(n− i)

)2




The last sum is obtained from the previous one by observing that it is symmetric with respect to
the index i = n/2, and the removed elements (i = ⌊n/2⌋ and possibly i = ⌈n/2⌉) are negligible.
We define f : x 7→ 1

x2(n−x)2 . Since f is increasing between 1 and n/2, we have

⌊n/2⌋−1
∑

i=1

f(i) ≤

∫ n/2

1

f(x)dx

=

(n−2)n
n−1 + 2 log(n− 1)

n3
=O

(

1

n2

)

So that the variance is in O(n2). Using the Chebyshev’s inequality, we have

P (|X − E(X)| > n log(n)) = O

(

1

log2(n)

)

Therefore, a sequence of Θ(n log(n)) interactions is sufficient to perform a broadcast with high
probability. By reversing the order of the interactions in the sequence of interactions, this implies
that a sequence of Θ(n log(n)) interactions is also sufficient to perform a convergecast with the
same probability. Aggregating data along the convergecast tree gives a valid data aggregation
schedule.

Corollary 1. The best algorithm in DODA(future) terminates in Θ(n log(n)) interactions, in
expectation and with high probability.

9

Proof. If each node starts with its own future, O(n log(n)) interactions are sufficient to retrieve
with high probability the future of the whole network. Then O(n log(n)) interactions are sufficient
to aggregate all the data with the full knowledge.

4.2 Algorithm Performance Without Knowledge

Theorem 9. The expected number of interactions the Waiting requires to terminate is
O(n2 log(n)).

The expected number of interactions the Gathering requires to terminate is O(n2).

Proof. In the W aiting algorithm, data is sent to the sink when a node with data is connected
to the sink. We denote by XW the random variable that equals the number of interactions for
the algorithm Waiting to terminate. The probability of occurrence of the first data transmission

is 2(n−1)
n(n−1) . The probability of occurrence of the i-th data transmission after the (i − 1)-th data

transmission is 2(n−i)
n(n−1) . Thus, the expected number of interactions required for DODA is

E(XW) =

n−1
∑

i=1

n(n− 1)

2(n− i)

=
n(n− 1)

2

n−1
∑

i=1

1

i
∈ O(n2 log(n))

Since those events are independent, we also have that the variance of the number of interactions
required for DODA is

V ar(XW) =
n−1
∑

i=1

n(n− 1)− 2i

n(n− 1)
×

(n(n− 1))2

4i2

=
n−1
∑

i=1

n2(n− 1)2 − 2in(n− 1)

4i2

∼+∞

n−1
∑

i=1

n4

4i2
∼+∞

n4π2

24

Using the Chebyshev’s inequality, we have

P (|XW − E(XW)| > n2 log(n)) = O

(

n4π2

24n4 log2(n)

)

= O

(

1

log2(n)

)

Therefore, algorithm Waiting terminates after O(n2 log(n)) interactions with probability greater
than 1− 1/log2(n).

In the Gathering algorithm, a data is sent when a node with the data is connected to the
sink or another node with data. We denote by XG the random variable that equals the number
of interactions for the algorithm Gathering to terminate. Notice that the total number of data
transmissions required to terminate is exactly n−1. The probability of occurrence of the first data

transmission is n(n−1)
n(n−1) = 1. The probability of occurrence of the i-th data transmission after the

(i − 1)-th data transmission is (n−i+1)(n−i)
n(n−1) . Thus, the expected number of interactions required

to terminate is

E(XG) =

n−1
∑

i=1

n(n− 1)

(n− i+ 1)(n− i)

= n(n− 1)

n−1
∑

i=1

1

i(i+ 1)
∈ O(n2)

10

Corollary 2. Algorithm Gathering is optimal in DODA.

4.3 Algorithm Performance With meetTime

In this subsection we study the performance of our algorithm Waiting Greedy, find the optimal
value of the parameter τ and prove that this is the best possible algorithm with only the meetT ime
information (even if nodes have unbounded memory). We begin by a lemma to find how many
interactions are needed to have a given number of nodes interacting with the sink.

Lemma 1. If f is a function such that f(n) = ω(1) and f(n) = o(n) then, in nf(n) interactions,
Θ(f(n)) nodes interact with the sink with high probability.

Proof. The probability of the i-th interaction between the sink and a node that has a data, after

i− 1 such interactions, is 2(n−i)
n(n−1) . Let X be the number of interactions needed for the sink to meet

f(n) different nodes. We have:

E(X) =

f(n)
∑

i=1

n(n− 1)

2(n− i)

=
n(n− 1)

2
(H(n− 1)−H(n− f(n)))

∼
n2

2

(

− log

(

1−
f(n)

n

)

+ o(1)

)

∼
n2

2

f(n)

n
∼

f(n)n

2

and the variance is

V ar(X) =

f(n)
∑

i=1

(

1−
2(n− i)

n(n− 1)

)

/

(

2(n− i)

n(n− 1)

)2

∼

f(n)
∑

i=1

n4

4n2
∼

n2

4
f(n)

Using the Chebyshev’s inequality, we have

P (|X − E(X)| > nf(n)) = O

(

n2f(n)

4n2f(n)2

)

= O

(

1

f(n)

)

So that X = Θ(nf(n)) with high probability if 1/f(n) = o(1) (or equivalently f(n) = ω(1)).

Now we can state our theorem about the performance of Waiting Greedy depending on the
parameter τ .

Theorem 10. Let f be a function such that f(n) = o(n) and f(n) = ω(1). The algorithm
Waiting Greedy with τ = Θ

(

max
(

nf(n), n2 log(n)/f(n)
))

terminates in τ interactions with high
probability.

Proof. To have an upper bound on the number of interactions needed by Waiting Greedy to
terminate, we decompose the execution in two phases, one between time 0 and a time t1 and the
other between time t1 and a time t2 = τ . In the last phase, a set of nodes L ⊂ V interacts at least

11

once directly with the sink. Nodes in L do not transmit to anyone in the first phase by definition
of the algorithm (they have a meetTime smaller than τ). Nodes in L help the other nodes (in
Lc = V \L) to transmit their data in the first phase. Maybe nodes in Lc can transmit to L in the
second phase, but we do not take this into account, that is why it is an upper bound.

If a node u in Lc interacts with a node in L in the first phase, either it transmits its data,
otherwise (by definition of the algorithm) it has a meetTime smaller than τ (and smaller than t1
because it is not in L). In every case, a node in Lc that meets a node in L in the first phase,
transmits its data. To prove the theorem i.e., in order for the algorithm to terminate before τ with
high probability, we prove two claims: (a) the number of nodes in L is f(n) with high probability
if t2 − t1 = nf(n) and (b) all nodes in Lc interact with a node in L with high probability if
t1 = Θ(n2 log(n)/f(n)). The first claim is implied by Lemma 1. Now we prove the second claim.

Let X be the number of interactions required for the nodes in Lc to meet a node in L. The
probability of the i-th interaction between a node in Lc (with a data) and a node in L, after i− 1
such interactions already occurred, is 2f(n)(n− f(n)− i)/n(n− 1).

It follows that the expected number of interactions to aggregate all the data of Lc is

E(X) =

n−f(n)−1
∑

i=1

n(n− 1)

2f(n)(n− f(n)− i)

=
n(n− 1)

2f(n)

n−f(n)−1
∑

i=1

1

n− f(n)− i

∼+∞
n2

2f(n)
log(n− f(n))

=
n2

2f(n)
log(n(1− f(n)/n)) ∼

n2 log(n)

2f(n)

And the variance is

V ar(X) =

n−f(n)−1
∑

i=1

(

1− 2f(n)(n−f(n)−i)
n(n−1)

)

(

2f(n)(n−f(n)−i)
n(n−1)

)2

∼

n−f(n)−1
∑

i=1

n4

4f(n)2n2
∼

n3

4f(n)2

Using the Chebyshev’s inequality, we have

P

(

|X − E(X)| >
n2 log(n)

2f(n)

)

=O

(

1

n log2(n)

)

Thus X=O
(

n2 log(n)
f(n)

)

with high probability.

Corollary 3. The algorithm Waiting Greedy, with τ = Θ(n3/2
√

log(n)) terminates in τ interac-
tions with high probability.

Proof. In the last theorem, the bound O
(

max
(

nf(n), n2 log(n)/f(n)
))

is minimized by the func-

tion f : n 7→
√

n log(n).

Theorem 11. Waiting Greedy with τ = Θ(n3/2
√

log(n)) is optimal in DODA(meetT ime).

Proof. For the sake of contradiction, we suppose the existence of an algorithm A ∈
DODA(meetT ime) that terminates in T (n) interactions with high probability, with T (n) =

o
(

n3/2
√

log(n)
)

. Without loss of generality we can suppose that A does nothing after T (n)

12

interactions. Indeed, the algorithm A′ that executes A up to T (n) and does nothing afterward
has the same upper bound (since the bound holds with high probability).

Let L be the set of nodes that interact directly with the sink during the first T (n) interactions.
Let Lc be its complementary in V \{s}. We know from Lemma 1 that #L = O(T (n)/n) =

o
(

√

n log(n)
)

w.h.p.

We can show that T (n) interactions are not sufficient for all the nodes in Lc to interacts with
nodes in L. If nodes in Lc want to send their data to the sink, some data must be aggregated
among nodes in Lc, then the remaining nodes in Lc that still own data must interact with a node
in L before T (n) interactions (this is not even sufficient to perform the DODA, but is enough to
reach a contradiction).

When two nodes in Lc interact, their meetTime (that are greater than T (n)) and the previous
interactions are independent with the future interactions occurring before T (n). This implies that
when two nodes in Lc interact, using this information to decide which node transmits is the same
as choosing the sender randomly. From corollary 2, this implies that the optimal algorithm to
aggregate data in Lc is the Gathering algorithm.

Now, we show that, even after the nodes in Lc use the Gathering algorithm, there is with high
probability at least one node in Lc that still owns data and that does not interact with any node
in L. This node prevents the termination of the algorithm before T (n) interactions with high
probability, which is a contradiction.

Formally, we have the following lemmas.

Lemma 2. Let g(n) be the number of nodes in Lc. After using the Gathering algorithm during
T (n) interactions, the number of nodes in Lc that still own data is in ω(

√

n/ log(n)) with high
probability.

Proof. Let X be the number of interactions needed for R(n) nodes in Lc to transmit their data.
For the sake of contradiction, we suppose that

g(n)−R(n) = O(
√

n/ log(n)) = o(g(n)) (2)

and show that X is greater than T (n) w.h.p. The probability of the i-th interaction between two

nodes in Lc that own data, after the (i − 1)-th interaction already occurred, is (g(n)−i)(g(n)−i−1)
n(n−1) .

Thus we have:

E(X) =

R(n)−1
∑

i=0

n(n− 1)

(g(n)− i)(g(n)− i− 1)

= n(n− 1)

g(n)
∑

i=g(n)−R(n)+1

1

i(i− 1)

= n(n− 1)

(

1

g(n)−R(n) + 1
−

1

g(n)

)

= n(n− 1)
R(n)

g(n)(g(n)−R(n))

From equation (2) we deduce that g ∼ R and we have:

E(X) ∼ n2 1

g(n)−R(n)

which implies

E(X) = Ω

(

n2

√

log(n)

n

)

= Ω
(

n3/2
√

log(n)
)

.

As in the previous proofs, the expectation is reached with high probability. This contradicts the
fact T (n) = o(n3/2

√

log(n))

13

Lemma 3. Let H ⊂ Lc be the nodes in Lc that still own data after the gathering. With high
probability, T (n) interactions are not sufficient for all the nodes in H to interact with nodes in L.

Proof. We know from the previous lemma that the number of nodes in H is h(n) = ω(
√

n/ log(n)).
Let X be the random variable that equals the number of interactions needed for the nodes in H to
interact with the nodes in L. We show that X is in ω(n3/2

√

log(n)) with high probability. Indeed,
the probability of the i-th interaction between a node in H that owns data, after the (i − 1)-th

interaction already occurred, is 2f(n)(h(n)−i)
n(n−1) , where f(n) = #L. Thus we have:

E(X) =

h(n)−1
∑

i=0

n(n− 1)

2f(n)(h(n)− i)

=
n(n− 1)

2f(n)

h(n)
∑

i=1

1

i
∼

n2

2f(n)
log(h(n))

But since f(n) = o
(

√

n log(n)
)

, we have

E(X) = ω

(

n3/2

√

log(n)
log(h(n))

)

= ω

(

n3/2

√

log(n)
log(n/log(n))

)

= ω
(

n3/2
√

log(n)
)

Again the bound holds with high probability. This implies that, with high probability, T (n) =
o(n3/2

√

log(n)) interactions are not sufficient for all the nodes in H to interact with nodes in
L.

End of the proof of theorem 11. We have shown that T (n) interactions are not sufficient for
the nodes in Lc to transmit their data (directly or indirectly) to the nodes in L. Indeed, we
have shown that the nodes in Lc can apply the gathering algorithm so that ω(

√

n log(n)) nodes

in Lc still own data with high probability. But, with high probability, one of the ω(
√

n log(n))
remaining nodes does not interact with a node in L in T (n) interactions. This implies that, with
high probability, at least one node cannot send its data to the sink in T (n) interactions and an
algorithm A with such a bound T does not exist.

5 Concluding remarks

We defined and investigated the complexity of the distributed online data aggregation problem
in dynamic graphs where interactions are controlled by an adversary. We obtained various tight
complexity results for different adversaries and node knowledge, that open several scientific chal-
lenges:

1. What knowledge has a real impact on the lower bounds or algorithm efficiency ?

2. Can similar optimal algorithms be obtained with fixed memory or limited computational
power ?

3. Can randomized adversaries that use a non-uniform probabilistic distribution alter signifi-
cantly the bounds presented here in the same way as in the work by Yamauchi et al. [13] ?

14

References

[1] Sebastian Abshoff and Friedhelm Meyer auf der Heide. Continuous aggregation in dynamic
ad-hoc networks. In SIROCCO ’14: Proceedings of the 21st International Colloquium on
Structural Information and Communication Complexity, pages ——, 2014.

[2] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

[3] Valliappan Annamalai, Sandeep KS Gupta, and Loren Schwiebert. On tree-based converge-
casting in wireless sensor networks. In Wireless Communications and Networking, 2003.
WCNC 2003. 2003 IEEE, volume 3, pages 1942–1947. IEEE, 2003.

[4] Quentin Bramas and Sébastien Tixeuil. The complexity of data aggregation in static and
dynamic wireless sensor networks. In Andrzej Pelc and Alexander A. Schwarzmann, editors,
Stabilization, Safety, and Security of Distributed Systems, volume 9212 of Lecture Notes in
Computer Science, pages 36–50. Springer International Publishing, 2015.

[5] Arnaud Casteigts, Serge Chaumette, and Afonso Ferreira. Characterizing topological assump-
tions of distributed algorithms in dynamic networks. In Shay Kutten and Janez Žerovnik,
editors, Structural Information and Communication Complexity, volume 5869 of Lecture Notes
in Computer Science, pages 126–140. Springer Berlin Heidelberg, 2010.

[6] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. In Ad-hoc, Mobile, and Wireless Networks, pages 346–359.
Springer, 2011.

[7] Xujin Chen, Xiaodong Hu, and Jianming Zhu. Minimum data aggregation time problem in
wireless sensor networks. In Mobile Ad-hoc and Sensor Networks, pages 133–142. Springer,
2005.

[8] Alejandro Cornejo, Seth Gilbert, and Calvin Newport. Aggregation in dynamic networks.
In Proceedings of the 2012 ACM symposium on Principles of distributed computing, pages
195–204. ACM, 2012.

[9] Elena Fasolo, Michele Rossi, Jorg Widmer, and Michele Zorzi. In-network aggregation tech-
niques for wireless sensor networks: a survey. Wireless Communications, IEEE, 14(2):70–87,
2007.

[10] Thanh Dang Nguyen, Vyacheslav Zalyubovskiy, and Hyunseung Choo. Efficient time latency
of data aggregation based on neighboring dominators in wsns. In Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, pages 1–6. IEEE, 2011.

[11] Meirui Ren, Longjiang Guo, and Jinbao Li. A new scheduling algorithm for reducing data
aggregation latency in wireless sensor networks. International Journal of Communications,
Network & System Sciences, 3(8), 2010.

[12] XiaoHua Xu, Mo Li, XuFei Mao, Shaojie Tang, and ShiGuang Wang. A delay-efficient
algorithm for data aggregation in multihop wireless sensor networks. Parallel and Distributed
Systems, IEEE Transactions on, 22(1):163–175, 2011.

[13] Yukiko Yamauchi, Sébastien Tixeuil, Shuji Kijima, and Masafumi Yamashita. Brief announce-
ment: Probabilistic stabilization under probabilistic schedulers. In Marcos K. Aguilera, ed-
itor, Distributed Computing - 26th International Symposium, DISC 2012, Salvador, Brazil,
October 16-18, 2012. Proceedings, volume 7611 of Lecture Notes in Computer Science, pages
413–414. Springer, 2012.

[14] Bo Yu, Jianzhong Li, and Yingshu Li. Distributed data aggregation scheduling in wireless
sensor networks. In INFOCOM 2009, IEEE, pages 2159–2167. IEEE, 2009.

15

	Introduction
	Related Work
	Our Contributions

	Model
	Problem Statement
	Adversary Models
	Definition of Cost

	Oblivious and Online Adaptive Adversaries
	Impossibility Results When Nodes Have no Knowledge
	When Nodes Know The Underlying Graph
	If Nodes Know Their Own Future

	Randomized Adversary
	Lower Bounds
	Algorithm Performance Without Knowledge
	Algorithm Performance With meetTime

	Concluding remarks

