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Abstract We present a phenomenological model intended to describe at the
protein population level the formation of cell-cell junctions by the local re-
cruitment of homophilic cadherin adhesion receptors. This modeling may have
a much wider implication in biological processes since many adhesion recep-
tors, channel proteins and other membrane-born proteins associate in clusters
or oligomers at the cell surface. Mathematically, it consists in a degenerate
reaction-diffusion system of two partial differential equations, modeling the
time-space evolution of two cadherin populations over a substrate : the first
one representing the diffusing cadherins and the second one concerning the
fixed ones. After discussing the stability of the solutions of the model, we
perform numerical simulations and show relevant analogies with experimental
results. In particular, we show patterns or aggregate formation for a certain
set of parameters. Thus, perturbing the stationary solution, both density pop-
ulations converges in large times to some saturation level. Also the exponential
rate of convergence is numerically obtained and is shown to be in agreement,
for a suitable set of parameter, with the one obtained in some in vitro experi-
ments.
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1 Introduction

Intercellular junctions are macromolecular structures, built at the interface
between cell membranes, that hold animal cells together within a tissue. Two
of these types of junctions, adherens junctions and desmosomes are formed
by the local recruitment of transmembrane proteins of the cadherin family
tightly associated intracellularly to the cytoskeleton which provides cells with
particular viscoelastic properties and mechanical resistance. Adherens junc-
tions are of particular importance because their initiate the formation of all
the other types of intercellular junctions, including desmosomes, and thus are
at the centre of the cohesion and mechanical resistance of tissues of multicellu-
lar organisms. So adherens junction formation deserved much interest among
experimental biologists. Cell-cell adhesion associated to adherens junction for-
mation is initiated by the homophilic trans-interaction of extracellular domain
of cadherins from two adjacent cells [7]. The strengthening of adhesion is then
favored by the clustering of cadherin molecules in the two membranes and
by the anchoring of their cytoplasmic domain, via catenin adapter protein, to
the underlying actin filaments (F-actin), themselves maintained under tension
by non-muscle myosin motors (myosin II). However, the sequence of molecular
and cellular events leading to the formation of mature adherens junctions from
this initial cell-cell adhesion event is still unclear, likely because of the high
variability of cell-cell contact shapes and because of the multitude of part-
ners and regulatory steps involved. In particular, how the trans-interaction of
cadherin ectodomains leads to the clustering and anchoring to F-actin of cad-
herin adhesion complexes to form discrete size-defined junctional areas [7,4,3].
To overcome these difficulties we described earlier an experimental approach
where single cells are allowed to spread on surfaces covered with cadherin
extracellular domains, mimicking cell-cell contact formation [2]. On such a
substratum, cells adopt a flat morphology with radial accumulations of cad-
herin adhesion complexes on their ventral face that colocalize with F-actin
mimicking the formation of adherens junctions (Fig. 1).

Interestingly, these local accumulations of cadherins were also formed when
the F-actin network was destructured by pharmacological means, indicating
that cadherin clusters formation could be dictated by trans-interactions of cad-
herin ectodomains, [6]. However, how solely such interactions could generated
the observed patterned distribution of cadherins is not obvious. Interestingly,
cadherin dense regions correspond to areas of strong membrane apposition to
the adhesive surface, [6]. In between cadherin accumulations, membrane is sig-
nificantly remote from the substratum, likely as a result of either the repulsion
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Figure 1: (A): example of accumulation of immunofluorescently labelled 

cadherin adhesion complexes in cells seeded on a glass coverslip coated 

at saturation with recombinant cadherin ectodomain. The signal  is 

detected by total internal reflection fluorescence microscopy (TIRFM); the 

brightest is the signal, the stronger is the local accumulation of cadherins. 

Notice the accumulation is hot spots. (B) : Reflection interference contrast 

microscopy (RICM) imaging of the same cells objectivizing the distance (h) 

separating locally the cell membrane from the glass coverslip. The closest 

the membrane is from the membrane, the darker is the signal. Scale bar: 5 

µm. Notice the preferential accumulation of cadherins in areas of the 

lowest h value. The aligned hot spots at the cell periphery are associated to 

radial actin cables pushing the membrane close to the substratum. 

Extracted from [Lam+07].

Fig. 1 (A): example of accumulation of immunofluorescently labelled cadherin adhesion
complexes in cells seeded on a glass coverslip coated at saturation with recombinant cad-
herin ectodomain. The signal is detected by total internal reflection fluorescence microscopy
(TIRFM); the brightest is the signal, the stronger is the local accumulation of cadherins. No-
tice the accumulation in hot spots. (B) : Reflection interference contrast microscopy (RICM)
imaging of the same cell region objectivizing the distance separating locally the cell mem-
brane from the glass coverslip. The closest the membrane is from the membrane, the darker
is the signal. Scale bar: 5 µm. Notice the preferential accumulation of cadherins in areas
of lowest membrane distance. The aligned hot spots at the cell periphery are associated to
radial actin cables pushing the membrane close to the substratum. Extracted from [6].

exerted by larger extracellular glycoproteins or of spontaneously occurring ac-
tive plasma membrane fluctuation, [1,11].

In the present study, we propose a mathematical model describing the con-
tribution of cadherin trans interactions to their local recruitment in adhesion
plaques neglecting the interaction with the actin filaments. The model takes
into account the diffusive properties of cadherins and their binding and un-
binding probabilities. It is a macroscopic model describing the time and space
evolution of two densities distribution functions, one for the freely diffusing
cadherins and one for the fixed ones. Since one of the two population of cad-
herins does not diffuse and since the two populations interact, the system of
partial differential equations we will consider is a degenerate reaction-diffusion
system. It will be numerically shown that the solution of the system is strongly
dependent on the initial density distribution, and we shall therefore validate
our model comparing, rather than the distribution of aggregates, the time evo-
lution of the proportion of free and linked cadherins with those obtained by
experiments.

The paper is organized as follows. In Sect. 2 we resume the basic biologi-
cal features and define the mathematical model. Its mathematical analysis is
performed in Sect. 3 : after proving that the stationary solution of the con-
sidered system are homogeneous in space, we perform a stability analysis to
prove that taking the parameters in some range leads to structure formations.
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Sect. 4 is devoted to the numerical approach : first we show the behavior of
the solution on some theoretical tests, then we consider more biological tests
and compare the numerical results with experimental ones. Some discussions
are finally given in Sect. 5.

2 The mathematical model

We aim at modeling the clustering of cadherins seen at the mesoscopic scale
on cells spread on cadherin-coated surfaces (see Fig. 1). This problem is thus
bi-dimensional and we consider a bounded domain Ω ⊂ R2. In a first approx-
imation, we simplify the problem making the following assumptions :

– On the substrate, there is a coating of cadherins that mimics the surface
of a neighboring cell. We shall call these cadherins the targets and we
assume that their number is constant in time and that they are uniformly
distributed on the domain Ω. We describe them in the mathematical model
by their density ρ > 0. Note that these targets are fixed, hence they do not
diffuse.

– Over the substrate is the cell membrane on which cadherins diffuse and bind
to the substrate. The distance between the substrate and the membrane
being negligible, we may say that the considered cadherins evolve on the
substrate itself. We consider two populations of cadherins : those diffusing,
whose density distribution will be denoted by u = u(x, t) and which we
refer to as free cadherins ; and those linked to the substrate, whose density
distribution will be denoted by v(x, t) and which we will call fixed cadherins.

– The cadherins are able to bind to form trans- bounds. The probability
for a diffusing cadherin to bound is locally increased by the presence of
other fixed cadherins, see [1,11]. This will be represented by a non-linear
increasing, positive and bounded function F (v), which we will refer to as
the aggregation function.

– Fixed cadherins may unbind. The probability of a fixed cadherin to unbind
locally depends on the presence of other fixed cadherins, the more of bounds
are present the harder the cadherin unbind. This will be given by a non-
linear decreasing, positive and bounded function G(v), denoted also as the
unbinding function.

– As it is shown in [5] following their trajectories, cadherins which aren’t
linked to some actin filament diffuse and, once they get linked to some fil-
ament, their trajectory becomes straighter, the diffusion coefficient loosing
two order of magnitude. We then assume that free cadherins diffuse on the
membrane while fixed cadherins do not. This is justified also by the exper-
imental framework in which cadherins bind on fixed targets which mimic
the other cell membrane.

The mathematical model describing the biological phenomena we consider
is thus described at a macroscopic level by the following degenerate reaction-
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diffusion system, {
∂tu = σ∆u− εr(u, v)
∂tv = εr(u, v)

(1)

where σ is the diffusion coefficient and ε is a parameter describing the efficacy
of the reaction term on the evolution in terms of a frequency. System (1) is
composed of a reaction-diffusion equation and a reaction equation (a simple
time evolution partial differential equation) respectively on the unknown den-
sity functions u = u(x, t) and v = v(x, t), which represent the distributions of
free and fixed cadherins at time t ≥ 0 and in a position x ∈ Ω. Since Ω ⊂ R2,
x is a two-component vector and ∆ is the Laplacian operator with respect to
the two components of x. Note that u and v being two densities, they must be
non-negative at all time. Moreover, from a biological point of view, it is not
possible to have more fixed cadherins than the possible available targets, thus
it must be v ≤ ρ at all time, too.

By the first equation in (1), we have that free cadherins diffuse and may
change their status, becoming fixed, following the reaction term −r(u, v). Sym-
metrically, the second equation in (1) says that fixed cadherins may change
their status becoming free following the reaction term r(u, v). Hence, r(u, v)
must describe the gain, r+(u, v), and loss, r−(u, v), rates of fixed particles.

The gain rate r+ must be proportional to : the density u, i.e. the more
free cadherins are present at a given place, the more of them are susceptible
to adhere on the substrate ; the density ρ − v, i.e. the density of free targets
available for fixation (this term ensures that v remains bounded by ρ) ; the
aggregation function F (v). We recall that F (v) must be an increasing, posi-
tive and bounded function of v, and note that it must depend on the adhesion
rate for cadherins, representing the probability of a free cadherin to link to
the substrate without any other biological factor, augmented by the fact that
locally other cadherins are fixed, that is the larger v is, the larger should be
the value of F (v), and the closer to 0 v is, the smaller F (v) should be.

Analogously the unbinding rate r− must be proportional to : the density
of fixed cadherins v; the unbinding function G(v). We recall that the function
G is decreasing, positive and bounded with respect to v. That is the smaller
is v, the larger is the value of G(v), and the more v is close to ρ the smaller
is G(v). Note that the density of free cadherins u doesn’t play any role in the
unbinding rate r−.

By the previous considerations we can define F (v) and G(v) as follows,

F (v) =
a+ tanh(v)
a+ tanh(ρ)

, G(v) = 1− tanh(αv), (2)

where a > 0 is the adhesion rate and the sigmoid tanh(v) represents the ag-
gregation effect we have previously described. In the definition of the function
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Fig. 2 Examples of F and G.

G(v), the parameter α permits to concentrate or expand the effect of the un-
binding : the larger α is, the stiffer the slope of the sigmoid G(v) will be and
the narrower will be the effect of the unbinding. A graphic representation of
these functions is given in Fig. 2.

The choice to define the aggregation function only on the v variable is
not anodyne. In fact, we can relate this dependence to the distance of the
cell membrane to the substrate (or membrane fluctuation) : the more the
membrane is distant, the less free cadherins are influenced by the presence of
the fixed one, thus the value of the aggregation function should be smaller.
Finally, we prove in the following proposition that assuming that the density v
is positive and bounded, then both the aggregation function and the unbinding
one are bounded, too.

Proposition 1 If v ∈ [0, ρ] then F (v) and G(v) belong to [0, 1].

Proof. Note that F (v) is a continuous and strictly increasing function on
the bounded domain [0, ρ]. Hence its minimum is taken at v = 0, that is
F (0) = a/(a + tanh(ρ)) > 0, and its maximum is taken at v = ρ, that is
F (ρ) = 1. Hence, 0 < F (v) ≤ 1 for all v ∈ [0, ρ].
Concerning G(v), it is a continuous and strictly decreasing function on the
bounded domain [0, ρ]. Hence its minimum is taken in v = ρ, that is G(ρ) =
1− tanh(αρ) > 0, and its maximum is taken in v = 0, that is G(0) = 1. Hence,
0 < G(v) ≤ 1 for all v ∈ [0, ρ]. �

We finally conclude the description of our model defining the reaction term
r(u, v) as follows,

r(u, v) = r+(u, v)− r−(v) = u(ρ− v)F (v)− vG(v), (3)

and endowing the system (1) by suitable smooth initial conditions :

0 ≤ u0(x) and 0 ≤ v0(x) ≤ ρ (4)



Cell adhesion by cadherins 7

as well as a Neumann homogeneous boundary conditions :

∇u · ν = 0 on ∂Ω (5)

where ν is the exterior unit vector normal to ∂Ω. Note that there is no need
to define a boundary condition for v. These boundary conditions ensure that
no mass u is lost from the boundary.

Since the global population of cadherins on the membrane is made of free
and fixed ones, we can consider that we have a total density distribution of
cadherins given by u+ v, which mass should be conserved when both u and v
evolve. We normalize the initial data (u0, v0) so that:∫

Ω

u0(x) + v0(x) dx = 1. (6)

Thanks to (5), it is easily seen that the total mass is conserved. Infact, summing
the equations in (1) and integrating over Ω, we have:

∂t

∫
Ω

u+ v dx = 0,

and thus, for all time t ≥ 0,∫
Ω

u(x, t) + v(x, t) dx =
∫
Ω

u0(x) + v0(x) dx = 1.

3 Analytical results

Now that all the elements of the model are posed, in this section, we con-
sider some more theoretical aspects. It is clearly important to prove that the
system (1) admits positive and bounded solutions from a biological point of
view, otherwise the model is nonsense. Nevertheless, these aspects are beyond
the scope of this paper and will be addressed in a more general framework in
future works.

We deal here with the stability of the stationary solutions of the associated
problem. Indeed, stable steady states are interesting from a biological point of
view, because they characterize the behavior of the studied system at equilib-
rium, so that the solution of the system should converge for large times to the
steady state. As it is known, when considering reaction-diffusion systems in
which the ratio of the diffusion coefficients is very small (one of the population
diffuses much more slower than the other one), it is possible to obtain station-
ary solution which aren’t homogeneous in space and which form structures,
see [8] for an overview of this kind of models appearing in biology. We note
that we are considering an extreme case with respect of those considered in
[8], since one of the diffusion coefficient is zero, and we then have a degenerate
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reaction-diffusion system.

We first consider the solutions to the stationary problem associated to (1),
and then pass to the analysis of the steady states of (1), and of their instability,
proving the creation of spatial patterns for some choices of the parameter a
and α. The stationary problem associated to (1), reads:{

∆u = 0
r(u, v) = 0

(7)

completed with Neumann boundary conditions (5) on ∂Ω. We assume for sim-
plicity that Ω is normalized to 1, |Ω| = 1.

Concerning the existence of a stationary solution to (7), we have the fol-
lowing result.

Proposition 2 Under the hypothesis (6), there exists at least one homoge-
neous solution (U, V ) to (7) endowed by (5). Moreover, this stationary solution
(U, V ) belongs to the interval (]0, 1[×]0, ρ[).

Proof. It is easily seen that the only solution u(x) satisfying both the
Neumann boundary condition and the first equation in (7) must be constant
in x, u(x) = U for all x ∈ Ω. Hence, replacing u(x) = U in (3), it is clear
that, if it exists, the function v(x) such that r(U, v(x)) = 0 must be constant
too, v(x) = V for all x ∈ Ω. Thus, if it exists, the solution (U, V ) to (7) is
homogeneous in space.
Considering now hypothesis (6), and that |Ω| = 1, we obtain that U = 1− V .
Therefore, the resolution of (7) is reduced to find a V ∈ [0, ρ] such that:

(ρ− V )(1− V )F (V )− V G(V ) = 0.

Let us define the function f : R→ R as:

f(v) = (ρ− v)(1− v)a+ tanh(v)
a+ tanh(ρ)

− v(1− tanh(αv)),

and note that f(0) = aρ/(a+tanh(ρ)) > 0 and that f(1) = −(1−tanh(α)) < 0.
Moreover, since f is a continuous function on R, then there exists at least one
V ∈]0, 1[ such that f(V ) = 0. Finally, since V ∈]0, 1[, then U = 1− V ∈]0, 1[,
too.
Thus, to conclude the proof we must prove that V is always smaller than ρ. If
ρ > 1, since ]0, 1[⊂]0, ρ[, then V ∈]0, ρ[.
Otherwise, if ρ ≤ 1, since f(ρ) = −ρ(1 − tanh(αρ)) < 0, by the same argu-
ments as before we can conclude that there exists at list one V ∈]0, ρ[ solving
f(v) = 0. This, concluding the proof. �
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Due to the non linearity of F (v) and G(v), the value V cannot be given
analytically, but we can compute it numerically for each suitable choice of
parameters a and α. Let us note that, for large values of α, it become difficult
to compute numerically the value of V because there are two values v both
close to 1 satisfying f(v) = 0 and that for small values of a, the function f(v)
has almost a flat profile in v = 1.

Once proved the existence of the homogeneous stationary solution (U, V )
we can study its stability. We have the following result.

Proposition 3 Under the hypothesis (6), if[
ln
(
F

G

)′]
V

− ρ

V (ρ− V )
≤ 0. (8)

holds, then the homogeneous stationary solution (U,V) is stable.
Otherwise, (U, V ) is unstable, and patterns formation occurs.

Proof. In order to study the stability of (U, V ) we first have to linearize system
(1). Let us note that U and V are linked by the following relation:

U =
V GV

(ρ− V )FV
, (9)

with FV = F (V ) and GV = G(V ).
Moreover, let us define A = ∂ur|(U,V ) and B = ∂vr|(U,V ). Then a simple
computation gives:

A = (ρ− V )FV , B =
V (ρ− V )(GV F ′V − FVG′V )− ρFVGV

(ρ− V )FV
, (10)

where

F ′V =
dF

dv
(V ) =

1− (tanh(V ))2

a+ tanh(ρ)
and

G′V =
dG

dv
(V ) = −α(1− tanh(αV )2).

Then the linearized system reads:{
∂tu = σ∆u−A u−B v

∂tv = A u+B v
(11)

Let us now seek for a solution with u and v respectively given by:

u = eλtû , v = eλtv̂, (12)

where û = û(k) and v̂ = v̂(k) are the respective Fourier transforms. Replacing
(12) in (11) and dividing by eλt, we obtain the following linear system:{

λu+ σ k2 u+A u+B v = 0
λv −A u−B v = 0

(13)
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Clearly, u = v = 0 is a solution to (13), but we seek for non trivial solution to
system (13). Hence the determinant of the associated matrix:

M =
(
λ+ σ k2 +A B

−A λ−B

)
,

must be zero. This leads to the following definition of the eigenvalues:

λ =
−(σ k2 +A−B)±

√
(σ k2 +A−B)2 + 4 σ k2B

2
, (14)

which sign depends on the sign of A and B.
Note that, in order to have stable solutions, the eigenvalues λmust be negative,
so that as time goes to ∞ the solution (u, v) converges to the stationary value
(U, V ), see [8] for more details. It is easily seen that A > 0 and that the sign
of B depends on the sign of the numerator in (10).
If B < 0, then (σ k2 + A − B) > 0 and 4 σ k2B < 0, so that the numerator
in (14) is always negative, and both eigenvalues are negative too. In this case
the stationary solution (U, V ) is stable, and no pattern formation is possible.
If B = 0 then the eigenvalues are given by 0 and −2(A+σ k2) which is negative
for all k. Thus, in this case, the stationary solution (U, V ) is also stable.
Otherwise, if B > 0 then we have two possibilities. Or 0 < B < A + σ k2, or
0 < A + σ k2 < B. It is easily seen that both cases lead to the same result,
that is, one negative and one positive eigenvalues. So that pattern formation
may occur.
To conclude the proof, we finally have to show that B ≤ 0 if and only if (8)
holds. From (10) we get that B ≤ 0 if and only if

V (ρ− V )(GV F ′V − FVG′V ) ≤ ρFVGV ,

that is, since V , ρ− V , F (v) and G(v) are positive:

GV F
′
V − FVG′V
FVGV

≤ ρ

V (ρ− V )
.

It is now easy to see that the left hand-side in the previous inequality is equal
to the first term in (8), concluding the proof. �

Due to the complexity of relation (8), it is not possible to give analytical
conditions on the parameters a and α such that (8) holds or not. We thus use
numerics and show in Fig. 3 that the sign of B may be negative for a large
range of a and α (the black region). In particular, when α = 1, suggesting that
binding and unbinding forces may not by symmetric in v if we want pattern
formation to occur. On the contrary, the sign of B is positive for a and α in
a small domain, the white region. For parameters a and α in this region, the
stationary state (U, V ) is thus unstable and patterns formation occurs (see Fig.
7 and 4). In order to show the patterns formation in numerical simulations,
we thus choose the parameters a and α in the white domain.
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Fig. 3 The sign of B in the parameters domain (a, α) =]0, 1] × [0, 3]. Black region corre-
sponds to B ≤ 0 (stable solution (U, V )). White region corresponds to couples of parameters
a, α for which B > 0 (unstable solution (U, V )).

4 Numerical results

In this section we first present some numerical tests showing the patterns for-
mation for some theoretical data. Then we take into account the biological
aspect of our problem and show on numerical results the different behaviors
of the solutions in the biological framework.

We apply a finite differences discretization of system (1). As it is rather
classic we just resume briefly our scheme. We define the space step ∆x and
∆y, and the grid points xi = i∆x and xj = j∆x for i, j = 0, 1, 2, . . . N ,
where N is the number of discretization points. Let tn be the discretized time
defined by tn = n∆t, where the time step ∆t must satisfy a stability condition
which is given by the discretization of the diffusion term (see (15)). Define
uni,j = u(tn, xi, xj) and vnij = v(tn, xi, xj) the approximations of the density
functions u and v, and rnij = r(unij , v

n
ij) the discretization of the reaction term

r(u, v). Then the numerical scheme solving (1) is given by:

0. Determine V and if it does yield to instabilities
1. Determine the time step by

∆t = 0.1 min
(
∆x2

4σ
,
∆y2

4σ

)
(15)

2. Initialize v0
ij and u0

ij = 1− v0
ij , then at each time iteration

3. Compute rnij = unij(ρ− vnij)F (vnij)− vnijG(vnij)
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4. Compute un+1
ij and vn+1

ij by :

un+1
ij = unij − σ∆t(Du)nij −∆t εrnij
vn+1
ij = vnij +∆t εrnij

where (Du)nij is a classical centered discretization of the second derivatives.
4. Check the stop criteria

Note that the solution u of system (1) will always converge to a homoge-
neous solution in x, because of the diffusion term, the interesting result is the
v distribution. Hence, in the following figures we show the density v for a time
large enough so that equilibrium have been reached.

Another interesting data we can compute is the time evolution of the pro-
portion of fixed cadherins Nv(t), and the one for free cadherins, Nu(t). In the
sequel we shall call Nv the Immobile Fraction, and Nu the Mobile Fraction, in
agreement with the experimental data showed in Table 1. These two quantities
correspond to the zeroth order moments of the solutions v(t) and u(t):

Nv(t) =
∫
Ω

v(t)dx , Nu(t) =
∫
Ω

u(t)dx. (16)

Note also that since we have the total mass conservation, see (6), then the
evolution of Nu(t) is determined by 1−Nv(t).

These quantities are of interest from a biological and chemical point of view
because we know that they must both converge to a constant value (saturation
process). In Table 1 we resume some of the corresponding values observed in
experiments. Moreover, this convergence is assumed to be exponential and to
behave like S−e−kt, where S is the limit saturation value. Then, imposing that
Nv(t) = S − e−kt, we have that k can be numerically evaluated by means of a
linear regression on the function − ln(S−Nv(t)). As it will be shown in Fig. 10,
the frequency ε plays a central role in order to fit our numerical exponential
coefficient k to those obtained in experiments. Moreover, the convergence of
Nv(t) towards the saturation value S is actually exponential on the first portion
of time and slow down when Nv get close to the limit value S.

4.1 Patterns formation

Recalling that structures forms when perturbing the homogeneous stationary
solution (U, V ), the initial data, in the first two testes, are defined by small
perturbations of (U, V ). We define either a random perturbation at each point
x ∈ Ω, see Fig. 4, or a perturbation given only in the center xc of the do-
main Ω, see Fig. 7. These are not biological relevant tests, but we use them to
present and discuss the possible behaviors of the solutions with respect to the
choice of the parameters a and α. We have fixed the domain Ω to be the square
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Fig. 4 Initial data, random uniform perturbation of (U, V ). Final time T = 500, a0 = 0.005,
α = 1.8, ρ = 1, σ = 0.005 and ε = 1. Top left: 3D plot of the initial data v0. Top right: 3D
density distribution v. Bottom left: 2D representation of the initial data v0. Bottom right:
2D representation of the v distribution at final time T .

[0, 1]× [0, 1] and we choose N = 100 discretization points on each direction.

In Fig. 4, the perturbation is randomly given on the whole domain Ω. The
initial data then reads:

v0(x) = V +R1(x), (17)

where the perturbation amplitude is represented by R1(x) which is a random
value of order 10−3, which is too small to be detected in the 2D representation
of the initial data v0 (bottom left). The formation of structures where the
particles have aggregated and are fixed to the substrate is clearly shown in
both the 2D (bottom right) and 3D (top right) plots. Note that at equilibrium
the aggregated domain (the set of the light-gray regions in the 2D plot) have
all the same maximum value max(v) around 0.7, and that the transition to
the unbound domain (dark region in the 2D plot) is very sharp.

In Fig. 5 we show the time evolution of Nu(t) (dashed line) and Nv(t)
(dot-dashed line) starting from the initial data (17). After a transition period
corresponding to the period during which both functions u and v slowly di-
verges from the stationary values U and V , a sharp transition takes place at
a critical time tc (which value is close to 90 for this run) after which each
moment stabilizes to a new value. The critical time tc represents the moment
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Fig. 5 The time evolution of Nu(t) (dashed line) and Nv(t) (dot-dashed line) starting from
a random perturbation of the stationary solution (U, V ).

at which the structures become spatially delimited by the important growth
of the density of fixed cadherins thereby contained. Note that this example is
not biologically relevant, since the percentage of fixed cadherins at initial time
is already higher than the one for free cadherins, but it numerically shows that
stationary solution are not stable for a and α opportunely chosen.

Next we consider a initial condition v0 = v(x, 0) defined by a small gaussian
perturbation in the center of the domain Ω, see Fig. 6:

v0 = V + 0.001 exp
(
−(x− xc)2

0.0001

)
,

with V the stationary value and xc the center of the computational domain,
xc = (0.5, 0.5).

We show in Fig. 7, the distributions of v when the equilibrium is reached.
Note the formation of circular structures where the particles are aggregated.
We did expect the central adhesion region, corresponding to where the gaussian
is defined, but other adhesion regions are created around it. This may be
caused by the fact that the cadherin aggregation around the gaussian center
xc leads to a variation of the densities u and v in the neighborhood of the
gaussian, yielding a new perturbation of the stationary value V and thus to
the formation of new aggregation junctions. This was not the case in the
previous test, because the stationary value V was perturbed everywhere in
the domain Ω and not enough space was left to other adhesions regions to
appear. Again, as expected, a small perturbation of the stationary state, leads
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Fig. 6 Initial data v0 given by a small gaussian perturbation of the stationary value V .
Left : v0 for parameters a = 0.005, α = 1.8. Right : v0 for parameters a = 0.005, α = 1.4.
Both initial data v0 are plotted in 3D (top) end 2D (bottom).

to the formation of structures.

4.2 Biological framework

We now consider some more biological relevant frameworks and tests. Since
our model is defined at a macroscopic scale, it is non-sense to describe the evo-
lution of the densities at the cadherin scale, and thus we assume the domain
Ω to be a square of length equal to 10 µm, with Nx = Ny = 100 grid points,
that is a mesh size ∆x = ∆y = 0.1 µm. We fix the target density value ρ = 1,
and, accordingly to [5], we take the diffusion coefficient σ = 3.3 · 10−2µm2/s.
The frequency ε is first fixed to 1 s−1, and in a last test it will be fitted so to
obtain a good agreement for the exponential coefficient k.

Concerning the initial condition v0, we recall that it heavily influence the
final distribution v. Since no data is given by experiments, we assume that
initially there are no fixed cadherins, so that v(0, x) must be close to zero
for all x ∈ Ω. Moreover, we take into account the fact that the membrane
may not have a flat profile by defining the initial data v0 by the sum of Ng
gaussians randomly distributed on the domain. The choice of each gaussian
center is done in such a way that gaussians are sufficiently separated, so that
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Fig. 7 Density v distributions at equilibrium (final time T = 500). Left: the solution for the
parameters a = 0.005, α = 1.8, ρ = 1 and σ = 0.005. Right: the solution for the parameters
a = 0.005, α = 1.4, ρ = 1, σ = 0.005 and ε = 1. For both tests we traced the the 3D plot
(top) and the 2D representation (bottom).

each gaussian may be also seen as a single beginning of aggregate, but these
centers are not too far, so that aggregates may also interact. The gaussians
eight is also randomly defined while their standard variation is fixed in such
a way that each gaussian support covers more than one mesh, and eventually
has a small overlap with neighboring gaussians. The initial data v0 then reads:

v0(x) =
Ng∑
k=1

Rk exp
(

(x− xk)2

0.0225

)
, (18)

where Rk is a random value between 0 and 0.005, and the centers xk are such
that the distance ‖xk−xi‖ between xk and all others centers xi, with i 6= k is
larger than 0.5. The number of gaussian Ng has to be fixed, and we choose it
large enough so that it is almost not possible to haveNg+1 gaussians satisfying
the previous requirements (Ng = 266 in our computations). We show in Fig. 8
the 2D representation of the initial gaussian distribution we choose. Note that
the scale of the plot is between 0 and the maximum value of v0, that is 0.005.

Since computational times may be long, we define a stop criteria by a con-
trol on the evolution of the discrete zero moment for the fixed cadherin popu-
lation, Nv. Each niter iterations we compute the Immobile Fraction Nv(tniter)
and we compare it to the previous one. When the absolute error between this



Cell adhesion by cadherins 17

Fig. 8 The initial data v0 defined by (18).

two quantities is close to zero (e.g., smaller than a given precision 10−6), then
we stop our computation. Some of the numerical results obtained are given in
the following figures.

In Fig. 9 we show the final density v distribution (left) and the time evolu-
tion for the Immobile and Mobile Fractions Nu and Nv (right), for various cou-
ples of parameters a and α, for ε = 1. Computations are always stopped when
the stop criteria is reached. In A) we choose a small adhesion rate a = 0.001
and a large value of the slope α = 2, the result being a set of interconnected
circular regions of adhesion with a maximum value of v around 0.8 and a mini-
mum at almost zero. The Immobile Fraction Nv has grown form 0 to almost 0.6
(dot-dashed line), while the Mobile Fraction Nu has decreased to almost 0.4
(dashed line). When increasing the adhesion rate to a = 0.05, keeping α = 2,
see B), then the adhesion regions almost cover the whole domain, yielding to
a smaller maximum for v and a larger minimum, but still in a range of val-
ues implying that almost all cadherins have bound in the adhesion region and
almost only free cadherins exist elsewhere. Again, we end up with more fixed
cadherins than free one, but the convergence to the saturation value S is much
faster, the Nv slope is sharper than for A). This may be induced from both
the adhesion and aggregation effects. The Immobile Fraction Nv has grown
form 0 to more than 0.6 (dot-dashed line), while the Mobile Fraction Nu has
decreased to less than 0.4 (dashed line). The same behavior can be observed
between C) and D). Note that in this two cases is D) which has the smaller
value for a, and the main difference with A) and B) stands in the smaller
slope value α = 1.6. In both cases the Immobile Fraction Nv tends to stabilize
around smaller values, 0.5 for C) and 0.4 for B). Finally times needed to reach
the saturation value S are smaller than for A) and B), while time to reach the
equilibrium (stop criteria) are slightly larger for C) and D), than for A) and
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B).
When comparing A) with D) and B) with C), that is when fixing the adhesion
rates a and changing the slopes α, we note that the maximum value for v is
smaller in D) and C) than in A) and B), and also that the minima is larger.
Thus, the influence of the slope α in the unbinding function, is translated in
the obtention of more interconnected adhesion regions for large α as well as
higher values for v. Concerning the evolution of Nv and Nu, the convergence
seems to behave similarly for A) and D), and for B) and C).

We finally note that, although close saturation levels are obtained for the
parameters of test A), B) and C), D), the values of the maximum and minimum
of the density v may significantly vary. In particular, for both C) and D) the
maximum of v is between 0.5 and 0.7, and more in C) the minimum is slightly
larger than 0 so that we can’t conclude that in the non-adhesion region (dark
one) there are no fixed particles. Even thought, we don’t have clear biological
insight of the real value of the density in the junction area, we argue that, at
equilibrium, in the junction regions, the density may be close to ρ. Therefore,
parameters for which the maximum and minimum of v are between 0.1 and
0.7, may not be admissible from a biological point of view. Thus, in the sequel
we’ll choose the parameters in such a way that we approach the saturation
level and that the maximum and minimum for v do not belong to the interval
]0.1, 0.7[.

All these examples show a saturation of the both the values Nv(t) and
Nu(t) as times is large enough. This fact has been also highlighted in several
experiments. We resume in Table 1 the values for the Immobile Fraction which
was observed. Note that these values range in the interval 0.3 to 0.7, which
correspond also to what we observe numerically for theNv(t) values. Moreover,
the Mobile Fraction in experiments turns to be equal to 1 minus the Immobile
Fraction value, and this is the same in our model, since, as already underlined,
Nu(t) = 1−Nv(t).

Table 1 Experimental saturation values for the Immobile Fraction, corresponding to N(v)
at equilibrium.

Cadherin type Cell Type Immobile Fraction Mobile Fraction Reference

E-cadherin MDCK 0.6-0.7 0.3-0.4 [12]

N-cadherin C2C12 0.6 0.4 [6]

N-cadherin neurons 0.3 0.7 [10]

E-cadherin A431 0.3-0.4 0.6-0.7 [9]

E-cadherin MDCK 0.5-0.6 0.5-0.6 unpublished

N-cadherin HEK 0.4-0.6 0.4-0.6 unpublished
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Fig. 9 The final 2D representation density v (left) and the time evolution for Nu and Nv .
The parameters are ρ = 1, σ = 3.3 · 10−2, τ = 1 and for figures: A) a = 0.001, α = 2; B)
a = 0.05, α = 2; C) a = 0.05, α = 1.6; D) a = 0.001, α = 1.6.

We consider now the experiments form [10], for which we now that the
saturation value of the Immobile Fraction Nv is almost 0.35, and that the con-
vergence has an estimated exponential coefficientK = 13 h−1 = 3.61·10−3 s−1

(see the introduction of Sect. 4 for more details on the exponential behavior).
We consider an initial data defined as in (18), but such that Nv(0) ≈ 0.1,
so that a first transitional period during which the first junctions appears re-
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Fig. 10 Time evolutions of Nv for different values of the frequency : ε = 0.01 dot-dashed
line, ε = 0.02 continuous line, ε = 0.03 dashed line. The parameters are ρ = 1, σ = 3.3·10−2,
a = 10−3, α = 1.65.

duces to almost zero, but still the fixed cadherin density population Nv is much
smaller than the free cadherins one Nu. Not considering this choice would just
skip the exponential growth of Nv(t) for larger times. Moreover, we fix the
parameters as follows a = 10−3 and α = 1.65, ρ = 1, σ = 3.3 · 10−2, so that
we obtain a saturation level S close to 3.7 and values for the maximum and
minima of the density v respectively close to 1 and 0. The parameter playing
a central role here is the frequency ε, which will vary in order to fit the expo-
nential coefficient k to the experimental one K.

The results of our numerical simulations are shown in Fig. 10, where we plot
theNv time evolutions for three values of the frequency ε = 0.01, 0.02, 0.03 s−1.
As shown the larger the frequency ε is, the sharper is the slope of the Nv curve,
that is the smaller is the time needed to reach the saturation level as well as
the equilibrium state.

Results for some more choices of the relaxation parameter ε, and for the
same parameters as in Fig. 10 are given in the Table 2. The k coefficient are
computed by means of a linear regression on the curve − ln(S−Nv(t)), where S
is the saturation limit and time t is restricted to a same initial time interval for
all choice of ε. We can conclude that for a fixed set of parameters a, α, ρ and σ
the choice of ε significantly influences the exponential rate of convergence, and
that in our particular case the best choice is given by ε = 0.02 (note the really
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Table 2 Relaxation parameters τ and corresponding exponential coefficients

ε 0.010 0.015 0.020 0.025 0.030

k · 10−3 1.6 2.7 3.6 4.5 5.1

good agreement of the computed k and the value obtained in experiments K).

5 Conclusion

We propose and study a phenomenological mathematical model intended to
describe the cadherin aggregates formation at the cell-cell contact membrane
in the absence of the actin cytoskeleton. This model is composed of two par-
tial differential equation coupled by means of a reaction term which describes
the way a cadherin may bind or unbind to one other, and which takes into
account the effects of locally existing contacts. Each equation describes the
time-space evolution of a cadherin population : the free ones, not linked to the
substrate and diffusing, and the fixed ones, not diffusing. After having numer-
ically proved that the model is able to reproduce the formation of aggregates,
we construct a more biological framework and compare the results obtained
by means of numerical simulations to experimental ones. In particular, the
proposed model show a saturation of the density of both populations which is
of the same order of the one observed in several experiments, see Table 1 and
references therein. Further, suitably choosing the parameters of the model we
are able to compute the supposed undergoing exponential convergence coeffi-
cient with a very good agreement with the one observed in [10].

This work is a first attempt to model the cell-cell junctions creation, and
may be enriched and specified including more bio-physical aspects as model-
ing more precisely cis- or trans-contacts, or including the retrograde effect of
the actin filaments, or considering a circular geometry included in the com-
putational domain. Moreover, this work may have a much wider implication
in biological processes since many adhesion receptors, channel proteins and
other membrane-born proteins associate in clusters or oligomers at the cell
surface. Their recruitment in discrete aggregates is often associated to their
specific function and understanding the biochemical and physical principles
that govern this process is of major importance.
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