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Introduction

In this work, we would like to study the influence of a geometric twisting on trapped modes which occur in certain waveguides. Here the waveguide consists in a straight tubular domain Ω 0 := R × ω having a Neumann window on its boundary ∂Ω 0 . The cross section ω is supposed to be an open bounded connected subset of R 2 of diameter d > 0 which is not rotationally invariant. Moreover ω is supposed to have smooth boundary ∂ω.

It can be shown that the Laplace operator associated to such a straight tube has bound states [START_REF] Hammedi | Analyse spectrale des guides d'ondes "twistés[END_REF].

Let us introduce some notations. Denote by N the Neumann window. It is an open bounded subset of the boundary ∂Ω 0 . Let D be its complement set in ∂Ω 0 . When N is an annulus of size l > 0 we will denote it by, A a (l) := I a (l) × ∂ω, I a (l) := (a, l + a), a ∈ R. * briet@univ-tln.fr, hammedi@univ-tln.fr.
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Consider first the self-adjoint operator H N 0 associated to the following quadratic form. Let D(Q N ) = {ψ ∈ H 1 (Ω 0 ) | ψ ⌈D = 0} and for ψ ∈ D(Q N ),

Q N (ψ) = Ω0 |∇ψ| 2 dx
i.e. the Laplace operator defined on Ω 0 with Neumann boundary conditions (NBC) on N and Dirichlet boundary conditions (DBC) on D [START_REF] Dittrich | Straight quantum waveguides with combined boundary conditions[END_REF][START_REF] Kříž | Spectral properties of planar quantum waveguides with combined boundary conditions[END_REF].

It is actually shown in the Section 2 of this paper that if N contains an annulus of size l large enough then H N 0 has at least one discrete eigenvalue. In fact it is proved in [START_REF] Hammedi | Analyse spectrale des guides d'ondes "twistés[END_REF] that this holds true if N contains an annulus of any size l > 0.

The question we are interested in is the following: is it possible that the discrete spectrum of H N 0 disappears when we apply a geometric twisting on the guide? This question is motivated by the results of [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF][START_REF] Krejčiřík | twisting versus bending in quantum waveguides[END_REF] where it is shown that this phenomenon occurs in some bent tubes when they are subjected to a twisting defined from an angle function θ having a derivative θ with a compact support. In this paper we consider the situation described above which is very different from the one of [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF][START_REF] Krejčiřík | twisting versus bending in quantum waveguides[END_REF]. Let us now define the twisting [START_REF] Briet | Eigenvalue asymptotics in a twisted waveguide[END_REF][START_REF] Exner | Spectrum of the Schrödinger operator in a perturbed periodically twisted tube[END_REF]. Choose θ ∈ C 1 c (R) and introduce the diffeomorphism Theorem 1.1. i) Under conditions stated above on ω and θ, there exists l min := l min (ω, d) > 0 such as if for some a ∈ R and l > l min , N ⊃ A a (l) then

σ d (H N θ ) = ∅. (6) 
ii) Suppose θ is a non zero function satisfying the same conditions as in i) and has a bounded second derivative. Then there exists d max := d max (θ, ω) > 0 such that for all 0 < d ≤ d max there exists l max := l max (ω, d, θ) such as for all 0 < l ≤ l max , if N ⊂ A a (l) and supp( θ) ∩ I a (l) = ∅ for some a ∈ R then

σ d (H N θ ) = ∅. (7) 
Roughly speaking this result implies that for d small enough, the discrete spectrum disappears when the width of the Neumann window decreases.

Let us describe briefly the content of the paper. In the Section 2 we give the proof of the Theorem 1.1 i). The section 3 is devoted to the proof of the second part of the Theorem 1.1, this proof needs several steps. In particular we first establish a local Hardy inequality. This allows us to reduce the problem to the analysis of a one dimensional Schrödinger operator from which the Theorem 1.1 ii) follows. Finally in the Appendix of the paper we give partial results we use in previous sections.

Existence of bound states

First we prove the following. Denote by E 1 , E 2 , .... the eigenvalues (transverse modes) of the Laplacian -∆ ω defined on L 2 (ω) with DBC on ∂ω. Let χ 1 , χ 2 , ... be the associated eigenfunctions. Then we have [START_REF] Briet | Spectral analysis for twisted waveguides[END_REF]. But by usual arguments [START_REF] Reed | Methods of Modern of Mathematical Physics, IV: Analysis of Operators[END_REF],

Proposition 2.1. σ ess (H N θ ) = [E 1 , ∞). Proof. We know that σ(H θ ) = [E 1 , ∞) see e.g.
H N θ ≤ H θ , then [E 1 , ∞) ⊂ σ ess (H N θ ). (8) 
Let a ′ ∈ R and l ′ > 0 large enough such that N ⊂ A a ′ (l ′ ) = I a ′ (l ′ ) × ∂ω and supp( θ) ⊂ I a ′ (l ′ ). Let Hl ′ θ be the operator defined as in [START_REF] Dittrich | Straight quantum waveguides with combined boundary conditions[END_REF] 

but with additional Neumann boundary conditions on {a

′ } × ω ∪ {a ′ + l ′ } × ω. So H N θ ≥ Hl ′ θ and then σ ess (H N θ ) ⊂ σ ess ( Hl ′ θ ) [12]. But Hl ′ θ = Hi ⊕ He . The interior operator Hi is the corresponding operator defined on L 2 (I a ′ (l ′ ) × ω) with NBC on {a ′ } × ω ∪ {a ′ + l ′ } × ω ∪ N and DBC elsewhere on A a ′ (l ′ )
. By general arguments of [START_REF] Reed | Methods of Modern of Mathematical Physics, IV: Analysis of Operators[END_REF] it has only discrete spectrum consequently σ ess ( Hl ′ θ ) = σ ess ( He ). Now the exterior operator He is defined on

L 2 ((-∞, a ′ ) × ω ∪ (a ′ + l ′ , ∞) × ω) with DBC on (-∞, a ′ )×∂ω ∪(a ′ +l ′ , ∞)×∂ω and NBC on {a ′ }×ω ∪{a ′ +l ′ }×ω. Since θ = 0 for x < a ′ and x > a ′ + l ′ , it is easy to see that He = ⊕ n≥1 (-∂ 2 + E n )(χ n , .)χ n . Hence σ( He ) = σ ess ( He ) = [E 1 , +∞).
The Theorem 1.1 i) follows from Proposition 2.2. Under conditions of the Theorem 1.1 i), there exists l min := l min (ω, d) > 0 such as for all l > l min we have

σ d (H l θ ) = ∅. (9) 
Proof. Let ϕ l,a be the following function

ϕ l,a (s) :=        10 l (s -a), on [a, a + l 10 ); 1, on [a + l 10 , a + 9l 10 ); -10 l (s -l -a), on [a + 9l 10 , a + l); 0,
elsewhere.

It is easy to see that ϕ l,a ∈ D(q l θ ) and ϕ l,a

2 = 13l 15 | ω |. Let us calculate q l θ (ϕ l,a ) -E 1 ϕ l,a 2 = ∇ ′ ϕ l,a 2 + θ∂ τ ϕ l,a + ∂ s ϕ l,a 2 -E 1 ϕ l,a 2 . ( 10 
)
Evidently the first term on the r.h.s of ( 10) is zero. For the second term on the r.h.s of (10) we get,

θ∂ τ ϕ l,a + ∂ s ϕ l,a 2 = ∂ s ϕ l,a 2 = 20 l | ω | .
Then

q l θ (ϕ l,a ) -E 1 ϕ l,a 2 =| ω | ( 20 l - 13l 15 E 1 ) (11) 
and thus if l ≥ l min :=

300 13E1 we have q l θ (ϕ l,a ) -E 1 ϕ l,a 2 ≤ 0 2.1 Proof of the Theorem 1.1 i)
Using the same notation as in the Theorem 1.1 i), then H N θ ≤ H l θ . Moreover these operators have the same essential spectrum, then by the min-max principle the assertion follows.

Absence of bound state

In this section we want to prove the second part of the Theorem 1.1. Denote by θ m = inf(supp( θ)), θ M = sup(supp( θ)) and L = θ Mθ m . Here L > 0. We first consider the case where the Neumann window is an annulus, A a (l) = I a (l) × ω. Proposition 3.1. Suppose A a (l) is such that a ≥ θ M . Assume that conditions of the Theorem 1.1 ii) hold. Then there exists d max := d max (ω, θ) > 0, such that for all 0 < d ≤ d max there exists l max (d, θ, ω) > 0 such as for all 0 < l ≤ l max we have

σ d (H l θ ) = ∅. ( 12 
)
Remark 3.2. the case where l+a ≤ θ m follows from same arguments developed below. This proof is based on the fact that under conditions of the Proposition 3.1, for every ψ ∈ D(q l θ ) it holds,

Q(ψ) := q l θ (ψ) -E 1 ψ 2 ≥ 0. ( 13 
)
The proof of (13) involves several steps.

A local Hardy inequality

The aim of this paragraph is to show a Hardy type inequality needed for the proof of the Proposition 3.1. It is the first step of the proof of (13). Let g be the following function g(s) := 0, on I a (l); E 1 , elsewhere.

(

) 14 
Choose p ∈ (θ m , θ M ) s.t. θ(p) = 0 and let

ρ(s) := 1 1+(s-p) 2 , on (-∞, p]; 0, elsewhere. ( 15 
)
Proposition 3.3. Under same conditions of the Proposition 3.1, then there exists a constant C > 0 depending on p and ω and θ such that for any ψ ∈ D(q l θ ),

∇ ′ ψ 2 + θ∂ τ ψ + ∂ s ψ 2 - Ω0 g(s) | ψ | 2 dsdt ≥ C Ω0 ρ(s) | ψ | 2 dsdt. ( 16 
)
We first show the following lemma. Denote by Ω p := (-∞, p) × ω.

Lemma 3.4. Under same conditions of the Proposition 3.3. Then for any ψ ∈ D(q l θ ) we have

Ωp | ∇ ′ ψ | 2 + | θ∂ τ ψ + ∂ s ψ | 2 -E 1 | ψ | 2 dsdt ≥ C Ωp ρ(s) | ψ | 2 dsdt. (17) 
In the following we will use notations suggested in [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF]. For A ⊂ R denote by χ A the characteristic function of A × ω. Let ψ ∈ D(q l θ ) and define,

q A 1 (ψ) := χ A ∇ ′ ψ 2 -E 1 χ A ψ 2 , q A 2 (ψ) := χ A ∂ s ψ 2 , q A 3 (ψ) := χ A θ∂ τ ψ 2 , q A 2,3 (ψ) := 2ℜ(∂ s ψ, χ A θ∂ τ ψ). (18) 
Denote also by

Q A (ψ) = q A 1 (ψ) + q A 2 (ψ) + q A 3 (ψ) + q A 2,3 (ψ).
Here and hereafter we often use the fact that for any ψ ∈ D(q l θ )

q A 1 (ψ) ≥ 0, (19) 
for every A ⊂ R such that A ∩ I a (l) = ∅.

Proof. Choose r > 0 such that θ(s) = 0 for any s ∈ [pr, p]. Let f be the following function:

f (s) :=    0, on (p, ∞); p-s r , on (p -r, p]; 1,
elsewhere.

(20)

For any ψ ∈ D(q l θ ), simple estimates lead to:

Ωp | ψ(s, t) | 2 1 + (s -p) 2 dsdt = Ωp | ψ(s, t)f (s) + (1 -f (s))ψ(s, t) | 2 1 + (s -p) 2 dsdt (21) ≤ 2 Ωp | f (s)ψ(s, t) | 2 (s -p) 2 dsdt + χ (p-r,p) ψ 2 .
Since f (p)ψ(p, .) = 0, we can use the usual Hardy inequality (see e.g. [START_REF] Hardy | Note on a theorem of Hilbert[END_REF]), then we get,

Ωp | ψ(s, t) | 2 1 + (s -p) 2 dsdt ≤ 8q (-∞,p) 2 (f ψ) + 2 χ (p-r,p) ψ 2 . ( 22 
)
Note that with our choice [pr, p] ∩ [a, a + l] = ∅. Hence to estimate the second term on the r.h.s of (22) we use the Theorem 6.5 of [START_REF] Krejčiřík | twisting versus bending in quantum waveguides[END_REF], then there exists λ 0 = λ 0 ( θ, p, r) > 0 s.t. for any ψ ∈ D(q l θ ) we have

χ (p-r,p) ψ 2 ≤ 1 λ 0 Q (p-r,p) (ψ) ≤ 1 λ 0 Q (-∞,p) (ψ). ( 23 
)
We now want to estimate the first term on the right hand side of ( 22). We have

q (-∞,p) 2 (f ψ) = Ωp | ∂ s (f ψ) | 2 dsdt = q (-∞,θm) 2 (f ψ) + q (θm,p) 2 (f ψ). ( 24 
)
Evidently since θ = 0 and f = 1 in (-∞, θ m ), from (19), we have

q (-∞,θm) 2 (f ψ) ≤ Q (-∞,θm) (ψ). ( 25 
)
In the other hand since f (p)ψ(p, .) = 0, we can apply the Lemma 4.1 of the Appendix. So for any 0 < α < 1 there exists γ α,1 > 0 such that

| q (θm,p) 2,3 (f ψ) |≤ γ α,1 q (θm,p) 1 (f ψ) + αq (θm,p) 2 (f ψ) + q (θm,p) 3 (f ψ). ( 26 
)
Let γ := max(1, γ α,1 ). Then

γ -1 | q (θm,p) 2,3 (f ψ) |≤ q (θm,p) 1 (f ψ) + αγ -1 q (θm,p) 2 (f ψ) + γ -1 q (θm,p) 3 (f ψ). ( 27 
)
Hence with the decomposition, q

(θm,p) 2,3 = γ -1 q (θm,p) 2,3 + (1 -γ -1 )q (θm,p) 2,3
and (27) we have,

Q (θm,p) (f ψ) ≥ (1 -γ -1 ) q (θm,p) 2 (f ψ) + q (θm,p) 2,3 (f ψ) + q (θm,p) 3 (f ψ) (28) + γ -1 (1 -α)q (θm,p) 2 (f ψ)
and since q (θm,p) 3

+ q (θm,p) 2,3 + q (θm,p) 2
≥ 0, we arrive at,

q (θm,p) 2 (f ψ) ≤ γ (1 -α) Q (θm,p) (f ψ). ( 29 
)
Now by using that, q (θm,p) 1

(f ψ) ≤ q (θm,p) 1 (ψ), χ (θm,p) (∂ s + θ∂ τ )(f ψ) 2 ≤ 2( χ (θm,p) (∂ s + θ∂ τ )ψ 2 + 1 r 2 χ (p-r,p) ψ 2 )
and (23), we get,

q (θm,p) 2 (f ψ) ≤ 2γ (1 -α) (Q (θm,p) (ψ) + 1 λ 0 r 2 Q (p-r,p) (ψ)) ≤ c ′ Q (θm,p) (ψ) (30) with c ′ = 2γ (1-α) (1 + 1 λ0r 2 )
. Then (25) and (30) imply

q (-∞,p) 2 (f ψ) ≤ (1 + c ′ )Q (-∞,p) (ψ). (31) 
Hence ( 31) and ( 23) prove the lemma with

C -1 = 8 1 + c ′ + 2 λ 0 . ( 32 
)
Proof of the proposition 3.3. To prove the proposition we note that for any ψ ∈ D(q l θ ) and for p ′ ∈ R we have

ω ∞ p ′ | ∇ ′ ψ | 2 + | θ∂ τ ψ + ∂ s ψ | 2 dsdt ≥ ω ∞ p ′ g(s) | ψ | 2 dsdt. (33) 
Then (33) with p ′ = p and Lemma 3.4 imply (16).

Reduction to a one dimensional problem

We now want to prove the following result, Proposition 3.5. Under conditions of the Proposition 3.1, then a sufficient condition in order to get (13) is given by

R | ψ ′ (s) | 2 +2Cρ(s) | ψ(s) | 2 ds -4E 1 a+l a | ψ(s) | 2 ds ≥ 0, (34) 
for any ψ ∈ H 1 (R) where the constant C is defined in (32).

Remark 3.6. This proposition means that the positivity needed here is given by the positivity of the effective one dimensional Schrödinger operator on L 2 (R),

- d 2 ds 2 + 2Cρ(s) -4E 1 1 Ia(l) . (35) 
where 1 Ia(l) is the characteristic function of I a (l).

Proof. Evidently we have

Q(ψ) = 1 2 Q(ψ)- Ω0 (E 1 -g(s)) | ψ | 2 dsdt+q l θ (ψ)- Ω0 g(s) | ψ | 2 dsdt , ( 36 
)
where g is defined in (14). By using (16), then

Q(ψ) ≥ 1 2 q l θ (ψ) -E 1 ψ 2 + C Ω0 ρ(s) | ψ | 2 dsdt -E 1 χ (a,a+l) ψ 2
(37) Rewrite the expression of q l θ given by (3) as follows:

q l θ (ψ) = ∇ ′ ψ 2 + ∂ s ψ 2 + θ∂ τ ψ 2 +2ℜ(∂ s ψ, θ∂ τ ψ). (38) 
We estimate the last term of the r.h.s. of (38). By using the formula (49) of the Appendix,

| q 2,3 (ψ) |=| q (θm,θM ) 2,3 (ψ) |≤ γ 1 2 , 1 2 q (θm,θM ) 1 (ψ) + 1 2 q (θm,θM ) 2 (ψ) + 1 2 q (θm,θM ) 3 (ψ) (39) where γ 1 2 , 1 2 := γ 1 2 , 1 2 + 4d 2 θ 2 ∞ (40) with γ 1 2 , 1 2 := max d θ ∞ θ ∞ √ f (L) θ0 √ λ , d 2 θ 2 ∞ f (L) λ θ0 2 , 2d 2 θ 2 ∞ f (L)
for some constant λ > 0 depending only on the section ω and f (L) := max{2+ 16L 2 r 2 , 4L 2 }.

Hence (38) together with (39) give:

q l θ (ψ) ≥ ∇ ′ ψ 2 + 1 2 ∂ s ψ 2 + 1 2 θ∂ τ ψ 2 -γ 1 2 , 1 2 q (θm,θM ) 1 (ψ). ( 41 
)
In view of (19) we have

∇ ′ ψ 2 -E 1 ψ 2 ≥ q (θm,θM ) 1 (ψ) + q Ia(l) 1 (ψ) ≥ q (θm,θM ) 1 (ψ) -E 1 χ (a,a+l) ψ 2 .
Thus this last inequality together with (41) in (37) give

Q(ψ) ≥ 1 2 1 2 ∂ s ψ 2 + 1 2 θ∂ τ ψ 2 +C Ω0 ρ(s) | ψ | 2 dsdt -2E 1 χ (a,l+a) ψ 2 + (1 -γ 1 2 , 1 2 )q (θmθM ) 1 (ψ) . Now if 0 < d ≤ d max then γ 1 2 , 1
2 ≤ 1 so the Proposition 3.5 follows.

The one dimensional Schrödinger operator

In this part, under our conditions, we want to show that the one dimensional Schrödinger operator (35) is a positive operator. In view of the Proposition 3.5 this will imply the Proposition 3.1. Here we follow a similar strategy as in [START_REF] Borisov | Spectrum of the Magnetic Schrödinger Operator in a Waveguide with Combined Boundary Conditions[END_REF].

Proposition 3.7. for all ϕ ∈ H 1 (R), then there exists l max > 0 such that for any 0 < l ≤ l max we have

R | ϕ ′ (s) | 2 +2Cρ(s) | ϕ(s) | 2 ds ≥ 4E 1 Ia(l) | ϕ(s) | 2 ds. (42) 
Proof. Introduce the following function:

Φ(s) := ( π 2 + arctan (s -p)), if s < p; π 2 , if s ≥ p. ( 43 
)
where p is the same real number as in (15). So clearly Φ ′ = ρ. For any t ∈ I a (l) and ϕ ∈ H 1 (R), we have:

π 2 ϕ(t) = Φ(t)ϕ(t) = t -∞ (Φ(s)ϕ(s)) ′ ds = t -∞ ρ(s)ϕ(s)ds + t -∞ Φ(s)ϕ ′ (s)ds (44) 
and since ρ(s) = 0 for any s ∈ (p, ∞), we get,

π 2 ϕ(t) = p -∞ ρ(s)ϕ(s)ds + t -∞ Φ(s)ϕ ′ (s)ds. ( 45 
)
Then some straightforward estimates lead to, We integrate both sides of (47) over I a (l), then then 4E 1 c ′′ ≤ 1 and the proposition 3.7 follows.

π 2 4 ϕ 2 (t) ≤ 2 ( p -∞ ρ(s)ϕ(s)ds) 2 + ( t -∞ Φ(s)ϕ ′ (s)ds) 2 (46) ≤ 2 p -∞ ρ(s)ds p -∞ ρ(s)ϕ 2 (s)ds + t -∞ Φ 2 (s)ds t -∞ ϕ ′2 ( 
Ia(l) | ϕ(t) | 2 dt ≤ 4l π R ρ ( 

proof of the Theorem 1.1 ii)

Under assumptions of the Theorem 1.1 ii) H N θ ≥ H l θ . These two operators have the same essential spectrum so the Theorem 1.1 ii) is proved by applying the Proposition 3.1 and the min-max principle.

Appendix

In this appendix we give a slight extension of the lemma 3 of [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF] which states that under our conditions, for all ψ ∈ D(q l θ ) we have for any α, β > 0 there exists γ α,β > 0 such that: | q 2,3 (ψ) |≤ γ α,β q 1 (ψ) + αq 2 (ψ) + βq 3 (ψ).

(49)

Then we have

2 R

 2 s)ϕ 2 (s)ds + ( 8 ln 2 π + 2(ap))l + l | ϕ ′ (s) | 2 ds ≤ c ′′ R 2Cρ(s)ϕ 2 (s)+ | ϕ ′ (s) | 2 ds where c ′′ = 2l( 1 πC + 4 ln 2 π + ap) + l 2 . Finally we get, 4E 1 l+a a | ϕ(t) | 2 dt ≤ 4E 1 c ′′ R 2Cρ(s) | ϕ(s) | 2 + | ϕ ′ (s) | 2 ds.(48)So choose 0 < l ≤ l max with l max := -( p) 2 + (4E 1 ) -1

  s)ds .

	By direct calculation π ln 2 + π 2 4 (t -p). Hence we get, p -∞ ρ(s)ds = π 2 and	p -∞ Φ 2 (s)ds +	t p Φ 2 (s)ds =
	| ϕ(t) | 2 ≤	4 π R	ρ(s)ϕ 2 (s)ds +	8 ln 2 π	+ 2(t -p)

R | ϕ ′ (s) | 2 ds (47)

Lemma 4.1. Let p ∈ (θ m , θ M ). For all ψ ∈ D(q l θ ) such that ψ(p, .) = 0, then for any α, β > 0 there exists γ α,β > 0 such that:

Proof. Let ψ ∈ D(q l θ ) such that ψ(p, .) = 0. Then ψ ∈ H 1 0 (Ω p ). We know that we may first consider vectors ψ(s, t) = χ 1 (t)φ(s, t), where φ ∈ C ∞ 0 (Ω p ). For such a vector ψ we have,

By using simple estimates the first term on the r.h.s of ( 52) is estimated as :

where

∞ and α > 0. Integrating by parts twice and using the fact that θ(θ m ) = φ(p, .) = 0, the second term of the r.h.s of ( 52) is written as

Then the Cauchy Schwartz inequality implies,

Let p ′ ∈ R and r ′ > 0 such that (p ′r, p ′ ) ⊂ (θ m , p) and for s ∈ (p ′r, p ′ ), | θ(s) |≥ θ0 for some θ0 > 0. As in the proof of the Lemma 3 of [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF] we have,

where

Moreover, for any s ∈ R, θ(s)χ 1 φ(s, .) ∈ H 1 0 (Ω p ), then by using the Lemma 1 of [START_REF] Ekholm | A Hardy inequality in twisted waveguides[END_REF] there exists λ > 0 depending on ω such that :

(57) Hence ( 56), ( 57) and (54) give

where

. Then (53) and (58) imply (50) with γ α,β := c 1 + c 3 . Note that we can choose χ 1 > 0 on ω. So that (50) holds for every ψ ∈ C ∞ 0 (Ω p ) and by a density argument this is even true for ψ ∈ H 1 0 (Ω p ).