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Abstract

This paper is concerned with the study of the existence/non-existence
of the discrete spectrum of the Laplace operator on a domain of R3 which
consists in a twisted tube. This operator is defined by means of mixed
boundary conditions. Here we impose Neumann Boundary conditions on
a bounded open subset of the boundary of the domain (the Neumann
window) and Dirichlet boundary conditions elsewhere.

classification Primary 81Q10; Secondary 47F05.
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1 Introduction

In this work, we would like to study the influence of a geometric twisting on
trapped modes which occur in certain waveguides. Here the waveguide consists
in a straight tubular domain Ω0 := R × ω having a Neumann window on its
boundary ∂Ω0.
The cross section ω is supposed to be an open bounded connected subset of R2

of diameter d > 0 which is not rotationally invariant. Moreover ω is supposed
to have smooth boundary ∂ω.

It can be shown that the Laplace operator associated to such a straight tube
has bound states [8].

Let us introduce some notations. Denote by N the Neumann window. It is
an open bounded subset of the boundary ∂Ω0. Let D be its complement set in
∂Ω0. When N is an annulus of size l > 0 we will denote it by,

Aa(l) := Ia(l)× ∂ω, Ia(l) := (a, l + a), a ∈ R.

∗briet@univ-tln.fr, hammedi@univ-tln.fr.
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Consider first the self-adjoint operatorHN
0 associated to the following quadratic

form. Let D(QN ) = {ψ ∈ H1(Ω0) | ψ⌈D = 0} and for ψ ∈ D(QN ),

QN (ψ) =

∫

Ω0

|∇ψ|2dx

i.e. the Laplace operator defined on Ω0 with Neumann boundary conditions
(NBC) on N and Dirichlet boundary conditions (DBC) on D [5, 11].

It is actually shown in the Section 2 of this paper that if N contains an
annulus of size l large enough then HN

0 has at least one discrete eigenvalue. In
fact it is proved in [8] that this holds true if N contains an annulus of any size
l > 0.

The question we are interested in is the following: is it possible that the
discrete spectrum of HN

0 disappears when we apply a geometric twisting on the
guide? This question is motivated by the results of [6, 10] where it is shown
that this phenomenon occurs in some bent tubes when they are subjected to a
twisting defined from an angle function θ having a derivative θ̇ with a compact
support. In this paper we consider the situation described above which is very
different from the one of [6, 10].
Let us now define the twisting [4, 7]. Choose θ ∈ C1

c (R) and introduce the
diffeomorphism

L : Ω0 −→ R
3 (1)

(s, t2, t3) 7−→
(
s, t2 cos θ(s)− t3 sin θ(s), t2 sin θ(s) + t3 cos θ(s)

)
.

The twisted tube is given by Ωθ := L(Ω0). Let D(QN
θ ) = {ψ ∈ H1(Ωθ) |

ψ⌈L(D) = 0} and consider the following quadratic form

QN
θ (ψ) :=

∫

Ωθ

|∇ψ|2dx, ψ ∈ D(QN
θ ). (2)

Through unitary equivalence, we then have to consider

qNθ (ψ) := QN
θ (ψoL−1) =‖ ∇′ψ ‖2 + ‖ ∂sψ + θ̇∂τψ ‖2, (3)

ψ ∈ D(qNθ ) := {ψ ∈ H1(Ω0) | ψ⌈D = 0} and where

∇′ := t (∂t2 , ∂t3) , ∂τ := t2∂t3 − t3∂t2 . (4)

Denote by HN
θ the associated self-adjoint operator. It is defined as follows (see

[5, 11]). Let D(HN
θ ) = {ψ ∈ D(qNθ ), HN

θ ψ ∈ L2(Ω0)
∂ψ
∂n

⌈N = 0} with

HN
θ ψ = (−∆ω − (θ̇∂τ + ∂s)

2)ψ, (5)

where the transverse Laplacian ∆ω := ∂2t2 + ∂2t3 . If N = Aa(l), l > 0, we will
denote these forms respectively as Qlθ, q

l
θ and the corresponding operator as H l

θ

and if N = ∅ we denote the associated operator by Hθ.
Then the main result of this paper is
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Theorem 1.1. i) Under conditions stated above on ω and θ, there exists lmin :=
lmin(ω, d) > 0 such as if for some a ∈ R and l > lmin, N ⊃ Aa(l) then

σd(H
N
θ ) 6= ∅. (6)

ii) Suppose θ is a non zero function satisfying the same conditions as in i)
and has a bounded second derivative. Then there exists dmax := dmax(θ, ω) > 0
such that for all 0 < d ≤ dmax there exists lmax := lmax(ω, d, θ) such as for all
0 < l ≤ lmax, if N ⊂ Aa(l) and supp(θ̇) ∩ Ia(l) = ∅ for some a ∈ R then

σd(H
N
θ ) = ∅. (7)

Roughly speaking this result implies that for d small enough, the discrete
spectrum disappears when the width of the Neumann window decreases.

Let us describe briefly the content of the paper. In the Section 2 we give the
proof of the Theorem 1.1 i). The section 3 is devoted to the proof of the second
part of the Theorem 1.1, this proof needs several steps. In particular we first
establish a local Hardy inequality. This allows us to reduce the problem to the
analysis of a one dimensional Schrödinger operator from which the Theorem 1.1
ii) follows. Finally in the Appendix of the paper we give partial results we use
in previous sections.

2 Existence of bound states

First we prove the following. Denote by E1, E2, .... the eigenvalues (transverse
modes) of the Laplacian −∆ω defined on L2(ω) with DBC on ∂ω. Let χ1, χ2, ...

be the associated eigenfunctions. Then we have

Proposition 2.1. σess(H
N
θ ) = [E1,∞).

Proof. We know that σ(Hθ) = [E1,∞) see e.g. [2]. But by usual arguments
[12], HN

θ ≤ Hθ, then
[E1,∞) ⊂ σess(H

N
θ ). (8)

Let a′ ∈ R and l′ > 0 large enough such that N ⊂ Aa′(l
′) = Ia′(l

′) × ∂ω and
supp(θ̇) ⊂ Ia′(l

′). Let H̃ l′

θ be the operator defined as in (5) but with additional

Neumann boundary conditions on {a′} × ω ∪ {a′ + l′} × ω. So HN
θ ≥ H̃ l′

θ and

then σess(H
N
θ ) ⊂ σess(H̃

l′

θ ) [12].

But H̃ l′

θ = H̃i ⊕ H̃e. The interior operator H̃i is the corresponding operator
defined on L2(Ia′(l

′)× ω) with NBC on {a′} × ω ∪ {a′ + l′} × ω ∪N and DBC
elsewhere on Aa′(l

′). By general arguments of [12] it has only discrete spectrum
consequently σess(H̃

l′

θ ) = σess(H̃e).

Now the exterior operator H̃e is defined on L2((−∞, a′)× ω ∪ (a′ + l′,∞)× ω)
with DBC on (−∞, a′)×∂ω∪(a′+l′,∞)×∂ω and NBC on {a′}×ω∪{a′+l′}×ω.
Since θ = 0 for x < a′ and x > a′ + l′, it is easy to see that

H̃e = ⊕
n≥1

(−∂2 + En)(χn, .)χn.

Hence σ(H̃e) = σess(H̃e) = [E1,+∞).

The Theorem 1.1 i) follows from
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Proposition 2.2. Under conditions of the Theorem 1.1 i), there exists lmin :=
lmin(ω, d) > 0 such as for all l > lmin we have

σd(H
l
θ) 6= ∅. (9)

Proof. Let ϕl,a be the following function

ϕl,a(s) :=






10
l
(s− a), on [a, a+ l

10 );
1, on [a+ l

10 , a+
9l
10 );

− 10
l
(s− l − a), on [a+ 9l

10 , a+ l);
0, elsewhere.

It is easy to see that ϕl,a ∈ D(qlθ) and ‖ ϕl,a ‖2= 13l
15 | ω |. Let us calculate

qlθ(ϕl,a)−E1 ‖ ϕl,a ‖2=‖ ∇′ϕl,a ‖2 + ‖ θ̇∂τϕl,a+∂sϕl,a ‖2 −E1 ‖ ϕl,a ‖2 . (10)

Evidently the first term on the r.h.s of (10) is zero. For the second term on the
r.h.s of (10) we get,

‖ θ̇∂τϕl,a + ∂sϕl,a ‖2=‖ ∂sϕl,a ‖2= 20

l
| ω | .

Then

qlθ(ϕl,a)− E1 ‖ ϕl,a ‖2=| ω | (20
l

− 13l

15
E1) (11)

and thus if l ≥ lmin :=
√

300
13E1

we have qlθ(ϕl,a)− E1 ‖ ϕl,a ‖2≤ 0

2.1 Proof of the Theorem 1.1 i)

Using the same notation as in the Theorem 1.1 i), then HN
θ ≤ H l

θ. Moreover
these operators have the same essential spectrum, then by the min-max principle
the assertion follows.

3 Absence of bound state

In this section we want to prove the second part of the Theorem 1.1. Denote by
θm = inf(supp(θ̇)), θM = sup(supp(θ̇)) and L = θM − θm. Here L > 0. We first
consider the case where the Neumann window is an annulus, Aa(l) = Ia(l)×ω.

Proposition 3.1. Suppose Aa(l) is such that a ≥ θM . Assume that conditions
of the Theorem 1.1 ii) hold. Then there exists dmax := dmax(ω, θ) > 0, such that
for all 0 < d ≤ dmax there exists lmax(d, θ, ω) > 0 such as for all 0 < l ≤ lmax
we have

σd(H
l
θ) = ∅. (12)

Remark 3.2. the case where l+a ≤ θm follows from same arguments developed
below.

This proof is based on the fact that under conditions of the Proposition 3.1,
for every ψ ∈ D(qlθ) it holds,

Q(ψ) := qlθ(ψ)− E1 ‖ ψ ‖2≥ 0. (13)

The proof of (13) involves several steps.
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3.1 A local Hardy inequality

The aim of this paragraph is to show a Hardy type inequality needed for the
proof of the Proposition 3.1. It is the first step of the proof of (13). Let g be
the following function

g(s) :=

{
0, on Ia(l);
E1, elsewhere.

(14)

Choose p ∈ (θm, θM ) s.t. θ̇(p) 6= 0 and let

ρ(s) :=

{ 1
1+(s−p)2 , on (−∞, p];

0, elsewhere.
(15)

Proposition 3.3. Under same conditions of the Proposition 3.1, then there
exists a constant C > 0 depending on p and ω and θ̇ such that for any ψ ∈
D(qlθ),

‖ ∇′ψ ‖2 + ‖ θ̇∂τψ + ∂sψ ‖2 −
∫

Ω0

g(s) | ψ |2 dsdt ≥ C

∫

Ω0

ρ(s) | ψ |2 dsdt.
(16)

We first show the following lemma. Denote by Ωp := (−∞, p)× ω.

Lemma 3.4. Under same conditions of the Proposition 3.3. Then for any
ψ ∈ D(qlθ) we have
∫

Ωp

| ∇′ψ |2 + | θ̇∂τψ + ∂sψ |2 −E1 | ψ |2 dsdt ≥ C

∫

Ωp

ρ(s) | ψ |2 dsdt. (17)

In the following we will use notations suggested in [6]. For A ⊂ R denote by
χA the characteristic function of A× ω. Let ψ ∈ D(qlθ) and define,

qA1 (ψ) :=‖ χA∇′ψ ‖2 −E1 ‖ χAψ ‖2, qA2 (ψ) :=‖ χA∂sψ ‖2,
qA3 (ψ) :=‖ χAθ̇∂τψ ‖2, qA2,3(ψ) := 2ℜ(∂sψ, χAθ̇∂τψ). (18)

Denote also by QA(ψ) = qA1 (ψ) + qA2 (ψ) + qA3 (ψ) + qA2,3(ψ). Here and hereafter

we often use the fact that for any ψ ∈ D(qlθ)

qA1 (ψ) ≥ 0, (19)

for every A ⊂ R such that A ∩ Ia(l) = ∅.

Proof. Choose r > 0 such that θ̇(s) 6= 0 for any s ∈ [p − r, p]. Let f be the
following function:

f(s) :=





0, on (p,∞);
p−s
r
, on (p− r, p];

1, elsewhere.
(20)

For any ψ ∈ D(qlθ), simple estimates lead to:

∫

Ωp

| ψ(s, t) |2
1 + (s− p)2

dsdt =

∫

Ωp

| ψ(s, t)f(s) + (1− f(s))ψ(s, t) |2
1 + (s− p)2

dsdt (21)

≤ 2
(∫

Ωp

| f(s)ψ(s, t) |2
(s− p)2

dsdt+ ‖χ(p−r,p)ψ‖2
)
.
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Since f(p)ψ(p, .) = 0, we can use the usual Hardy inequality (see e.g. [9]),
then we get,

∫

Ωp

| ψ(s, t) |2
1 + (s− p)2

dsdt ≤ 8q
(−∞,p)
2 (fψ) + 2‖χ(p−r,p)ψ‖2. (22)

Note that with our choice [p − r, p] ∩ [a, a + l] = ∅. Hence to estimate the
second term on the r.h.s of (22) we use the Theorem 6.5 of [10], then there
exists λ0 = λ0(θ̇, p, r) > 0 s.t. for any ψ ∈ D(qlθ) we have

‖χ(p−r,p)ψ‖2 ≤ 1

λ0
Q(p−r,p)(ψ) ≤ 1

λ0
Q(−∞,p)(ψ). (23)

We now want to estimate the first term on the right hand side of (22). We have

q
(−∞,p)
2 (fψ) =

∫

Ωp

| ∂s(fψ) |2 dsdt = q
(−∞,θm)
2 (fψ) + q

(θm,p)
2 (fψ). (24)

Evidently since θ̇ = 0 and f = 1 in (−∞, θm), from (19), we have

q
(−∞,θm)
2 (fψ) ≤ Q(−∞,θm)(ψ). (25)

In the other hand since f(p)ψ(p, .) = 0, we can apply the Lemma 4.1 of the
Appendix. So for any 0 < α < 1 there exists γα,1 > 0 such that

| q(θm,p)2,3 (fψ) |≤ γα,1q
(θm,p)
1 (fψ) + αq

(θm,p)
2 (fψ) + q

(θm,p)
3 (fψ). (26)

Let γ := max(1, γα,1). Then

γ−1 | q(θm,p)2,3 (fψ) |≤ q
(θm,p)
1 (fψ) + αγ−1q

(θm,p)
2 (fψ) + γ−1q

(θm,p)
3 (fψ). (27)

Hence with the decomposition, q
(θm,p)
2,3 = γ−1q

(θm,p)
2,3 +(1− γ−1)q

(θm,p)
2,3 and (27)

we have,

Q(θm,p)(fψ) ≥ (1 − γ−1)
(
q
(θm,p)
2 (fψ) + q

(θm,p)
2,3 (fψ) + q

(θm,p)
3 (fψ)

)
(28)

+ γ−1(1− α)q
(θm,p)
2 (fψ)

and since q
(θm,p)
3 + q

(θm,p)
2,3 + q

(θm,p)
2 ≥ 0, we arrive at,

q
(θm,p)
2 (fψ) ≤ γ

(1− α)
Q(θm,p)(fψ). (29)

Now by using that, q
(θm,p)
1 (fψ) ≤ q

(θm,p)
1 (ψ),

‖χ(θm,p)(∂s + θ̇∂τ )(fψ)‖2 ≤ 2(‖χ(θm,p)(∂s + θ̇∂τ )ψ‖2 +
1

r2
‖χ(p−r,p)ψ‖2)

and (23), we get,

q
(θm,p)
2 (fψ) ≤ 2γ

(1− α)
(Q(θm,p)(ψ) +

1

λ0r2
Q(p−r,p)(ψ)) ≤ c′Q(θm,p)(ψ) (30)
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with c′ = 2γ
(1−α) (1 +

1
λ0r2

). Then (25) and (30) imply

q
(−∞,p)
2 (fψ) ≤ (1 + c′)Q(−∞,p)(ψ). (31)

Hence (31) and (23) prove the lemma with

C−1 = 8
(
1 + c′

)
+

2

λ0
. (32)

Proof of the proposition 3.3. To prove the proposition we note that for any
ψ ∈ D(qlθ) and for p′ ∈ R we have

∫

ω

∫ ∞

p′
| ∇′ψ |2 + | θ̇∂τψ + ∂sψ |2 dsdt ≥

∫

ω

∫ ∞

p′
g(s) | ψ |2 dsdt. (33)

Then (33) with p′ = p and Lemma 3.4 imply (16).

3.2 Reduction to a one dimensional problem

We now want to prove the following result,

Proposition 3.5. Under conditions of the Proposition 3.1, then a sufficient
condition in order to get (13) is given by

∫

R

| ψ′(s) |2 +2Cρ(s) | ψ(s) |2 ds− 4E1

∫ a+l

a

| ψ(s) |2 ds ≥ 0, (34)

for any ψ ∈ H1(R) where the constant C is defined in (32).

Remark 3.6. This proposition means that the positivity needed here is given
by the positivity of the effective one dimensional Schrödinger operator on L2(R),

− d2

ds2
+ 2Cρ(s)− 4E11Ia(l). (35)

where 1Ia(l) is the characteristic function of Ia(l).

Proof. Evidently we have

Q(ψ) =
1

2

(
Q(ψ)−

∫

Ω0

(E1−g(s)) | ψ |2 dsdt+qlθ(ψ)−
∫

Ω0

g(s) | ψ |2 dsdt
)
, (36)

where g is defined in (14). By using (16), then

Q(ψ) ≥ 1

2

(
qlθ(ψ)− E1 ‖ ψ ‖2 + C

∫

Ω0

ρ(s) | ψ |2 dsdt− E1 ‖ χ(a,a+l)ψ ‖2
)

(37)
Rewrite the expression of qlθ given by (3) as follows:

qlθ(ψ) =‖ ∇′ψ ‖2 + ‖ ∂sψ ‖2 + ‖ θ̇∂τψ ‖2 +2ℜ(∂sψ, θ̇∂τψ). (38)
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We estimate the last term of the r.h.s. of (38). By using the formula (49) of
the Appendix,

| q2,3(ψ) |=| q(θm,θM)
2,3 (ψ) |≤ γ 1

2
, 1
2

q
(θm,θM)
1 (ψ) +

1

2
q
(θm,θM )
2 (ψ) +

1

2
q
(θm,θM)
3 (ψ)

(39)
where

γ 1

2
, 1
2

:= γ̃ 1

2
, 1
2

+ 4d2 ‖ θ̇ ‖2∞ (40)

with γ̃ 1

2
, 1
2

:= max
{
d‖θ̇‖∞‖θ̈‖∞

√
f(L)

θ̇0
√
λ

,
d2‖θ̈‖2

∞
f(L)

λθ̇0
2 , 2d2 ‖ θ̈ ‖2∞ f(L)

}
for some

constant λ > 0 depending only on the section ω and f(L) := max{2+ 16L2

r2
, 4L2}.

Hence (38) together with (39) give:

qlθ(ψ) ≥‖ ∇′ψ ‖2 +
1

2
‖ ∂sψ ‖2 +

1

2
‖ θ̇∂τψ ‖2 −γ 1

2
, 1
2

q
(θm,θM)
1 (ψ). (41)

In view of (19) we have

‖ ∇′ψ ‖2 −E1 ‖ ψ‖2 ≥ q
(θm,θM)
1 (ψ) + q

Ia(l)
1 (ψ) ≥ q

(θm,θM )
1 (ψ)− E1‖χ(a,a+l)ψ‖2.

Thus this last inequality together with (41) in (37) give

Q(ψ) ≥ 1

2

(1
2
‖ ∂sψ ‖2 +1

2
‖ θ̇∂τψ ‖2 +C

∫

Ω0

ρ(s) | ψ |2 dsdt− 2E1 ‖ χ(a,l+a)ψ ‖2

+ (1− γ 1

2
, 1
2

)q
(θmθM )
1 (ψ)

)
.

Now if 0 < d ≤ dmax then γ 1

2
, 1
2

≤ 1 so the Proposition 3.5 follows.

3.3 The one dimensional Schrödinger operator

In this part, under our conditions, we want to show that the one dimensional
Schrödinger operator (35) is a positive operator. In view of the Proposition 3.5
this will imply the Proposition 3.1. Here we follow a similar strategy as in [1].

Proposition 3.7. for all ϕ ∈ H1(R), then there exists lmax > 0 such that for
any 0 < l ≤ lmax we have

∫

R

| ϕ′(s) |2 +2Cρ(s) | ϕ(s) |2 ds ≥ 4E1

∫

Ia(l)

| ϕ(s) |2 ds. (42)

Proof. Introduce the following function:

Φ(s) :=

{
(π2 + arctan (s− p)), if s < p;
π
2 , if s ≥ p.

(43)

where p is the same real number as in (15). So clearly Φ′ = ρ. For any t ∈ Ia(l)
and ϕ ∈ H1(R), we have:

π

2
ϕ(t) = Φ(t)ϕ(t) =

∫ t

−∞
(Φ(s)ϕ(s))′ds

=

∫ t

−∞
ρ(s)ϕ(s)ds +

∫ t

−∞
Φ(s)ϕ′(s)ds (44)

8



and since ρ(s) = 0 for any s ∈ (p,∞), we get,

π

2
ϕ(t) =

∫ p

−∞
ρ(s)ϕ(s)ds +

∫ t

−∞
Φ(s)ϕ′(s)ds. (45)

Then some straightforward estimates lead to,

π2

4
ϕ2(t) ≤ 2

(
(

∫ p

−∞
ρ(s)ϕ(s)ds)2 + (

∫ t

−∞
Φ(s)ϕ′(s)ds)2

)
(46)

≤ 2
(∫ p

−∞
ρ(s)ds

∫ p

−∞
ρ(s)ϕ2(s)ds+

∫ t

−∞
Φ2(s)ds

∫ t

−∞
ϕ′2(s)ds

)
.

By direct calculation
∫ p
−∞ ρ(s)ds = π

2 and
∫ p
−∞ Φ2(s)ds +

∫ t
p
Φ2(s)ds =

π ln 2 + π2

4 (t− p). Hence we get,

| ϕ(t) |2≤ 4

π

∫

R

ρ(s)ϕ2(s)ds+
(8 ln 2

π
+ 2(t− p)

)∫

R

| ϕ′(s) |2 ds (47)

We integrate both sides of (47) over Ia(l), then
∫

Ia(l)

| ϕ(t) |2 dt ≤ 4l

π

∫

R

ρ(s)ϕ2(s)ds+
(
(
8 ln 2

π
+ 2(a− p))l + l2

)∫

R

| ϕ′(s) |2 ds

≤ c′′
∫

R

2Cρ(s)ϕ2(s)+ | ϕ′(s) |2 ds

where c′′ = 2l( 1
πC

+ 4 ln 2
π

+ a− p) + l2. Finally we get,

4E1

∫ l+a

a

| ϕ(t) |2 dt ≤ 4E1c
′′
∫

R

2Cρ(s) | ϕ(s) |2 + | ϕ′(s) |2 ds. (48)

So choose 0 < l ≤ lmax with

lmax := −(
1

πC
+

4 ln 2

π
+ a− p) +

√
(
1

πC
+

4 ln 2

π
+ a− p)2 + (4E1)−1

then 4E1c
′′ ≤ 1 and the proposition 3.7 follows.

3.4 proof of the Theorem 1.1 ii)

Under assumptions of the Theorem 1.1 ii) HN
θ ≥ H l

θ. These two operators have
the same essential spectrum so the Theorem 1.1 ii) is proved by applying the
Proposition 3.1 and the min-max principle.

4 Appendix

In this appendix we give a slight extension of the lemma 3 of [6] which states
that under our conditions, for all ψ ∈ D(qlθ) we have for any α, β > 0 there
exists γα,β > 0 such that:

| q2,3(ψ) |≤ γα,βq1(ψ) + αq2(ψ) + βq3(ψ). (49)

Then we have

9



Lemma 4.1. Let p ∈ (θm, θM ). For all ψ ∈ D(qlθ) such that ψ(p, .) = 0, then
for any α, β > 0 there exists γα,β > 0 such that:

| q(θm,p)2,3 (ψ) |≤ γα,βq
(θm,p)
1 (ψ) + αq

(θm,p)
2 (ψ) + βq

(θm,p)
3 (ψ). (50)

Proof. Let ψ ∈ D(qlθ) such that ψ(p, .) = 0. Then ψ ∈ H1
0(Ωp). We know that

we may first consider vectors ψ(s, t) = χ1(t)φ(s, t), where φ ∈ C∞
0 (Ωp). For

such a vector ψ we have,

q
(θm,p)
1 (ψ) = ‖ χ(θm,p)χ1∇′φ ‖2, q

(θm,p)
2 (ψ) =‖ χ(θm,p)χ1∂sφ ‖2 (51)

q
(θm,p)
3 (ψ) = ‖ χ(θm,p)θ̇(χ1∂τφ+ φ∂τχ1) ‖2

and

q
(θm,p)
2,3 (ψ) = 2(θ̇χ(θm,p)χ1∂τφ, χ1∂sφ) + 2(θ̇χ(θm,p)φ∂τχ1, χ1∂sφ) (52)

By using simple estimates the first term on the r.h.s of (52) is estimated as :

| 2(θ̇χ(θm,p)χ1∂τφ, χ1∂sφ) |≤ 2 ‖ θ̇ ‖∞‖ χ(θm,p)χ1∇′φ ‖‖ χ(θm,p)χ1∂sφ ‖

then
| 2(θ̇χ(θm,p)χ1∂τφ, χ1∂sφ) |≤ c1q

(θm,p)
1 (ψ) +

α

2
q
(θm,p)
2 (ψ), (53)

where c1 := 2
α
d2 ‖ θ̇ ‖2∞ and α > 0.

Integrating by parts twice and using the fact that θ̇(θm) = φ(p, .) = 0, the
second term of the r.h.s of (52) is written as

2(θ̇χ(θm,p)φ∂τχ1, χ1∂sφ) = (χ(θm,p)θ̈φχ1, χ1∂τφ). (54)

Then the Cauchy Schwartz inequality implies,

| (χ(θm,p)θ̈φχ1, χ1∂τφ) |2≤ d2 ‖ θ̈ ‖2∞ q
(θm,p)
1 ‖ χ(θm,p)χ1φ ‖2 . (55)

Let p′ ∈ R and r′ > 0 such that (p′ − r, p′) ⊂ (θm, p) and for s ∈ (p′ − r, p′),
| θ̇(s) |≥ θ̇0 for some θ̇0 > 0. As in the proof of the Lemma 3 of [6] we have,

‖ χ(θm,p)χ1φ ‖2≤ c2

(
q
(θm,p)
2 (ψ) + θ̇−2

0 ‖ χ(p′−r,p′)θ̇χ1φ ‖2
)

(56)

where c2 := max
{
2 + 16 (p−θm)2

r2
, 4(p− θm)2

}
.

Moreover, for any s ∈ R, θ̇(s)χ1φ(s, .) ∈ H1
0(Ωp), then by using the Lemma 1 of

[6] there exists λ > 0 depending on ω such that :

‖ χ(p′−r,p′)θ̇χ1φ ‖2≤‖ χ(θm,p)θ̇χ1φ ‖2≤ λ−1
(
q
(θm,p)
3 (ψ)+ ‖ θ̇ ‖2∞ q

(θm,p)
1 (ψ)

)
.

(57)
Hence (56), (57) and (54) give

| (χ(θm,p)θ̈φχ1, χ1∂τφ) |2≤
(
c3q

(θm,p)
1 (ψ) +

α

2
q
(θm,p)
2 (ψ) + βq

(θm,p)
3 (ψ)

)2

(58)

where c3 := max
{
d‖θ̈‖‖θ̇‖∞

√
c2

θ̇0
√
λ

,
d2‖θ̈‖2

∞
c2

α
,
d2‖θ̈‖2

∞
c2

2βθ̇2
0
λ

}
. Then (53) and (58) imply

(50) with γα,β := c1 + c3.
Note that we can choose χ1 > 0 on ω. So that (50) holds for every ψ ∈

C∞
0 (Ωp) and by a density argument this is even true for ψ ∈ H1

0(Ωp).
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[6] T. Ekholm, H. Kovař́ık, D. Krejčǐŕık, A Hardy inequality in twisted waveg-
uides, Arch. Ration. Mech. Anal., 188 (2008), 245–264.
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