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Monomial convergence for holomorphic

functions on ℓr

Frédéric Bayart * Andreas Defant† Sunke Schlüters‡

Abstract

Let F be either the set of all bounded holomorphic functions or the set

of all m-homogeneous polynomials on the unit ball of ℓr . We give a sys-

tematic study of the sets of all u ∈ ℓr for which the monomial expansion
∑

α
∂α f (0)

α!
uα of every f ∈F converges. Inspired by recent results from the

general theory of Dirichlet series, we establish as our main tool, indepen-

dently interesting, upper estimates for the unconditional basis constants

of spaces of polynomials on ℓr spanned by finite sets of monomials.

1 Introduction

Let X be a Banach sequence space (i.e., ℓ1 ⊂ X ⊂ c0 such that the canonical se-

quences (ek ) form a 1-unconditional basis) and R ⊂ X a Reinhardt domain (i.e.,

a nonempty open set such that any complex sequence u belongs to R when-

ever there exists z ∈ R with |u| ≤ |z|; for instance, the open unit ball BX of X ).

Then each holomorphic (i.e., Fréchet differentiable) function f : R → C has a

power series expansion
∑

α∈Nn
0

c(n)
α zα on every finite dimensional section Rn of

R , and for example from the Cauchy formula we can see that c(n)
α = c(n+1)

α for

α ∈ N
n
0 ⊂ N

n+1
0 . Thus there is a unique family (cα( f ))

α∈N(N)
0

such that, for all

n ∈N and all z ∈ Rn ,

f (z) =
∑

α∈N(N)
0

cαzα.

The power series
∑

α cαzα is called the monomial expansion of f , and cα = cα( f )

are its monomial coefficients.
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Contrary to what happens on finite dimensional domains, the monomial

expansion of f does not necessarily converge at every point of R . This in [16]

motivated the introduction of the following definition: Given a subset F (R) of

H(R), the set of all holomorphic functions on R , we call

monF (R) =
{

z ∈R :
∑

α∈N(N)
0

∣
∣cα( f )zα

∣
∣<∞ for all f ∈F (R)

}

the domain of monomial convergence with respect to F (R).

By continuity of a holomorphic function, and since the equality is satisfied

on Rn , we know that for all z ∈monF (R),

f (z) =
∑

α∈N(N)
0

cα( f )zα.

We are mostly interested in determining monF (R) when F (R) = P (mℓr ) or

H∞(Bℓr
) for 1 ≤ r ≤∞; as usual we denote by H∞(BX ) the Banach space of all

bounded holomorphic functions f : BX →C, and by P (m X ) its closed subspace

of all m-homogeneous polynomials P (i.e., all restrictions of bounded m-linear

forms on X m to their diagonals).

The case r = 1 was solved completely by Lempert in [20], and the case r =
∞ seems fairly well-understood through the results of [6] (for more on these

results see the introductions of the sections 5.1 and 5.2). However, for 1 < r <
∞, despite the results of [16], the description of monP (mℓr ) and mon H∞(Bℓr

)

remains mysterious. In this paper, we improve the knowledge on these cases.

Of course, for X = ℓ1 the fact that each sequence in ℓ1 by definition is ab-

solutely summable is a big advantage, and for X = ℓ∞ the crucial tool is the

Bohnenblust-Hille inequality (an inequality for m-linear forms on ℓ∞) together

with all its recent improvments. But for X = ℓr with r 6= 1,∞we need alternative

techniques.

The problem is to find for each u ∈Bℓr
an additional summability condition

which guaranties full control of all sums
∑

α

∣
∣cα( f )uα

∣
∣ , f ∈ H∞(Bℓr

) . The gen-

eral idea is simple. Split the set N(N)
0 of all multi indices α into a union of finite

sets Λn , and then each Λn into the disjoint union of all its m-homogeneous

parts Λn,m (i.e., all α ∈Λn with order |α| = m). The challenge now is as follows:

Find a clever decomposition

N
(N)
0 =

⋃

m,n
Λm,n , (1)

which allows a in a sense uniform control over all possible partial sums

∑

α∈Λn,m

∣
∣cα( f )uα

∣
∣ , f ∈ H∞(Bℓr

) , (2)

2



such that under the additional summability property of u ∈ Bℓr
we for all func-

tions f finally can conclude that

∑

α∈N(N)
0

∣
∣cα( f )uα

∣
∣≤

∑

n

∑

m

∑

α∈Λn,m

∣
∣cα( f )uα

∣
∣<∞ .

In order to study domains monF (R) of monomial convergence, the decompo-

sition in (1) which for our purposes is crucial, is inspired by the work of Konya-

gin and Queffélec from [19] on Dirichlet series (see 11), and it is based on the

fundamental theorem of arithmetics. In order to handle (2), we study for ar-

bitrary finite index sets Λ of multi indices upper bounds of the unconditional

basis constant of the subspace in P (mℓr ) spanned by all monomials zα ,α ∈Λ.

Two tools of seemingly independent interest are established. The first one is

a fairly general upper estimate whenever all α ∈ Λ are m-homogeneous (i.e.,

|α| = m) (Theorem 3.2). The second one leads to such estimates for certain sets

Λ of nonhomogeneous α′s, needed to apply the above technique of Konyagin

and Queffélec (Theorem 4.1 and 4.2). Finally, we present our new results on sets

of monomial convergence for homogeneous polynomials and bounded holo-

morphic functions on ℓr (for polynomials see part (3),(4) of Theorem 5.1 and

Theorem 5.3, and for holomorphic functions Theorem 5.5 with its corollaries

5.6 and 5.7).

2 Preliminaries

We use standard notation from Banach space theory. As usual, we denote the

conjugate exponent of 1 ≤ r ≤∞by r ′, i.e. 1
r
+ 1

r ′ = 1. Given m,n ∈N we consider

the following sets of indices

M (m,n)=
{

j = ( j1, . . . , jm) ; 1≤ j1, . . . , jm ≤ n
}

= {1, . . . ,n}m

M (m)=N
m

M =N
N

and

J (m,n) =
{

j ∈M (m,n) ; 1 ≤ j1 ≤ ·· · ≤ jm ≤ n
}

J (m) =
⋃

n
J (m,n)

J =
⋃

m
J (m).

For indices i, j ∈M we denote by (i, j) = (i1, i2, . . . , j1, j2, . . . ) the concatenation of

i and j. An equivalence relation is defined in M (m) as follows: i ∼ j if there is
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a permutation σ such that iσ(k) = jk for all k. We write |i| for the cardinality of

the equivalence class [i]. Moreover, we note that for each i ∈ M (m) there is a

unique j ∈J (m) such that i ∼ j.

Let us compare our index notation with the multi index notation usually

used in the context of polynomials. There is a one-to-one relation between

J (m) and

Λ(m)=
{

α ∈N
(N)
0 ; |α| =

∞∑

i=1

αi = m

}

;

indeed, given j, one can define α by doing αr = |{q | jq = r }|; conversely, for

eachα, we consider jα = (1, α1. . .,1,2, α2. . .,2, . . . ,n,αn. . .,n, . . . ). In the same way we may

identify Λ(m,n) =
{

α ∈N
n
0 ; |α| = m

}

with J (m,n). Note that |jα| = m!
α!

for every

α ∈Λ(m). Taking this correspondence into account, for every Banach sequence

space X the monomial series expansion of a m-homogeneous polynomial P ∈
P (m X ) can be expressed in different ways (we write cα = cα(P ))

∑

α∈Λ(m)

cαzα =
∑

j∈J (m)

cjzj =
∑

1≤ j1≤...≤ jm

c j1 ... jm z j1 · · ·z jm .

Given a Banach sequence space X and some index subset J ⊂ J , we write

P (J X ) for the closed subspace of all holomorphic functions f ∈ H∞(BX ) for

which cj( f ) = 0 for all j ∈ J \ J . Clearly, P (m X ) = P (J (m)X ). If J ⊂ J is finite,

then

P (J X ) = span
{

zj : j ∈ J
}

,

where zj for j = ( j1, . . . , jℓ) stands for the monomial zj : u 7→ uj := u j1 · . . . ·u jℓ . For

J ⊂J (m), we call

J∗ =
{

j ∈J (m −1); ∃k ≥ 1, (j,k) ∈ J
}

the reduced set of J .

3 Unconditionality

Given a compact group G , the Sidon constant of a finite set C of characters γ

(in the dual group) is the best constant c ≥ 0, denoted by S(C ), such that for

every choice of scalars cγ,γ ∈C , we have that

∑

γ∈C

|cγ| ≤ c
∥
∥
∥

∑

γ∈C

cγγ
∥
∥
∥
∞

.

An immediate consequence of the Cauchy-Schwarz inequality is that

1 ≤ S(C )≤ |C |
1
2 .

For the circle groups G =T,Tn and T
∞ different values are possible:
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• A well-known result of Rudin shows that for the set C = {1, z, . . . , zn−1} of

characters on G =T we have, up to constants independent of n,

S(C )≍
p

n . (3)

• In [14] it was proved that for every m,n the Sidon constant of the mono-

mials C = {zα : α ∈Λ(m,n)} on G =T
n , up to the mth power C m of some

absolute constant C , satisfies

S(C )≍ |Λ(m −1,n)|
1
2 . (4)

• In contrast, a reformulation of a result of Aron and Globevnik [2, Thm 1.3]

shows that for every m the Sidon constant of the sparse set C = {zm
j

: j ∈
N} fulfills

S(C )= 1 . (5)

Let us transfer some of these results into terms of unconditional bases con-

stants of spaces polynomials on sequence spaces. Recall that a Schauder basis

(xn) of a Banach space X is said to be unconditional whenever there is a con-

stant c ≥ 0 such that ‖
∑

k εkαk xk‖ ≤ c ‖
∑

k αk xk‖ for every x =
∑

k ak xk ∈ X and

all choices of (εk )k ⊂ C with |εk | = 1. In this case, the best constant c is de-

noted by χ
(

(xn)
)

and called the unconditional basis constant of (xn). If such a

constant doesn’t exist, i.e. if the basis is not unconditional, we set χ
(

(xn)
)

=∞.

Given a Banach sequence space X and an index set J ⊂J , such that the set

C = {zj : j ∈ J } of all monomials associated with J (counted in a suitable way)

forms an basis of P (J X ), we write

χmon

(

P (J X )
)

=χ(C ) .

If we interpret each of these monomials zj as a character on the group T
∞,

then a straightforward calculation (using the distinguished maximum modu-

lus principle) proves that

S(C )=χmon

(

P (Jℓ∞)
)

.

A simple but useful lemma shows that χmon

(

P (Jℓ∞)
)

is an upper bound of all

χmon

(

P (J X )
)

.

Lemma 3.1. Let X be a Banach sequence space and let J ⊂ J , such that the

monomials form a basis of P (J X ). Then

χmon

(

P (J X )
)

≤χmon

(

P (Jℓ∞)
)

.
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Proof. Assume χmon

(

P (Jℓ∞)
)

< ∞ (otherwise there is nothing to show). For

P ∈ P (J X ) and a fixed u ∈ BX define Q(w) = P (wu) ∈ P (Jℓ∞). Since BX is a

Reinhardt domain, we have ‖Q‖∞ ≤ ‖P‖∞. It is now sufficient to observe that

∑

j∈J

|cj(P )uj| = sup
w∈Bℓ∞

∑

j∈J

|cj(P )uj||wj| = sup
w∈Bℓ∞

∑

j∈J

|cj(Q)||wj|

≤χmon

(

P (Jℓ∞)
)

‖Q‖∞ ≤χmon

(

P (Jℓ∞)
)

‖P‖∞ ,

the conclusion.

Let us again see some examples: Given X , an immediate consequence of (3) is

that for P (J X
)

= span{z
j
1 ; 0 ≤ j ≤ n −1} we have, up to a universal constant,

χmon

(

P (J X )
)

≍
p

n,

and from (5) we may deduce that for J =
{

(k, · · · ,k) ; k ∈N
}

⊂J (m)

χmon

(

P (J X )
)

= 1.

Generalizing (4) is much more complicated. In the scale of all ℓr -spaces the

results from [4] (lower estimates) and [13, 14] (upper estimates) show that for

1 ≤ r ≤∞
χmon

(

P (J (m,n)ℓr )
)

≍
∣
∣J (m −1,n)

∣
∣1− 1

min(r,2) , (6)

where ≍ means that the left and the right side equal up to the m-th power C m

of a constant only depending on r (and neither on m nor on n).

Replacing the index set J (m,n) by an arbitrary finite subset J ⊂ J (m,n)

the following result is a strong improvement and our main tool within our later

study of sets of monomial convergence.

Theorem 3.2. Given 1 ≤ r ≤∞ and m ≥ 1, there is a constant C (m,r ) ≥ 1 such

that for every n ≥ 1, every P ∈ P (J (m,n)ℓr ), every J ⊂ J (m,n), and every u ∈ ℓr

we have
∑

j∈J

∣
∣cj(P )

∣
∣ |uj| ≤C (m,r )|J∗|1−

1
min(r,2) ‖u‖m

r ‖P‖∞ , (7)

where

C (m,r )≤
{

eme (m−1)/r if 1 ≤ r ≤ 2

em2(m−1)/2 if 2 ≤ r ≤∞.

In particular, for every finite J ⊂J (m)

χmon

(

P (Jℓr )
)

≤C (m,r )|J∗|1−
1

min(r,2) . (8)
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The proof is given in the following two subsections; it is different for r ≤ 2 and

for r ≥ 2. The case r = ∞ of (6) is given in [14], and it uses the hypercontrac-

tive Bohnenblust-Hille inequality. The general case 1 ≤ r ≤∞ from [13] needs

sophisticated tools from local Banach space theory (as Gordon-Lewis and pro-

jection constants). These arguments in fact only work for the whole index set

J (m,n), and they seem to fail in full generality for subsets J of J (m,n). We

here provide a tricky, but quite elementary, argument which works for arbitrary

J ; moreover, we point out that even for the special case J =J (m,n) we obtain

better constants C (m,r ) for (8) than in [13].

From [15] we know that for each infinite dimensional Banach sequence

space X , the Banach space P (m X ) never has an unconditional basis. In partic-

ular, the unconditional basis constantχmon

(

P (m X )
)

of all monomials (zj)j∈J (m)

is not finite. But let us note that in contrast to this there are X such that for each

m

sup
n

χmon

(

P (J (m,n) X )
)

<∞

(this can be easily shown for X = ℓ1, but following [15] there are even examples

of this type different from ℓ1).

3.1 The case r ≤ 2

We need several lemmas. The first one is a Cauchy estimate and can be found

in [7, p. 323]. For the sake of completeness we include a streamlined argument.

Lemma 3.3. Let 1 ≤ r ≤∞ and α ∈N
n
0 with |α| = m . Then for each P ∈P

(m
ℓn

r

)

we have

|cα(P )| ≤
(mm

αα

) 1
r ‖P‖∞ .

In particular, for each j ∈J (m,n) we have that

|cj(P )| ≤ e
m
r |j|

1
r ‖P‖∞ .

Proof. Define u = m−1/r (α1/r
1 , . . . ,α1/r

n ) ∈ Bℓn
r

. Then by the Cauchy integral for-

mula for each P ∈P
(m

ℓn
r

)

cα(P ) =
1

(2πi )n

∫

|zn |=un

. . .

∫

|z1|=u1

P (z)

zαz1 . . . zn
d z .

Hence we obtain

|cα(P )| ≤
1

|uα|
‖P‖∞ =

(mm

αα

) 1
r ‖P‖∞ ,

the conclusion. For the second inequality note first that
(

mm

αα

) 1
r ≤ em/r

(
m!
α!

)1/r
,

and recall that if we associate to j the multi index α, then m!
α!

= |j| .
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Corollary 3.4. Consider the linear operator Q ∈L
(

ℓn
r ,P (m−1ℓn

r )
)

defined by

Q(z, w) =
∑

j∈J (m−1,n)

(
n∑

k=1

b(j,k)zj

)

wk ,

where z, w ∈ ℓn
r . Then for any j ∈J (m −1,n) ,

(
n∑

k=1

|b(j,k)|r
′
)1/r ′

≤ e
m−1

r |j|1/r ‖Q‖∞.

Proof. Let us fix w ∈ Bℓn
r

. Then Q(·, w) ∈ P (m−1ℓn
r ). Thus, by the preceding

lemma for any j ∈J (m −1,n),
∣
∣
∣
∣
∣

n∑

k=1

b(j,k)wk

∣
∣
∣
∣
∣
≤ e

m−1
r |j|1/r sup

z∈Bℓn
r

|Q(z, w)| ≤ e
m−1

r |j|1/r ‖Q‖∞.

We now take the supremum over all possible w ∈ Bℓn
r

.

Lemma 3.5. Let P ∈P (mℓn
r ). Then for any j ∈J (m −1,n)

(
n∑

k= jm−1

|c(j,k)(P )|r
′
)1/r ′

≤ me1+m−1
r |j|1/r‖P‖∞.

Proof. Let A : ℓn
r × . . .×ℓn

r →C be the symmetric m-linear form associated to P ,

A(z(1), . . . , z(m)) =
∑

i∈M (m,n)

ai(A)z(1)
i1

· · ·z(m)
im

;

in particular, for each j ∈J (m,n) we have aj(A) = cj(P)

|j| . For z, w ∈ ℓn
r define the

linear operator

Q(z, w) = A(z, . . . , z, w) ∈L
(

ℓn
r ,P (m−1ℓn

r )
)

;

then a simple calculation proves

Q(z, w) =
∑

i∈M (m,n)

ai(A)zi1 · · ·zim−1 wim

=
∑

i∈M (m−1,n)

n∑

k=1

a(i,k)(A)zi1 · · ·zim−1 wk

=
∑

j∈J (m−1,n)

∑

i∈[j]

n∑

k=1

a(i,k)(A)zi1 · · ·zim−1 wk

=
∑

j∈J (m−1,n)

n∑

k=1

(

∑

i∈[j]

a(i,k)(A)zi1 · · ·zim−1

)

wk

=
∑

j∈J (m−1,n)

n∑

k=1

(

a(j,k)(A)|j|z j1 · · ·z jm−1

)

wk .
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Now note that for every j ∈J (m −1,n) we have |(j,k)| ≤ m|j| , and hence by the

preceding corollary for such j

(

∑

k: jm−1≤k

∣
∣c(j,k)(P )

∣
∣r ′

)1/r ′

=
(

∑

k: jm−1≤k

∣
∣a(j,k)(A)|(j,k)|

∣
∣r ′

)1/r ′

≤ m

(
n∑

k=1

∣
∣a(j,k)(A)|j|

∣
∣r ′

)1/r ′

≤ m e
m−1

r |j|1/r ‖Q‖∞ .

Finally, by Harris’ polarization formula we know that ‖Q‖∞≤ e‖P‖∞, and hence

we obtain the desired conclusion.

Now we are ready to give the

Proof of Theorem 3.2 for 1 ≤ r ≤ 2. Take P ∈ P (J (m,n)ℓr ), J ⊂ J (m,n) and u ∈
ℓr . Then, by Lemma 3.5, for any j ∈ J∗,

(

∑

k: (j,k)∈J

|c(j,k)(P )|r
′
)1/r ′

≤
(

n∑

k= jm−1

|c(j,k)(P )|r
′
)1/r ′

≤ me1+m−1
r |j|1/r‖P‖∞.

Now by Hölder’s inequality (two times) and the multinomial formula we have

∑

j∈J

|cj(P )||uj| =
∑

j∈J∗

∑

k: (j,k)∈J

|c(j,k)||uj||uk |

≤
∑

j∈J∗
|uj|

(

∑

k: (j,k)∈J

|c(j,k)|r
′
)1/r ′ (

∑

k

|uk |r
)1/r

≤ me1+m−1
r

∑

j∈J∗
|j|1/r |uj|‖u‖r ‖P‖∞

≤ me1+m−1
r

(

∑

j∈J∗
|j||uj|r

)1/r (

∑

j∈J∗
1

)1/r ′

‖u‖r‖P‖∞

≤ me1+m−1
r

(

∑

j∈J (m−1,n)

|j||uj|r
)1/r (

∑

j∈J∗
1

)1/r ′

‖u‖r‖P‖∞

= me1+m−1
r |J∗|1−

1
r ‖u‖m

r ‖P‖∞ .

In order to deduce (8), note that for every finite J ⊂ J (m) there is n such that

J ⊂ J (m,n). Then every P ∈ P (Jℓr ) can be considered as a polynomial in

P (J (m,n)ℓr ) with equal norm, which implies the conclusion.
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3.2 The case r ≥ 2

Note first that the simple argument from the proof of Lemma 3.1 shows that

we only have to deal with the case r =∞. For r =∞ we need another lemma

which substitutes the argument (by Cauchy’s estimates) from Lemma 3.3. It is

an improvement of Parseval’s identity, and its proof can be found in [6, Lemma

2.5].

Lemma 3.6. Let P ∈P (J (m,n)ℓ∞). Then

n∑

k=1







∑

j∈J (m−1,n)
jm−1≤k

|c(j,k)(P )|2







1/2

≤ em2
m−1

2 ‖P‖∞.

We are now ready for the

Proof of Theorem 3.2 for r =∞. Let P ∈P (J (m,n)ℓ∞). Then, for any u ∈ Bℓ∞ , by

the Cauchy-Schwarz inequality and the preceding Lemma 3.6 we have

∑

j∈J

|cj(P )||uj| ≤
n∑

k=1







∑

j∈J∗

(j,k)∈J

|c(j,k)|







≤
n∑

k=1







∑

j∈J∗

(j,k)∈J

|c(j,k)|2







1/2

∣
∣{j ∈ J∗ : (j,k) ∈ J }

∣
∣1/2

≤
n∑

k=1







∑

j∈J (m−1,n)
jm−1≤k

|c(j,k)|2







1/2

|J∗|1/2

≤ em2
m−1

2 |J∗|1/2‖P‖∞.

For the second statement, see again the argument from the proof in the case

1 ≤ r ≤ 2. This finally completes the proof of Theorem 3.2.

Remark 3.7. It is natural to ask for lower bounds of χmon

(

P (Jℓr )
)

using |J | or

|J∗|. For the whole set of m-homogeneous polynomials, this has been done

in [10] for r ≥ 2 and in [4] for 1 ≤ r ≤ 2. Using the Kahane-Salem-Zygmund

inequality, we can give such a lower bound at least for the case r =∞. Indeed,
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assume that J ⊂ J (m,n). Then there exists some absolut constant C > 0 and

signs (εj)j∈J such that

sup
u∈Bℓn∞

∣
∣
∣
∣
∣

∑

j∈J

εjuj

∣
∣
∣
∣
∣
≤C n1/2|J |1/2(logm)1/2.

Now, the inequality

|J | = sup
u∈Bℓn∞

∑

j∈J

|εj||uj| ≤χmon

(

P (Jℓ∞)
)

sup
u∈Bℓn∞

∣
∣
∣
∣
∣

∑

j∈J

εjuj

∣
∣
∣
∣
∣

yields

χmon

(

P (Jℓ∞)
)

≥
|J |1/2

C n1/2(logm)1/2
.

However, the inequality given by Theorem 3.2 is very bad if J involves many

independent variables; see in particular (5).

Remark 3.8. Given an index set J ⊂J , we define the Bohr radius of a Reinhardt

R in C
n with respect to J by

K (R ; J ) = sup
{

0 ≤ r ≤ 1
∣
∣∀ f ∈ H∞(R) : sup

u∈r R

∑

j∈J

∣
∣cj( f )uj

∣
∣≤ ‖ f ‖∞

}

.

The standard multi-variable Bohr radius is then denoted by K (R) = K (R ;J ).

Let us recall the two most important results on Bohr radii: For the open unit

disc R =D, Bohr’s power series theorem states that K (D)= 1
3

, and in [5](following

the main idea of [14]) it was recently proved that

lim
n→∞

K (Bℓn
∞)

√
logn

n

= 1 .

For every 1 ≤ r ≤∞ and every n (with constants depending on r only) we have

K (Bℓn
r

) ≍
(

logn

n

)1− 1
min{r,2}

. (9)

The probabilistic argument for the upper estimate is due to [7] (see also [10]),

and the proof of the lower estimate from [13] uses symmetric tensor products

and local Banach space theory. We here sketch a simplified argument based on

Theorem 3.2.
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Theorem 3.9. Let 1≤ r ≤∞ andσ= 1− 1
min(r,2)

. Then there is a constant C =C (r )

such for every J ⊂J and every n

C

supm

∣
∣(J (m,n)∗

∣
∣
σ
m

≤ K (Bℓn
r

; J ) , (10)

where J (m,n) := J ∩J (m,n) and C ≥ 1
3e2 > 0.

Proof. By a simple analysis of [10, Theorem 2.2] as well as [10, Lemma 2.1] we

have
1

3
inf
m

K
(

Bℓn
r

; J (m,n)
)

≤ K (Bℓn
r

; J ) ,

and

K
(

Bℓn
r

; J (m,n)
)

=
1

m

√

χmon

(

P (J (m,n)ℓr )
)

.

Then the conclusion is an immediate consequence of Theorem 3.2 and the sim-

ple fact that for the constant C (m,r )≤ eme (m−1)/min{r,2} ≤ e2m .

Now the proof for the lower bound in (9) follows from the the special case J =J .

Indeed,

J∗(m,n) =J (m −1,n)=
(

(m −1)+n −1

m −1

)

≤ em−1
(

1+
n

m −1

)m−1
,

hence inserting this estimate into (10) and minimizing over m gives what we

want.

4 The Konyagin-Queffélec method

We now apply Theorem 3.2 to a special method of summation which was orig-

inally used by Konyagin and Queffélec to find the correct asymptotic order of

the Sidon constant of Dirichlet polynomials of lenght x. In [19] they proved the

following: there exists a constantβ> 0, such that for every Dirichlet polynomial
∑x

n=1 ann−s ,

x∑

n=1

|an| ≤
p

x exp
((

−β+o(1)
)
√

log x loglog x
)

sup
t∈R

∣
∣
∣

x∑

n=1

anni t
∣
∣
∣ . (11)

This was improved in [8], where an improved lower bound on β was given, and

in [14] where the precise value β= 1p
2

was determined.
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It turns out that (11) is linked to our subject by the Bohr point of view.

Indeed, define for each x the index set J (x) :=
{

j ∈J : pj ≤ x
}

. Then to each

Dirichlet polynomial

D(s) =
x∑

n=1

ann−s =
∑

j∈J (x)

apj
p−s

j ,

we can associate a polynomial

P (z) =
∑

j∈J (x)

apj
zj ∈P (Jℓ∞) .

Kronecker’s theorem ensures that ‖P‖∞ = supt∈R |D(i t )|, and the result of [14,

Theorem 3] translates into the following remarkable equality (the improvement

of (11) mentioned above):

χmon

(

P (J (x)ℓ∞)
)

=
p

x exp

((

−
1
p

2
+o(1)

)√

log x loglog x

)

; (12)

in other terms, the latter expression gives the precise asymptotic order of the

Sidon constant S(x) for the characters zj , j ∈ J (x) on the group T
∞.

There is also an m-homogeneous version of (12) due to Balasubramanian,

Calado and Queffeléc [1] with an original formulation analog to (11). We refor-

mulate it as follows: Define for m the index set J (x,m) :=
{

j ∈J (m) : pj ≤ x
}

.

Then with constants only depending on m

χmon

(

P (J (x,m)ℓ∞)
)

≍
x

m−1
2m

(

log x
) m−1

2

. (13)

The following two theorems extend these results to the scale of ℓr -spaces,

and more. The original proofs of (12) and (13) are heavily based on the Bohnen-

blust-Hille inequality and its recent improvements. Here we need Theorem 3.2

as a substitute. Part (1) of the first theorem obviously extends the upper esti-

mate from (12) to the scale of ℓr -spaces, part (2) even modifies the index set

J (x,m) (so far defined via primes). Both results are of particular interest for our

study of sets of monomial convergence in the next section.

Theorem 4.1. Let 1 ≤ r ≤∞ and set σ= 1− 1
min{r,2}

. Then for every f ∈ H∞(Bℓr
),

every u ∈ Bℓr
, and every x > e we have

(1) for p denoting the sequence of primes,

∑

j:pj≤x

∣
∣cj( f )uj

∣
∣≤ xσ exp

((

−
p

2σ+o(1)
)
√

log x loglog x
)

‖ f ‖∞ .
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(2) for q = (qk )k , defined by qk = k ·
(

log(k +2)
)θ

with some θ ∈ ( 1
2

,1],

∑

j:qj≤x

∣
∣cj( f )uj

∣
∣≤ xσ exp

((

−2σ

√

θ−
1

2
+o(1)

)
√

log x loglog x
)

‖ f ‖∞ .

In both cases, the o-term depends neither on x nor on f .

The second theorem extends (13) to the scale of ℓr -spaces.

Theorem 4.2. Let 1 ≤ r ≤∞ and m ≥ 1. Then there exists C (m,r ) > 0 such that

for all P ∈P (mℓr ), all x ≥ 3, and all u ∈ ℓr we have

(1) in the case 1 ≤ r ≤ 2:

∑

j:pj≤x

∣
∣cj(P )uj

∣
∣≤C (m,r )

x
m−1

m (1− 1
r )

(

loglog x
)(m−1)(1− 1

r )

(log x)(1− 1
r )

‖u‖m
r ‖P‖∞ ,

(2) and in the case 2 ≤ r ≤∞:

∑

j:pj≤x

∣
∣cj(P )uj

∣
∣≤C (m,r )

x
m−1
2m

(

log x
)m−1

2

‖u‖m
r ‖P‖∞ .

Clearly all these results have reformulations in terms of unconditional basis

constants. For example, part (1) of Theorem 4.1 reads:

χmon

(

P (J (x)ℓr )
)

≤ xσ exp
((

−
p

2σ+o(1)
)
√

log x loglog x
)

.

The proofs will be given in (4.2); the next section prepares them.

4.1 Size of some index sets

Although we stated Theorem 4.1 for the sequence of primes p in part (1) and

for a specific choice of q in part (2) we want to state our considerations below

as generic as possible. Let hereinafter q = (qk )k denote a strictly increasing

sequence with q1 > 1 and qk →∞ for k →∞. For technical reasons we have to

introduce the index of length zero ϑ = ( ), for which qϑ = 1 and (i,ϑ) = (ϑ, i) = i

by convention. Let x > 2 and 2 < y < x. Choose l ∈N, such that ql ≤ y < ql+1.

We define

J (x) :=
{

j ∈J
∣
∣qj ≤ x

}

∪ {ϑ}

J−(x; y) :=
{

j = ( j1, . . . , jk ) ∈J (k)
∣
∣k ∈N, qj ≤ x, jk ≤ l

}

∪ {ϑ}
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and for m ∈N,

J (x,m) :=
{

j = ( j1, . . . , jm) ∈J (m)
∣
∣qj ≤ x

}

J+(x,m; y) :=
{

j = ( j1, . . . , jm) ∈J (x,m)
∣
∣ l < j1

}

,

respectively for m = 0, J+(x,0; y) := {ϑ}.

From the general construction of these sets we can already say something

about their size – we need five lemmas.

Lemma 4.3. Let 2 < y < x and m ∈N.

(1) |J−(x; y)| ≤
(

1+ log x

log q1

)l

(2) |J (x,m)| =; whenever m > log x

log q1
.

Proof. (1) Using the correspondence between J (m) and Λ(m), J−(x; y) has the

same cardinal number as

Γ
−(x; y) :=

{

α ∈N
l
0

∣
∣q

α1

1 · · ·qαl

l
≤ x

}

.

Now, for α ∈ Γ
−(x; y) and 1 ≤ j ≤ l ,

q
α j

1 ≤ q
α1

1 · · ·qαl

l
≤ x,

so that α j ≤
log x

log q1
for all j . (2) Note that for every j ∈ J+(x,m; y) we have qm

1 ≤
qj ≤ x which immediately gives the conclusion.

The next lemma relates the size of an index set with the size of its reduced

set.

Lemma 4.4. For the reduced index sets,

J (x,m)∗ ⊂ J
(

x
m−1

m ,m −1
)

and J+(x,m; y)∗ ⊂ J+
(

x
m−1

m ,m −1; y
)

.

Proof. Let j = ( j1, . . . , jm−1) ∈ J (x,m)∗, respectively j ∈ J+(x,m; y)∗. Then there

exists k ≥ jm−1 such that (j,k) ∈ J (x,m), respectively (j,k) ∈ J+(x,m; y). Hence

qj · qk = q(j,k) ≤ x. Since qk ≥ q jm−1 , this implies either qk > x
1
m or q j1 ≤ . . . ≤

q jm−1 ≤ qk ≤ x
1
m . In both cases, q j1 · · ·q jm−1 ≤ x

m−1
m .

For specific choices of q we can say the following about the size of J+(x,m; y):

Lemma 4.5. Let q = (qk )k be defined by qk = k ·
(

log(k +2)
)θ

for some θ ∈ (0,1].

Then there exists a constant c > 0, such that for every x > y > 2 and every m ∈N,

|J+(x,m; y)| ≤ x y−m exp
(

y ·
(

gθ(x)+c
))

where gθ(x) = 1
1−θ (log x)1−θ for θ < 1 and gθ(x) = loglog x for θ = 1.
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Proof. From the definition of the series q , we see immediately

ql+k −ql ≥ qk (14)

for any k ∈N. We have furthermore for c = q−1
1 +q−1

2 +q−1
3 ,

∑

k≤x

1

qk

≤
∑

3<k≤x

1

k(logk)θ
+c ≤

∫x

3

1

t (log t )θ
dt +c =

∫log x

log3

1

sθ
ds +c

and therefore by integration

∑

k≤x

1

qk

≤ gθ(x)+c. (15)

We introduce a completely multiplicative function,

|J+(x,m; y)| =
∑

j∈J+(x,m;y)

1 ≤
x

ym

∑

j∈J+(x,m;y)

y

q j1

· · ·
y

q jm

≤
x

ym

∏

l<k<x

( ∞∑

ν=1

( y

qk

)ν
)

≤
x

ym
exp

(

−
∑

l<k<x

log
(

1−
y

qk

))

.

Using the series expansion of the logarithm around 1, we obtain for the expo-

nent

−
∑

l<k<x

log
(

1−
y

qk

)

=
∑

l<k<x

∞∑

ν=1

1

ν

( y

qk

)ν
≤

∑

l<k<x

y

qk

1

1− y

qk

.

With (14) and the fact that y ≥ ql , this leads to

−
∑

l<k<x

log
(

1−
y

qk

)

≤ y
∑

l<k<x

1

qk − y
≤ y

∑

l<k<x

1

qk−l

≤ y ·
( ∑

k<x

1

qk

)

.

(15) now completes the proof.

Finally, we mention two known estimates which measure the size of J (x,m) and

J+(x,m; y), in the case they are defined with respect to the sequence of primes.

The first one is taken from Balazard [3, Corollaire 1], and the second one is a

well-known result of Landau (see e.g. [18] for a proof).

Lemma 4.6. Let q denote the sequence of primes. Then there exists a constant

c > 0, such that for every x > y > 2 and every m ∈N,

|J+(x,m; y)| ≤ x y−m exp
(

y ·
(

loglog x +c
))

.

Lemma 4.7. Let q denote the sequence of primes and let m ≥ 1. There exists a

constant Cm > 0 such that, for all x ≥ 3,

|J (x,m)| ≤Cm
x

log x
(loglog x)m−1 (16)
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4.2 Proofs

The proof of Theorem 4.2 is now very short.

Proof of Theorem 4.2. The proof of the first statement is a direct consequence

of Theorem 3.2 for the index set J = J (x,m), and of the Lemmas 4.4 and 4.7. The

second statement follows from Lemma 3.1 combined with (13).

To present the Konyagin-Queffélec technique in general we need one more ad-

ditional lemma.

Lemma 4.8. Let m1,m2, l ∈N and P ∈ P (m1+m2ℓr ) such that ck(P ) 6= 0 for only

finitely many k ∈J (m1 +m2). Then for every i ∈J (m1, l ) the polynomial

Pi =
∑

j∈J (m2)
j1>l

c(i,j)(P ) z(i,j) ∈P (m2ℓr )

satisfies

‖Pi‖∞ ≤ ‖P‖∞ .

Proof. Given u ∈ ℓr , a straightforward calculation shows

Pi(u) =
∫

Tl
P

(

ζ1u1, . . . ,ζl ul ,ul+1 . . .
)

ζ̄i1 · · · ζ̄il
d(ζ1, . . . ,ζl ) ,

which immediately implies the desired inequality.

Proof of Theorem 4.1. Recall the setting of our theorem. Let x > e and 2 < y < x,

and choose l ∈N such that ql ≤ y < ql+1. Given u ∈Bℓr
, at first write u = u−+u+

where u−
k
= 0 for k > l and u+

k
= 0 for k ≤ l . Any k ∈ J (x) may be written as

k = (i, j) with i ∈ J−(x; y) and j ∈ J+(x,m; y). Moreover, |ui| = |u−
i
| and |uj| = |u+

j
|.

Hence,

∑

qk≤x

|ckuk| =
∑

i∈J−(x;y)

∑

m∈N0

∑

j∈J+(x,m;y)
q(i,j)≤x

|c(i,j)u(i,j)|

=
∑

i∈J−(x;y)

∑

m∈N0

|u−
i |

∑

j∈J+(x,m;y)
q(i,j)≤x

|c(i,j)u
+
j | .
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Using Theorem 3.2, we can now estimate the latter sum for every i ∈ J−(x; y),

|u−
i |

∑

j∈J+(x,m;y)
q(i,j)≤x

|c(i,j)u
+
j | ≤ |u−

i |C
m|J+(x,m; y)∗|σ sup

‖ζ‖r ≤‖u+‖r
∀k≤l :ζk=0

∣
∣
∣

∑

j∈J (m)
j1>l

c(i,j)ζj

∣
∣
∣

≤C m|J+(x,m; y)∗|σ sup
‖ζ‖r≤‖u+‖r
∀k≤l :ζk=0

∣
∣
∣

∑

j∈J (m)
j1>l

c(i,j)u
−
i ζj

∣
∣
∣

≤C m|J+(x,m; y)∗|σ
∥
∥
∥

∑

j∈J (m)
j1>l

c(i,j)z(i,j)

∥
∥
∥
∞

,

where the last inequality is a consequence of (u−+ζ)(i,j) = u−
i
ζj and

‖u−+ζ‖r
r = ‖u−‖r

r +‖ζ‖r
r ≤ ‖u−‖r

r +‖u+‖r
r ≤ 1 .

Choose for each i ∈ J−(x, y) some mi ∈N such that i ∈J (mi). By Lemma 4.8 we

then obtain
∑

qk≤x

|ckuk| ≤
∑

i∈J−(x;y)

∑

m

C m|J+(x,m; y)∗|σ
∥
∥

∑

k∈J (m+mi)

ckzk

∥
∥
∞ .

Moreover, if we decompose f into its sum of homogeneous Taylor polynomials,

then we deduce by Cauchy estimates that

∑

qk≤x

|ckuk| ≤
(

|J−(x; y)|
∑

m

C m|J+(x,m; y)∗|σ
)

‖ f ‖∞.

Now J+(x,m; y)∗ ⊂ J+(x
m−1

m ,m −1) and J+(x,m; y) =; for m > log x

log q1
by Lemma

4.4 and Lemma 4.3. Hence

|J−(x; y)| ·
∑

m

C m|J+(x,m; y)∗|σ ≤
(

1+
log x

log q1

)l+1
sup

m
C m|J+(x

m−1
m ,m −1)|σ.

Up to this point, our arguments are independent of the specific choice of q . We

threat both cases at once. In the case of q denoting the sequence of primes, set

θ = 1. By Lemma 4.5 and Lemma 4.6, respectively

(

1+
log x

log q1

)l+1
·sup

m
C m|J+(x

m−1
m ,m −1)|σ

≤
(

1+
log x

log q1

)l+1
·sup

m

(

C mx
m−1

m y−m+1 exp
(

y ·
(

gθ(x)+c
)))σ

.

Choosing y = (log x)
θ− 1

2

loglog x
, this is

= xσ exp
(

o(1)
√

log x loglog x
)

·sup
m

(

=: exp hx ,y (m)
︷ ︸︸ ︷

C mx− 1
m y−m

)σ
.

18



Note that l =O(1)
y

(log y)θ
= o(1)

p
log x

loglog x
; indeed, by the definition of l

l
(

log
(

l +2
))θ ≤ y <

(

l +1
)(

log
(

l +3
))θ ≤

(

l +2
)2

,

hence

y

(log y)θ
≥

l
(

log
(

l +2
))θ

(

log
(

(l +2)2
))θ

= 2−θ l .

Differentiating

hx,y (m) = m logC − 1
m

log x −m log y ,

we see that it attains its maximum at

M =

√

log x

log y −C
≥

√

log x

log y
,

and therefore

hx,y (m) ≤ hx,y (M)

= log(C )

√

log x

log y −C
︸ ︷︷ ︸

= o(1)
p

log x log log x

−2
√

log x log y

=
(

−2

√

θ− 1
2
+o(1)

)
√

log x loglog x,

which proves the theorem.

5 Monomial convergence

In this section we apply the new estimates on the unconditional basis constant

of polynomials on ℓr from the preceding two sections, to the analysis of sets

monP (mℓr ) and mon H∞(Bℓr
) of monomial convergence of m-homogeneous

polynomials on ℓr and bounded holomorphic functions on Bℓr
.

5.1 Polynomials

The next statement gives the state of art for homogeneous polynomials.

Theorem 5.1. Let 1≤ r ≤∞ and m ≥ 2.

(1) If r =∞, then monP (mℓ∞) = ℓ 2m
m−1 ,∞.
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(2) If r = 1, then monP (mℓ1) = ℓ1.

(3) If 2 ≤ r <∞, then ℓ 2m
m−1 ,∞ ·ℓr ⊂ monP (mℓr ) ⊂ ℓ(

m−1
2m + 1

r

)−1
,∞

.

(4) If 1< r < 2, then for any ε> 0, ℓ(mr ′)′−ε ⊂ monP (mℓr ) ⊂ ℓ(mr ′)′,∞.

Several cases of this theorem are already known: the first one can be found in

[6] and the second one in [16]. The upper estimate in the third and the fourth

case can also be found in [16]. The proof of the lower estimate in the third case

follows from a general technique inspired by Lemma 3.1. We need to introduce

another notation. For X a Banach sequence space, R a Reinhard domain in X

and F (R) a set of holomorphic functions on R , we set

[F (R)]∞ =
{

fw : u ∈ Bℓ∞ 7→ f (uw); w ∈R , f ∈F (R)
}

.

[F (R)]∞ is a set of holomorphic functions on Bℓ∞ , and the following general

result holds true.

Lemma 5.2. R ·mon[F (R)]∞ ⊂ monF (R).

Proof. Let w ∈ R and u ∈mon[F (R)]∞. For any f ∈F (R) then cα( fw ) = wαcα( f )

and therefore
∑

α

|cα( f )||wu|α =
∑

α

|cα( fw )||u|α <+∞.

which yields the claim.

It is now easy to deduce the lower estimate in the third case, knowing the result

of part (1). Indeed, [P (m X )]∞ is contained in the set of bounded m-homo-

geneous polynomials on Bℓ∞ , thus in P (mℓ∞) by the natural extension of a

bounded polynomial from Bℓ∞ to ℓ∞.

The lower inclusion in (4) is a partial solution of a conjecture made in [16]

(see the remarks after Example 4.6 in [16]). Its proof seems less simple, and

requires some preparation. Note that for r ≥ 2 we have that

1

p
m−1
2m

·ℓr ⊂ monP (mℓr )

which is an immediate consequence of Theorem 5.1, (3). For 1 < r < 2 we can

prove this up to an ε:

Theorem 5.3. For 1 < r < 2 and m ≥ 1 put σm = m−1
m

(

1− 1
r

)

. Then for every ε> 1
r

1

pσm
(

log(p)
)ε ·ℓr ⊂ monP (mℓr ).

20



In particular, for all ε> 0,

1

pσm+ε ·ℓr ⊂ monP (mℓr ).

Proof. Let P =
∑

j∈J (m) cj(P )zj ∈P (mℓr ) and let u ∈ ℓr . We intend to show that

S :=
∑

j∈J (m)

|cj(P )|
1

(p j1 · · ·p jm )σm
(

log(p j1 ) · · · log(p jm )
)ε |uj| ≤C‖u‖m

r ‖P‖∞

for some constant C > 0. Let us observe that, for any j1, . . . , jm ≥ 1,

log(p j1 ) · · · log(p jm ) ≥
(log2)m−1

m
log(p j1 · · ·p jm ). (17)

We order the sum over j∈J (m) with respect to the value of the product p j1 · · ·p jm .

Precisely, using (17), we write

S ≪
+∞∑

N=m

∑

j∈J (m)

2N≤pj<2N+1

1

p
σm

j
logε(pj)

|cj(P )||uj|≪
+∞∑

N=m

1

2Nσm Nε

∑

pj≤2N+1

|cj(P )||uj|.

We apply Theorem 4.2 to find

S ≪
+∞∑

N=m

1

2Nσm Nε

2Nσm log(N )(m−1)
(

1− 1
r

)

N 1− 1
r

‖P‖∞‖u‖m
r .

The series is convergent since ε> 1/r .

Finally, we are ready to provide the

Proof of the lower inclusion of Theorem 5.1, (4). Given u ∈ ℓ(mr ′)′−ε, we show that

the decreasing rearrangement u∗ ∈monP (mℓr ). Then for some δ> 0 we have

u∗
n ≪

1

n
1

(mr ′)′−ε
=

1

n
1

(mr ′)′+δ
.

By the prime number theorem we know that pn ≍ n logn, hence

1

n
1

(mr ′)′+δ
=

1

p
m−1

m
1
r ′+

δ
2

n

p
m−1

m
1
r ′+

δ
2

n

n
1

(mr ′)′+δ
≪

1

p
m−1

m
1
r ′+

δ
2

n

(n logn)
m−1

m
1
r ′+

δ
2

n
1

(mr ′)′+δ
.

But obviously

(n logn)
m−1

m
1
r ′+

δ
2

n
1

(mr ′)′+δ
=

(logn)
m−1

m
1
r ′+

δ
2

n
1
r n

δ
2

∈ ℓr ,
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hence by Theorem 5.3
1

n
1

(mr ′)′+δ
∈ monP (mℓr ),

the conclusion.

Remark 5.4. A look at [16] shows that in the case r > 2 the proof of the inclusion

monP (mℓr ) ⊂ ℓ(
m−1
2m + 1

r

)−1
,∞

keeps working if we replace ℓr by ℓr,∞. Indeed, it

just uses that

sup
u∈ℓn

r , ‖u‖r ≤1

n∑

k=1

|uk |2 = n1− 2
r

and this remains true, up to a constant factor, if we replace Bℓn
r

by Bℓn
r,∞ . If we

combine this with Lemma 5.2, then we find that, for r > 2,

monP (mℓr,∞) = ℓ(
m−1
2m + 1

r

)−1
,∞

.

5.2 Holomorphic functions

We now study mon H∞(Bℓr
) for 1 ≤ r ≤ +∞. The extreme cases are already

well-known: By a result of Lempert (see e.g. [20] and [16]) we have

mon H∞(Bℓ1
) = Bℓ1

. (18)

Moreover by [6] we know that

B ⊂ mon H∞(Bℓ∞) ⊂ B (19)

where

B =
{

u ∈ Bℓ∞ ; lim sup
n

1

logn

n∑

k=1

|u∗
k |

2 < 1

}

B =
{

u ∈ Bℓ∞ ; lim sup
n

1

logn

n∑

k=1

|u∗
k |

2 ≤ 1

}

.

For 1 < r <∞, it was shown in [16] that, setting 1
s
= 1

2
+ 1

max{r,2}
, for every ε> 0

Bℓr
∩ℓs ⊂ mon H∞(Bℓr

) ⊂ Bℓr
∩ℓs+ǫ . (20)

In the following we improve the previous inclusion, and show in particular that

here ε= 0 is not possible. More precisely, we give necessary and sufficient con-

ditions on (α,β) ∈ [0,∞[2 such that

(

1

nα
(

log(n +2)
)β

)

n

∈ mon H∞(Bℓr
) .
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Note that by (19) for every β> 0

(

1

n
1
2

(

log(n +2)
)β

)

n

∈mon H∞(Bℓ∞) ; (21)

we do not know whether here β= 0 is possible. Moreover, by (18)

(

1

n
(

log(n +2)
)β

)

n

∈ mon H∞(Bℓ1
) (22)

if and only if β> 1. The following result collects our knowledge in the remaining

cases:

Theorem 5.5. For 1 ≤ r ≤∞ put σ= 1− 1
min(r,2)

. Then

(1a) For any θ > 1
2

and 1≤ r ≤ 2

(

1

nσ ·
(

log(n +2)
)θσ

)

n

·Bℓr
⊂ mon H∞(Bℓr

).

In particular,

(

1

n
1
r +σ(log(n+2))β

)

n

∈mon H∞(Bℓr
) whenever β> 1

2r
+ 1

2
.

(1b) For any θ > 0 and 2≤ r ≤∞
(

1

nσ ·
(

log(n +2)
)θ

)

n

·Bℓr
⊂ mon H∞(Bℓr

).

In particular,

(

1

n
1
r +σ(log(n+2))β

)

n

∈mon H∞(Bℓr
) whenever β> 1

r
.

(2) Suppose that

(

1

n
1
r +σ(log(n +2))β

)

n

∈mon H∞(Bℓr
). Then β≥ 1

r
.

Note that we cannot replace log(n +2) by log(n +1) in the previous statement.

Indeed, it can be easily seen by restricting the study to the one-dimensional

case that mon H∞(Bℓr
) ⊂ mon H∞(Bℓ∞) ⊂ Bℓ∞ .

Proof. We begin with part (1b): We have that θ > 0 and 2 ≤ r ≤∞. Then an easy

argument yields
(

1

n
1
2 ·

(

log(n +2)
)θ

)

n

∈B .
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By Lemma 5.2 and by observing that [H∞(Bℓr
)]∞ ⊂ H∞(Bℓ∞), we get immedi-

ately
(

1

n
1
2 ·

(

log(n +2)
)θ

)

n

·Bℓr
⊂ mon H∞(Bℓ∞) ⊂ mon H∞(Bℓr

).

Let us now prove part (1a): Assume that θ > 1
2

and 1 ≤ r ≤ 2. We shall apply

Theorem 4.1, (2) with the sequence q defined by q j = j · (log( j +2)
)θ

. Then for

f ∈ H∞(ℓr ) and u ∈ Bℓr
the conclusion follows from

∑

j

1

qσ
j

|cj( f )uj|

=
∞∑

N=0

∑

j:eN<qj≤eN+1

1

qσ
j

|cj( f )uj|

≤
∞∑

N=0

1

eNσ

∑

j∈J (eN+1)

|cj( f )uj|

≤
∞∑

N=0

1

e (N−1)σ
eNσ exp

((

−2σ

√

θ−
1

2
+o(1)

)
√

N log N
)

· ‖ f ‖∞ <∞.

Finally, we check part (2): For r = 1, (18) already proves the claim. At first we

will treat the case 1< r ≤ 2 with a probabilistic argument. Afterwards we reduce

the case r ≥ 2 to the case r = 2. Let 1 < r ≤ 2. We shall apply Corollary 3.2 of

[4] (with p = r ). Then there is an absolute constant C ≥ 1 such that for any m,n

there are (εj)j ∈T
J (m,n) for which

sup
u∈Bℓn

r

∣
∣
∣

∑

j

εj |j|uj

∣
∣
∣≤C (n logm)σmmσ . (23)

Let now x =
(

k−1(log(k +2))−β
)

k denote the sequence in question and assume

x ∈ mon H∞(Bℓr
). Then, by a closed graph argument, there exists a constant

C̃ ≥ 1, such that for every f ∈ H∞(Bℓr
),

∑

j

|cj( f ) xα| ≤ C̃ ‖ f ‖ . (24)

For any n ∈N now,

( n∑

k=1

|xk |
)m

=
∑

j∈J (m,n)

∣
∣εj |j| |xj|

∣
∣≤ C̃ sup

u∈Bℓn
r

∣
∣
∣

∑

j

εj |j|uj

∣
∣
∣≤ C̃ C (n logm)σmmσ .

by (24) and (23). Taking the mth root, we obtain

n∑

k=1

1

k(log(k +2))β
≤

(

C̃ C
) 1

m (n logm)
σ
m mσ
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for every n,m ∈N. It now suffices to notice that with m = ⌊logn⌋ the right-hand

side is asymptotically equivalent to (logn)σ and the left-hand side to (logn)1−β

as n →∞. Hence β>−σ+1 = 1
r

.

Now suppose r ≥ 2 and set ξ=
(

k− 1
t (log(k+2))−

1
t −ε

)

k for 1
t
+ 1

r
= 1

2
and ε> 0.

Consider f ∈ H∞(Bℓ2
) and let us set g = f ◦Dξ, where Dξ denotes the diagonal

operator ℓr → ℓ2 induced by ξ, which is bounded by Hölder’s inequality. Thus

g ∈ H∞(Bℓr
). We have

∑

j

|cj( f )|
1

j1(log( j1 +2))
1
t +β+ε

· · ·
1

jm(log( jm +2))
1
t +β+ε

=
∑

j

∣
∣
(

cj( f )ξj

)

xj

∣
∣<∞ ,

under the assumption that x =
(

k− 1
r −

1
2 (log(k+2))−β

)

k ∈mon H∞(Bℓr
) (note that

1
t
+ 1

r
+ 1

2
= 1). Hence

(

k(log(k +2))
1
t +β+ε

)

k ∈ mon H∞(Bℓ2
) and by our result

in the case r = 2, 1
t
+β+ε≥ 1

2
for every ε> 0.

We are now able to give an answer to our previously stated question: the inclu-

sion (20) holds not true for ε= 0.

Corollary 5.6. Let 1 < r <∞ and 1
s
= 1

2
+ 1

max{r,2}
. Then

Bℓr
∩ℓs (mon H∞(Bℓr

).

Proof. Assume equality. Let q =
(

k log(k + 2)
)

k . By Theorem 5.5 this implies

that the diagonal operator ℓr → ℓs induced by the sequence q−σ, where σ =
1− 1

min{r,2}
, is well-defined and by a closed graph argument bounded. Hence

( ∞∑

k=1

∣
∣q−σ

k

∣
∣t

) 1
t = sup

x∈Bℓp

( ∞∑

k=1

∣
∣xk q−σ

k

∣
∣s

) 1
s = ‖Dq−σ : ℓr → ℓs‖ <∞ ,

where 1
s
= 1

r
+ 1

t
. Therefore q−σ ∈ ℓt . But

∞∑

k=1

q−σt
k =

∞∑

k=1

1

k log(k +2)
=∞ ,

a contradiction.

Using the same technique as in the proof of (1a) in Theorem 5.5, we easily ob-

tain the following analog of Theorem 5.3.

Corollary 5.7. Let 1 < r <∞ and let σ= 1− 1
min{r,2}

. Then

p−σ ·Bℓr
⊂ mon H∞(Bℓr

) , (25)

and here σ is best possible.
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Proof. We proceed analogously to the proof of (1a) in Theorem 5.5 and obtain

for f ∈ H∞(Bℓr
) and u ∈Bℓr

by Theorem 4.1,

∑

j

1

pσ
j

|cj( f )uj| =
∞∑

N=0

∑

j:eN<qj≤eN+1

1

pσ
j

|cj( f )uj|

≤
∞∑

N=0

1

eNσ

∑

j∈J (eN+1)

|cj( f )uj|

≤
∞∑

N=0

eNσ

e (N−1)σ
exp

((

−
p

2σ+o(1)
)
√

N log N
)

‖ f ‖∞ <∞ .

Remark 5.8. Analogously to the result (19) for r = ∞ and in view of Theorem

5.5, a plausible conjecture would be that for all r ≥ 2

Br ⊂ mon H∞(Bℓr
) ⊂ B r ,

where for 1
s
= 1

2
+ 1

r

Br =
{

u ∈Bℓ∞ ; lim sup
n

1

(logn)
r

r+2

n∑

k=1

|u∗
k |

s < 1
}

B r =
{

u ∈Bℓ∞ ; lim sup
n

1

(logn)
r

r+2

n∑

k=1

|u∗
k |

s ≤ 1
}

.

Remark 5.9. In Theorem 5.5, the cases 1 ≤ r ≤ 2 and 2 ≤ r ≤∞ do not really fit

for r = 2. This is due to the fact that when we apply Theorem 4.1 (2), we need

that θ > 1/2. It would be nice to extend the statement of this last theorem to

θ ∈ (0,1/2].
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