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Introduction

In this paper, we give a construction of a notable compactification of the Teichmüller space. Using hyperbolic geometry, we define a system of coordinates called the Fenchel-Nilson coordinates on Teichmüller space of a closed Riemann surface. Moreover an embedding of the Teichmüller space will be given by means of geodesic lengths, which has its origin in a classical investigation of Fricke and Klein. At the last section we give a (useful) ideal boundary for the Teichmüller space of genus , which is due to W.Thurston.

Poincaré Metric and Hyperbolic Geometry

The Poincaré metric is an important natural metric on the unit disk For any , ∊ , we set = where is a rectifiable curve in connecting and . Using Schwarz lemma, every holomorphic mapping f : satisfies

Geodisics

For any two points , ∊ , a rectifiable closed arc , connecting these points is a geodesic, if

= =

1.1.1 Proposition For ∊ there exists a unique geodesic connecting these points. Morever it is a subarc of the cercle or the line segment which passes through and orthogonal to the boundary .

Proof

Since the Poincaré metric is invariant under the action by Aut( ), we may assume that = 0 and >0, via a transformation by an element ∊ ,

=

. Then for every closed arc connecting 0 and , we have Hence = (0, ) if and only if is coincident with the line segment .

Recall that, when ∊ Aut( ) is hyperbolic, has two distinct fixed points. The part in of the circle or the line segment which passes through theses points and is orthogonal to the boundary is called the axis of . The axis is invariant under the action by . So by the last proposition, every geodesic connecting any two points on the axis is a subarc on .

Remark

The Poincaré metric on the upper-half plane H, is defined by setting = (the pull-back of the Poincaré metric on the disk by the Möbus transformation ).

Hyperbolic Metric on a Riemann Surface

Let ℛ be a Riemann surface whose universal covering surface is biholomorphically equivalent to the unit disk . Consider a Fuchsian model of ℛ acting on with the projection : ℛ . Since the Poincaré metric is invariant under the action by , then we have a Riemannian metric on ℛ, ℛ .

For a given universal covering surface (ℛ , ℛ) of a Riemann surface ℛ, there is a universal group isomorphic to the fundamental group ℛ of ℛ: for any element ℛ , the action on ℛ is defined by:

ℛ =
In particular, determines the free homotopy class of . We say that covers the closed curve .

Proposition

Let ℛ be a Riemann surface with universal covering surface H, and be a Fuchsian model of ℛ acting on H. If the transformation is the subgroup of Γ consisting of all elements ∊ such that = . Then is a free group generated by two hyperbolic transformations, and / Now, let see the relationship between the complex structure of a triply domain ῼ and the hyperbolic structure of , the unique paints of ῼ, induced by the hyperbolic metric on ῼ.

Let , , be the boundary components which are simple closed geodesics of the pair of pants P. Let be a Fuchsian model of the domain ῼ acting on . Then is a free group generated by two hyperbolic transformations and . We assume that and cover , respectively.

Theorem

For any arbitrarily given triple of positive numbers, there exists a triply connected planar Riemann surface such that = , j = 1, 2, 3 Proof

Teichmüller'sTheorem

The Fricke space is a domain in ℝ and homeomorphic to ℝ , we denote by ℛ the point in corresponding to . Let : ℛ ℛ be a markingpreserving homeomorphism. For every ∊ , let be the unique closed geodesic in homotopy class of on ℛ , we can show that = is a system of decomposing curves on ℛ .

Proposition

Let be the Fuchsian model of ℛ represented by . Note that is the projection of the axis of an element of which covers for every i. Now, for every , and every let be the hyperbolic length as a function on the Fricke space . Proposition 2.1 implies that every geodesic length function is real analytic on .

We have a real analytic mapping : ℝ t Teichmüller's theorem stats that, the Fricke space is a simply connected domain.

Then, every has a single valued continuation branch on by the monodromy theorem, for every j.

For a fixed single-valued continuous branch of , the mapping : is a homeomorphism of onto ℝ ℝ . We call these coordinates Fenchel-Nilson coordinates. In fact the mapping is a diffeomorphism . And . Now we consider the problem of finding a set of simple closed geodesics on a Riemann surface of genus g , whose hyperbolic lengths determine the surface. In fact by constructing a set of simple closed geodesic whose length functions separate points of , we replace each in Fenchel-Nilson coordinates with geodesic length functions.

Consider a fixed Riemann surface ℛ of genus g , a decomposing curves on ℛ. Let be the path decompositions of ℛ corresponding to . For every ∊ denote by and the elements of having as boundary component of ( ). For every we set = .

Fix a simple closed geodesic in which intersects and let be the unique simple closed geodesic which is freely homotopic to the simple curve obtained from by applying the Dhen twist with respect to .

For every t ∊ , let ℛ be the corresponding point of . For every closed geodesic L on ℛ, we express as L the corresponding closed geodesic on ℛ , and denote by the hyperbolic length of L . Set

= , = , =
for every and set =

Theorem

The mapping is a proper embedding of into ℝ

To prove this theorem, fix a point of arbitrarily, and write

ℝ ℝ

Fix j, and for every s ℝ, define a point

We can show that the function is strictly convex and proper on ℛ. In particular, there is a unique value of at which satisfies the minimum .

Thurston's Compactification

Denote by the set consisting of all free homotopy classes of simples closed curves on a closed surface ℛ of genus g For any t in the Fricke space , let ℛ be the Riemann surface represented by an element t, and for every ∊ , let (t)( ) be the hyperbolic length ( ) of the unique geodesic in the homotopy class on ℛ corresponding to . Then we have a mapping : ℝ for every t ∊ , or equivently we have a mapping : ℝ . We regard ℝ as a topological space with the product topology.

Theorem(4.1) implies the following corollary

Now if is the isotopy class of in ℛ, then i( ) , the map extends to a map defined by the same symbol: ℝ ℝ , given by the formula ℝ into ℝ by setting

(λ )( )=
For every ∊ ℝ ∊ . It is clear that

ℝ

We know the following result .

Theorem

The subset of ℝ is homeomorphic to = ∊ ℝ

The set ℝ can be identified with the set ℳ of all equivalence classes under isotopy and Whitehead's operations of measured foliations . Hence we can write as ℳ = ℳ .

Measured Foliations

Let F be a foliation of ℛ, with isolated singularities. A transverse invariant measure is a measure that is defined on each arc transverse to the foliation and that satisfies the following invariant property:

If ℛ are two arcs that are transverse to the foliation F and that are isotopic through transverse arcs whose endpoints remain in the same leaf, then .

Let be a closed curve. We set , where are arcs of the curve mutually disjoint and transverse to F, and where the supermum is taken over all sums of this type. In other words, is the total variation of the y coordinate along the curve in an atlas, that defines the measured foliation. This quantity is also denoted by Thurston as .

A measured foliation is, by definition, a pair of foliation F on ℛ with such isolated singularities and a transversal measure for F.

When

ℝ is defined with a measured foliation , we have , where

. From here on is written as even for a general ℳ

Let be an element of , and I ∊ , which is an invariant isotopy.

Thus we have a function

ℳ ℝ such that
The following diagram is commutative

ℝ ℳ ℝ When ∊ ℝ ∊
is defined with a measured foliation , we have

∊ Where ∊ .
From here on, is written as ∊ even for a general p= ∊ ℳ . As the mapping ℝ ℝ is injective, ℝ ℳ is also an injection.

A typical example of a measured foliation on ℛ, when ℛ is equipped with a complex structure along every leaf of which a prescribed non-zero holomorphic quadratic differential is positive, equipped with the canonical transversal measure .

On the other hand, Hubbard and Masur showed that, for any given complex structure on ℛ, ℳ can be identified with the space of holomorphic quadratic differential on ℛ (with respect to the given complex structure) which in turn is known to be homeomorphic to ℝ .

Proposition

The image is disjoint from ℳ in ℝ

Proof

For every t ∊ , the image ∊ is bounded from below by a constant, depending on t. In fact, for every , take a transversal arc such that By Poincaré's recurrence theorem, there is a sub-arc of a leaf which stars and ends at . Hence we have a simple closed curve L such that which implies the assertion.

Theorem

For every system = of decomposing curves of ℛ, there is a natural homeomorphism U ℳ

Where U = ∊ ℳ ∊ .

Proof

For every ∊ we can construct a measured foliation such that is transversal to , for every and that = , , or equivalently = , , where is the geodesic on the marked Riemann surface represented by t. We set .

It is known that the mapping is a homeomorphism onto U .

Theorem

The subset ℳ of ℝ with the relative topology is a compact manifold with boundary. Moreover ℳ is homeomorphic to the real -dimensional closed ball ∊ ℝ and the boundary is coincident with ℳ , which is homeomorphic to .

Proof

Fix ℳ such that ∊ arbitrarily. Then there is a system = of decomposing curves of ℛ such that , j=1,….3g-3

As in §4,the system allows to construct a family of simple closed curves , which gives an embedding of into ℝ .

For every let = ∊ , and W= .

Clearly, is open in , and . As the mapping is injective on , we define a mapping of W into W as follows.

We set = ,

For every , we put = By using a fundamental inequality:

x , ,

We can show that this mapping is a homeomorphism onto its image, and hence it gives local coordinates in a neighborhood of .

The importance of this compactification may be shown by the following result

  , a, b, c, d ∊ ℝ, ad -bc = 1 is hyperbolic, and is the closed geodesic on ℛ corresponding to , surface ℛ which admits the hyperbolic metric, cutted by a family of mutually disjoint simple closed geodesics. Let Р be a relatively compact connected component of the resulting union of subsurfaces. If contains no more simple closed geodesic of ℛ, then should be triply connected: homeomorphic to a planar region: Р Such a surface can be considered as one of the smallest pieces for rebuilding ℛWe call a relatively compact subsurface Р of ℛ a pair of pants of ℛ if Р is triply connected and if every connected component of the relative boundary of Р in ℛ is a simple closed geodesic.Fix a pair of pants arbitrarily. Let Γ be a Fuchsian model of ℛ acting on the disk , and ℛ = ℛ be the projection. Let be a connected component of . If

  Let = be an arbitrary system of decomposing curves on a closed Riemann surface ℛ of genus , and let Ƥ = be the pants decomposition of ℛ corresponding to . Then and satisfy and Proof Cut ℛ along an element ∊ . If is the number of connected components of ℛ -, and is the sum of genera of all connected components of ℛ -. Then -= and ℛhas two boundary components. We can see by induction, with an added cut along a new element of , the number of boundary components incre ases by two, and the sum of genera of all connected components minus the number of connected components decreases by one. Hence and 4 Geodesic length functions Fix a point ℛ in the Teichmüller space: ℛ ∊ , and let = be a decomposing curves on ℛ. For every point in the Frike space:

Corollary

The mapping ℝ is a proper embedding Moreover, this mapping remains an embedding, even we take the associated projective space, the quotient ℝ = ℝ ℝ with a projection

ℝ ℝ

where P ℝ is given the quotient topology. In fact, letting P be the composed mapping of with the projection of ℝ into the projective space ℝ , we have the following theorem

Theorem

The mapping : ℝ is an embedding

There is a natural mapping of into ℝ , which is defined by using the geometric intersection number of curves.

For any , ∊ , the geometric intersection number i( ) of and is by definition the infimum of the number of intersection points of and , where moves in the free homotopy class of for each k. In particular i( )= i( ) and i( )=0 for every ∊ S.

Define a mapping : ℝby setting ( )(.) = i( ), ∊ , where we denote simply by 0.

Proposition

The mapping ℝ is injective

Proof

If i( ) 0, it suffices to take .

If i( )=0, there exist simples closed curves ∊ ' ∊ such that '= . By cutting the surface ℛ along , we obtain a surface N containing ' in its interior.

As ' is not isotopic to , there exists in N a curve ' that cannot be separated from ' in N. we take with card( )=1.

If ' separate N into and , we take = , where is an arc representing a nontrivial element of ( ); this is possible because the genus of ℛ is .

If is the isotopy class of in ℛ, then by the following proposition 5.4, we have

Corollary

Every orientation-preserving homeomorphism of ℛ onto itself induces a homeomorphism of = ℳ onto itself.

Proof

Every orientation-preserving homeomorphism of ℛ onto itself induces a natural action of onto itself, and hence induces a continuous self-mapping Ф of ℝ .

Here, and ℳ are clearly invariant under the self mapping. The inverse of is obtained from .