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Abstract

Gaussian Processes (GPs) are a popular approach to predict the output of a pa-
rameterized experiment. They have many applications in the field of Computer
Experiments, in particular to perform sensitivity analysis, adaptive design of ex-
periments and global optimization. Nearly all of the applications of GPs require
the inversion of a covariance matrix that, in practice, is often ill-conditioned.
Regularization methodologies are then employed with consequences on the GPs
that need to be better understood.

The two principal methods to deal with ill-conditioned covariance matrices
are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-
called nugget regularization). The first part of this paper provides an algebraic
comparison of PI and nugget regularizations. Redundant points, responsible
for covariance matrix singularity, are defined. It is proven that pseudoinverse
regularization, contrarily to nugget regularization, averages the output values
and makes the variance zero at redundant points. However, pseudoinverse and
nugget regularizations become equivalent as the nugget value vanishes. A mea-
sure for data-model discrepancy is proposed which serves for choosing a regu-
larization technique.

In the second part of the paper, a distribution-wise GP is introduced that
interpolates Gaussian distributions instead of data points. Distribution-wise
GP can be seen as an improved regularization method for GPs.
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Nomenclature

Abbreviations

CV, Cross-validation
discr, model-data discrepancy
GP, Gaussian Process
ML, Maximum Likelihood
PI, Pseudoinverse

Greek symbols

τ2, nugget value.
∆, the difference between two likelihood functions.
κ, condition number of a matrix.
κmax, maximum condition number after regularization.
λi, the ith largest eigenvalue of the covariance matrix.
µ(.), Gaussian process mean.
σ2, process variance.
Σ, diagonal matrix made of covariance matrix eigenvalues.
η, tolerance of pseudoinverse.
θi, characteristic length-scale in dimension i.

Latin symbols

c, vector of covariances between a new point and the design points X.
C, covariance matrix.
Ci, ith column of C.
ei, ith unit vector.
f : Rd → R, true function, to be predicted.
I, identity matrix.
K, kernel or covariance function.
m(.), kriging mean.
n, number of design points.
N , number of redundant points.
PIm, orthogonal projection matrix onto the image space of a matrix (typically
C).
PNul, orthogonal projection matrix onto the null space of a matrix (typically
C).
R, correlation matrix.
r, rank of the matrix C.
s2(.), kriging variance.
s2
i , variance of response values at i-th repeated point.

V, column matrix of eigenvectors of C associated to strictly positive eigenvalues.
W, column matrix of eigenvectors of C associated to zero eigenvalues.
X, matrix of design points.
Y (.), Gaussian process.
y, vector of response or output values.
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yi, mean of response values at i-th repeated point.

1 Introduction

Conditional Gaussian Processes, also known as kriging models, are commonly
used for predicting from a set of spatial observations. Kriging performs a linear
combination of the observed response values. The weights in the combination
depend only, through a covariance function, on the locations of the points where
one wants to predict and the locations of the observed points [8, 23, 29, 20]. We
assume in this work that the location of the observed points and the covariance
function are given a priori, which is the default situation when using algorithms
performing adaptive design of experiments [4], global sensitivity analysis [16]
and global optimization [14].

Kriging models require the inversion of a covariance matrix which is made
of the covariance function evaluated at every pair of observed locations. In
practice, anyone who has used a kriging model has experienced one of the
circumstances when the covariance matrix is ill-conditioned, hence not reliably
invertible by a numerical method. This happens when observed points are too
close to each other, or more generally when the covariance function makes the
information provided by observations redundant.

In the literature, various strategies have been employed to avoid such degen-
eracy of the covariance matrix. A first set of approaches proceed by controlling
the locations of design points (the Design of Experiments or DoE). The influ-
ence of the DoE on the condition number of the covariance matrix has been
investigated in [24]. [21] proposes to build kriging models from a uniform subset
of design points to improve the condition number. In [17], new points are taken
suitably far from all existing data points to guarantee a good conditioning.

Other strategies select the covariance function so that the covariance matrix
remains well-conditioned. In [9] for example, the influence of all kriging param-
eters on the condition number, including the covariance function, is discussed.
Ill-conditioning also happens in the related field of linear regression with the
Gauss-Markov matrix Φ>Φ that needs to be inverted, where Φ is the matrix
of basis functions evaluated at the DoE. In regression, work has been done on
diagnosing ill-conditioning and the solution typically involves working on the
definition of the basis functions to recover invertibility [5]. The link between
the choice of the basis functions and the choice of the covariance functions is
given by Mercer’s theorem, [20].

Instead of directly inverting the covariance matrix, an iterative method
has been proposed in [11] to solve the kriging equations and avoid numerical
instabilities.

The two standard solutions to overcome the ill-conditioning of covariance
matrices are the pseudoinverse (PI) and the “nugget” regularizations. They
have a wide range of applications because, contrarily to the methods men-
tioned above, they can be used a posteriori in computer experiments algorithms
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without major redesign of the methods. This is the reason why most kriging
implementations contain PI or nugget regularization.

The singular value decomposition and the idea of pseudoinverse have already
been suggested in [14] in relation with Gaussian Processes (GPs). The Model-
Assisted Pattern Search (MAPS) software [26] relies on an implementation of
the pseudoinverse to invert the covariance matrices.

The most common approach to deal with covariance matrix ill-conditioning
is to introduce a “nugget” [7, 25, 15, 1], that is to say add a small positive
scalar to the diagonal. As a matrix regularization method, it is also known
as Tikhonov regularization or Ridge regression. The popularity of the nugget
regularization may be due to its simplicity and to its interpretation as the
variance of a noise on the observations. The value of the nugget term can be
estimated by maximum likelihood (ML). It is reported in [18] that the presence
of a nugget term significantly changes the modes of the likelihood function of
a GP. Similarly in [12], the authors have advocated a nonzero nugget term in
the design and analysis of their computer experiments. They have also stated
that estimating a nonzero nugget value may improve some statistical properties
of the kriging models such as their predictive accuracy [13]. In contrast, some
references like [19] recommend that the magnitude of nugget remains as small
as possible to preserve the interpolation property.

Because of the diversity of arguments regarding GP regularization, we feel
that there is a need to provide analytical explanations on the effects of the
main approaches. The paper starts by detailing how covariance matrices as-
sociated to GPs become singular, which leads to the definition of redundant
points. Then, new results are provided regarding the analysis and comparison
of pseudoinverse and nugget kriging regularizations. The analysis is made pos-
sible by approximating ill-conditioned covariance matrices with the neighboring
truly singular covariance matrices. The paper finishes with the description of a
new regularization method associated to distribution-wise GPs.

2 Kriging models and degeneracy of the covariance
matrix

2.1 Context: conditional Gaussian processes

This section contains a summary of conditional GP concepts and notations.
Readers who are familiar with GP may want to proceed to the next section
(2.2).

Let f be a real-valued function defined over D ⊆ Rd. Assume that the
values of f are known at a limited set of points called design points. One wants
to infer the value of this function elsewhere. Conditional GP is one of the most
important technique for this purpose [23, 29].

A GP defines a distribution over functions. Formally, a GP indexed by D is
a collection of random variables (Y (x); x ∈ D) such that for any n ∈ N and any
x1, ...,xn ∈ D,

(
Y (x1), ..., Y (xn)

)
follows a multivariate Gaussian distribution.
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The distribution of the GP is fully characterized by a mean function µ(x) =
E(Y (x)) and a covariance function K(x,x’) = Cov(Y (x), Y (x’)) [20].

The choice of kernel plays a key role in the obtained kriging model. In
practice, a parametric family of kernels is selected (e.g., Matérn, polynomial,
exponential) and then the unknown kernel parameters are estimated from the
observed values. For example, a separable squared exponential kernel is ex-
pressed as

K
(
x,x′

)
= σ2

d∏
i=1

exp

(
−| xi − x

′
i |2

2θ2
i

)
. (1)

In the above equation, σ2 is a scaling parameter known as process variance
and xi is the ith component of x. The parameter θi is called length-scale and
determines the correlation length along coordinate i. It should be noted that
Cov (Y (x), Y (x′)) in Equation (1) is only a function of the difference between
x and x′. A GP with this property is said to be stationary, otherwise it is
nonstationary. Interested readers are referred to [20] for further information
about GPs and kernels.

Let Y (x)x∈D be a GP with kernel K(., .) and zero mean (µ(.) = 0). X =(
x1, ...,xn

)
denotes the n data points where the samples are taken and the

corresponding response values are y = (y1, ..., yn)> =
(
f(x1), ..., f(xn)

)>
. The

posterior distribution of the GP (Y (x)) knowing it interpolates the data points
is still Gaussian with mean and covariance [20]

m(x) = E(Y (x)|Y (X) = y) = c(x)>C−1y , (2)

c(x,x′) = Cov(Y (x), Y (x′)|Y (X) = y)

= K(x,x′)− c(x)>C−1c(x′) , (3)

where c(x) =
(
K(x,x1), ...,K(x,xn)

)>
is the vector of covariances between a

new point x and the n already observed sample points. The n × n matrix C
is a covariance matrix between the data points and its elements are defined as
Ci,j = K

(
xi,xj

)
= σ2Ri,j , where R is the correlation matrix. Hereinafter, we

call m(x) and v(x) = c(x,x) the kriging mean and variance, respectively.
One essential question is how to estimate the unknown parameters in the

covariance function. Typically, the values of the model parameters (i.e., σ and
the θi’s) are learned via maximization of the likelihood. The likelihood function
of the unknown parameters given observations y = (y1, ..., yn)> is defined as
follows:

L(y|θ, σ2) =
1

(2π)n/2|C|1/2
exp

(
−y>C−1y

2

)
. (4)

In the above equation, |C| indicates the determinant of the covariance matrix C
and θ= (θ1, ..., θd)

> is a vector made of the length-scales in each dimension. It
is usually more convenient to work with the natural logarithm of the likelihood
function that is:

lnL(y|θ, σ2) = −n
2

ln(2π)− 1

2
ln |C| − 1

2
y>C−1y. (5)
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The ML estimator of the process variance σ2 is

σ̂2 =
1

n
y>K̃

−1
y, (6)

and if it is inserted in (5), it yields (minus) the concentrated log-likelihood,

−2 lnL(y|θ, σ2) = n ln(2π) + n ln σ̂2 + ln |K̃|+ n. (7)

Finally, θ is estimated by numerically minimizing Equation (7).

2.2 Degeneracy of the covariance matrix

Computing the kriging mean (Equation (2)) or (co)variance (Equation (3))
or even samples of GP trajectories, requires inverting the covariance matrix
C. In practice, the covariance matrix should not only be invertible, but also
well-conditioned. A matrix is said to be near singular or ill-conditioned or
degenerated if its condition number is too large. For covariance matrices, which
are symmetric and positive semidefinite, the condition number κ(C) is the ratio
of the largest to the smallest eigenvalue. Here, we assume that κ(C) → ∞ is
possible.

There are many situations where the covariance matrix is near singular.
The most frequent and easy to understand case is when some data points are
too close to each other, where closeness is measured with respect to the metric
induced by the covariance function. This is a recurring issue in sequential DoEs
like the EGO algorithm [14] where the search points tend to pile up around the
points of interest such as the global optimum [19]. When this happens, the
resulting covariance matrix is no longer numerically invertible because some
columns are almost identical.

Here, to analyze PI and nugget regularizations, we are going to consider ma-
trix degeneracy pushed to its limit, that is C is mathematically non-invertible
(i.e., it is rank deficient). Non invertibility happens if a linear dependency exists
between columns (or rows) of C. Section A provides a collection of examples
where the covariance matrix is not invertible with calculation details that will
become clear later. Again, the easiest to understand and the most frequent
occurrence of C’s rank deficiency is when some of the data points tend towards
each other until they are at the same xi position. They form repeated points,
the simplest example of what we more generally call redundant points which
will be formally defined shortly. Figure 10 in Section A is an example of re-
peated points. Repeated points lead to strict non-invertibility of C since the
corresponding columns are identical. The special case of repeated points will
be instrumental in understanding some aspects of kriging regularization in Sec-
tions 3.2 and 4.2 because the eigenvectors of the covariance matrix associated
to eigenvalues equal to zero are known.

The covariance matrix of GPs may loose invertibility even though the data
points are not close to each other in Euclidean distance. This occurs for example
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with additive GPs for which the kernel is the sum of kernels defined in each

dimension, K(x,x′) =
d∑
i=1

Ki(xi, x
′
i). The additivity of a kernel may lead to

linear dependency in some columns of the covariance matrix. For example, in
the DoE shown in Figure 5, only three of the first four points which form a
rectangle provide independent information in the sense that the GP response
at any of the four points in fully defined by the response at the three other
points. This is explained by a linear dependency between the first four columns,
C4 = C3 + C2 − C1, which comes from the additivity of the kernel and the
rectangular design [10]:

C4
i = Cov(xi1, x

4
1) + Cov(xi2, x

4
2) = Cov(xi1, x

2
1) + Cov(xi2, x

3
2) ,

and completing the covariances while accounting for x2
2 = x1

2, x3
1 = x1

1, yields

C4
i = Cov(xi,x3) + Cov(xi,x2)− Cov(xi,x1) = C3

i + C2
i −C1

i .

Note that if the measured outputs y1, . . . , y4 are not additive (y4 6= y2+y3−y1),
none of the four measurements can be easily deleted without loss of information,
hence the need for the general regularization methods that will be discussed
later.
Periodic kernels may also yield non-invertible covariance matrices although data
points are far from each other. This is illustrated in Figure 13 where points 1
and 2, and points 3 and 4, provide the same information as they are one period
away from each other. Thus, C1 = C2 and C3 = C4.
Our last example comes from the dot product (or linear) kernel (cf. Sec-
tion A.5). Because the GP trajectories and mean are linear, no uncertainty
is left in the model when the number of data points n reaches d+ 1 and when
n > d+ 1 the covariance matrix is no longer invertible.

2.3 Eigen analysis and definition of redundant points

We start by introducing our notations for the eigendecomposition of the co-
variance matrix. Let the n × n covariance matrix C have rank r, r ≤ n. A
covariance matrix is positive semidefinite, thus its eigenvalues are greater than
or equal to zero. The eigenvectors associated to strictly positive eigenvalues
are denoted Vi, i = 1, . . . , r, and those associated to null eigenvalues are Wi,
i = 1, . . . , (n − r), that is CVi = λiV

i where λi > 0 and CWi = 0. The
eigenvectors are grouped columnwise into the matrices V = [V1, . . . ,Vr] and
W = [W1, . . . ,Wn−r]. In short, the eigenvalue decomposition of the covariance
matrix C obeys

C = [V W] Σ [V W]>, (8)

where Σ is a diagonal matrix containing the eigenvalues of C, λ1 ≥ λ2 ≥ . . . ≥
λr > 0 and λr+1 = . . . = λn = 0. V spans the image space and W spans the
null space of C, Im(C) and Null(C), respectively. [V W] is an orthogonal
matrix,

[V W]>[V W] = [V W][V W]> = VV> + WW> = I . (9)

7



VV> is the orthogonal projection matrix onto Im(C). Similarly, WW> is the
orthogonal projection matrix onto Null(C). For a given matrix C, the eigen-
vectors Wi are not uniquely defined because any linear combination of them
is also an eigenvector associated to a null eigenvalue. However, the orthogonal
projection matrices onto the image and null spaces of C are unique and will be
cornerstones in the definition of redundant points.

Before formally defining redundant points, we present the examples of sin-
gular covariance matrices of Section A. These examples are two dimensional to
allow for a graphical representation. The kernels, designs of points, eigenvalues
and eigenvectors and the VV> projection matrix are given.
The first example detailed in Section A has two groups of repeated data points
(points 1, 2 and 6, on the one hand, points 3 and 4, on the other hand), in which
there are 3 redundant, points. The covariance matrix has 3 null eigenvalues. It
should be noted that the off-diagonal coefficients of the VV> projection matrix
associated to the indices of repeated points are not 0.
Figure 11 shows how additive kernels may generate singular covariance matri-
ces: points 1, 2, 3 and 4 are arranged in a rectangular pattern which makes
columns 1 to 4 linearly dependent (as already explained in Section 2.2). The
additive property makes any one of the 4 points of a rectangular pattern re-
dundant in that the value of the GP there is uniquely set by the knowledge of
the GP at the 3 other points. The same stands for points 5 to 8. Two points
are redundant (1 in each rectangle) and there are two null eigenvalues. Again,
remark how the off-diagonal coefficients of VV> associated to the points of
the rectangles are not zero. Another example of additivity and singularity is
depicted in Figure 12: although the design points are not set in a rectangular
pattern, there is a shared missing vertex between two orthogonal triangles so
that, because of additivity, the value at this missing vertex is defined twice. In
this case, there is one redundant point, one null eigenvalue, and all the points
of the design are coupled: all off-diagonal terms in VV> are not zero.
Finally, Figure 13 is a case with a periodic kernel and a periodic pattern of
points so that points 1 and 2 provide the same information, and similarly with
points 3 and 4. There are 2 null eigenvalues, and the (1,2) and (3,4) off-diagonal
terms in VV> are not zero.

In general, we call redundant the set of data points that make the covariance
matrix non-invertible by providing linearly dependent information.

Definition 1 (Redundant points set)
Let C be a n×n positive semidefinite covariance matrix of rank r whose generic
term Ci,j is associated to the points xi and xj through Ci,j = Cov(Y (xi), Y (xj)).
V is the n× r matrix of the eigenvectors associated to strictly positive eigenval-
ues. Two points i and j, i 6= j, are called redundant when (VV>)ij 6= 0. The
set of redundant points, R, is made of all point indices that are redundant.

Redundant points could be equivalently defined with the W matrix since, from
Equation (9), VV> and WW> have the same non-zero off-diagonal terms with
opposite signs. Subsets of redundant points are also redundant. The degree
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of redundancy of a set of points R is the number of zero eigenvalues of the
covariance matrix restricted to the points in R, i.e., [Cij ] for all (i, j) ∈ R2. The
degree of redundancy is the number of points that should be removed from R to
recover invertibility of the covariance restricted to the points in R. When r = n,
C is invertible and there is no redundant point. An interpretation of redundant
points will be made in the next Section on pseudoinverse regularization.

In the repeated points example of Section A, the two largest redundant
points sets are {1, 2, 6} and {3, 4} with degrees of redundancy 2 and 1, respec-
tively. The first additive example has two sets of redundant points, {1, 2, 3, 4}
and {5, 6, 7, 8} each with a degree of redundancy equal to 1. In the second
additive example, all the points are redundant with a degree equal to 1. In the
same section, the periodic case has two sets of redundant points of degree 1,
{1, 2} and {3, 4}. With the linear kernel all data points are redundant and in
the given example where n = d+ 2 the degree of redundancy is 1.

3 Pseudoinverse regularization

3.1 Definition

In this Section, we state well-known properties of pseudoinverse matrices with-
out proofs (which can be found, e.g., in [6]) and apply them to the kriging
Equations (2) and (3). Pseudoinverse matrices are generalizations of the inverse
matrix. The most popular pseudoinverse is the Moore–Penrose pseudoinverse
which is hereinafter referred to as pseudoinverse.

When C−1 exists (i.e., C has full rank, r = n), we denote as β the term
C−1y of the kriging mean formula, Equation (2). More generally, when C is
not a full rank matrix, we are interested in the vector β that simultaneously
minimizes1 ‖Cβ − y‖2 and ‖β‖2. This solution is unique and obtained by
βPI = C†y where C† is the pseudoinverse of C. Each vector β can be uniquely
decomposed into

β = βPI + βNull(C), (10)

where βPI and βNull(C) belong to the image space and the null space of the
covariance matrix, respectively. The decomposition is unique since, C being
symmetric, Im(C) and Null(C) have no intersection.

The pseudoinverse of C is expressed as

C† = [V W]

[
diag

(
1
λ

)
r×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
[V W]> , (11)

where diag( 1
λ) is a diagonal matrix with 1

λi
, i = 1, . . . , r, as diagonal elements.

So βPI reads

βPI =

r∑
i=1

(
Vi
)>

y

λi
Vi. (12)

1Indeed, in this case the minimizer of ‖Cβ− y‖2 is not unique but defined up to any sum
with a vector in the Null(C)
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Equation (12) indicates that βPI is in the image space of C, because it is a linear
combination of eigenvectors associated to positive eigenvalues. A geometrical
interpretation of βPI and pseudo-inverse is given in Figure 1.

From now on, “PI kriging” will be a shorthand for “kriging with pseudo-
inverse regularization”. The PI kriging mean (Equation (2)) can be written
as

mPI(x) = c(x)>
r∑
i=1

(
Vi
)>

y

λi
Vi. (13)

Similarly, the kriging covariance (3) regularized by PI is,

Figure 1: Geometrical interpretation of the Moore-Penrose pseudoinverse. In
the left picture, infinitely many vectors β are solutions to the system Cβ= y.
But the minimum norm solution is C†y. The right picture shows the orthogonal
projection of y onto the image space of C, PIm(C)(y), which is equal to CC†y
(Property 1).

cPI(x,x′) = K(x,x′)− c(x)>
r∑
i=1

((
Vi
)>

c(x′)

λi

)
Vi

= K(x,x′)−
r∑
i=1

((
Vi
)>

c(x)
)((

Vi
)>

c(x′)
)

λi
.

(14)

3.2 Properties of kriging regularized by PI

The kriging mean with PI averages the outputs at redundant points. Before
proving this property, let us illustrate it with the simple example of Figure 2:
there are redundant points at x = 1.5, x = 2 and x = 2.5. We observe that
the kriging mean with PI regularization is equal to the mean of the outputs,
mPI(1.5) = −0.5 = (−1 + 0)/2, mPI(2) = 5 = (1.5 + 4 + 7 + 7.5)/4 and
mPI(2.5) = 5.5 = (5 + 6)/2. The PI averaging property is due to the more
abstract fact that PI projects the observed y onto the image space of C.

Property 1 (PI as projection of outputs onto Im(C))
The kriging prediction with PI regularization at X is the projection of the ob-
served outputs onto the image space of the covariance matrix, Im(C).
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Figure 2: Kriging mean mPI(x) (thick line) and prediction intervals
mPI(x) ± 2

√
vPI(x) (thin lines). Kriging mean using pseudoinverse goes

exactly through the average of the outputs. The observed values are
y = (−2,−1, 0, 1.5, 4, 7, 7.5, 6, 5, 3)>. mPI(1.5) = −0.5, mPI(2) = 5, and
mPI(2.5) = 5.5. Note that vPI is zero at redundant points.

Proof : The kriging means at all design points is given by

mPI(X) = CC†y . (15)

Performing the eigendecompositions of the matrices, one gets,

mPI(X) = [V W]

[
diag(λ) 0

0 0

] [
V>

W>

]
[V W]

[
diag( 1

λ) 0
0 0

] [
V>

W>

]
y

= VV>y (16)

The matrix
PIm(C) = VV> = (I−WW>) (17)

is the orthogonal projection onto the image space of C because it holds that

PIm(C) = P>Im(C);

P2
Im(C) = PIm(C);

∀v ∈ Im(C) , PIm(C)v = v;

and ∀u ∈ Null(C) , PIm(C)u = 0 �

Redundant points can be further understood thanks to Property 1 and
Equation (16): points redundant with xi are points xj where the observa-
tions influences mPI(xi). The kriging predictions at the redundant data points
mPI(xi) and mPI(xj) are not yi and yj , as it happens at non-redundant points
where the model is interpolating, but a linear combination of them. The av-
eraging performed by PI becomes more clearly visible in the important case of
repeated points.
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Property 2 (PI Averaging Property for Repeated Points)
The PI kriging prediction at repeated points is the average of the outputs at
those points.

Proof : Suppose that there are N repeated points at k different locations

with Ni points at each repeated location,
k∑
i=1

Ni = N , see Figure 3. The corre-

sponding columns in the covariance matrix are identical,

C =

C1, ...,C1︸ ︷︷ ︸
N1 times

, . . . ,Ck, ...,Ck︸ ︷︷ ︸
Nk times

,CN+1, ...,Cn

 .

In this case, the dimension of the image space, or rank of the covariance matrix,

is n−N+k and the dimension of the null space is equal to
k∑
i=1

(Ni−1) = N−k.

To prove this property we need to show that the matrix P defined as

P =


JN1
N1

. . . 0

0
JNk
Nk

In−N

 , (18)

is the orthogonal projection matrix onto the image space of C, or P = PIm(C).
In Eq. 18, JNi is the Ni×Ni matrix of ones and In−N is the identity matrix of
size n−N . If P = PIm(C), because of the unicity of the orthogonal projection

and Property 1, mPI(X) is expressed as

mPI(X) = PIm(C)y =



y1
...
y1
...
yk
...
yk
yN+1

...
yn



, (19)

in which yi =

Ni∑
j=N1+...+Ni−1+1

yj

Ni
. It means that the PI kriging prediction at

repeated points is the average of the outputs at those points.
It is easy to see that P> = P and P2 = P. We now check the two remaining

characteristic properties of projection matrices

1. ∀u ∈ Null(C) , Pu = 0

12



2. ∀v ∈ Im(C) , Pv = v.

We first construct a set of non-orthogonal basis vectors of Null(C). The basic
idea is that when two columns of the covariance matrix C are identical, e.g., the
two first columns, C =

(
C1,C1, . . .

)
, then vector u1 = (1,−1, 0, . . . , 0)>/

√
2

belongs to Null(C) because

C1 −C1 = Ce1 −Ce2 = C(e1 − e2︸ ︷︷ ︸
u1

) = 0. (20)

Generally, all such vectors can be written as

uj =
ej+1 − ej√

2
, j =

∑
l≤i−1

N l + 1, . . . ,
∑
l≤i

N l − 1 , i = 1, . . . , k .

There areN−k = dim(Null(C)) such uj ’s which are not orthogonal but linearly
independent. They make a basis of Null(C). It can be seen that Puj = 0 , j =
1, . . . , N − k. Since every vector in Null(C) is a linear combination of the uj ’s,
the equation Pu = 0 holds for any vector in the null space of C which proves
the first characteristic property of the projection matrix.

The second property is also proved by constructing a set of vectors that
span Im(C). There are n − N + k such vectors. The k first vectors have the
form

vi = ( 0, . . . , 0︸ ︷︷ ︸
N1+...+Ni−1 times

, 1, . . . , 1︸ ︷︷ ︸
Ni times

, 0, . . . , 0)>/
√
Ni , i = 1, . . . , k. (21)

The n−N other vectors are: vj = ej−k+N , j = k+ 1, . . . , n−N + k. Because
these n − N + k vj ’s are linearly independent and perpendicular to the null
space (to the above uj , j = 1, . . . , N − k), they span Im(C). Furthermore,
Pvj = vj , j = 1, . . . , n − N + k. The equation Pv = v is true for every
v ∈ Im(C), therefore, P is the projection matrix onto the image space of C
and the proof is complete. �

Property 3 (Null variance of PI regularized models at data points)
The variance of Gaussian processes regularized by pseudoinverse is zero at data
points.

Therefore vPI(·) is zero at redundant points.
Proof : From Equation (3), the PI kriging variances at all design points are

vPI(X) = cPI(X,X) = K(X,X)−c(X)>C†c(X) = C−C>C†C = C−C = 0 ,

thanks to the pseudoinverse property [27], CC†C = C. �

4 Nugget regularization

4.1 Definition and covariance orthogonality property

When regularizing a covariance matrix by nugget, a positive value, τ2, is added
to the main diagonal. This corresponds to a probabilistic model with an additive

13



white noise of variance τ2, Y (x) | Y (xi)+εi = yi, i = 1, . . . , n, where the εi’s
are i.i.d. N (0, τ2). Nugget regularization improves the condition number of the
covariance matrix by increasing all the eigenvalues by τ2: if λi is an eigenvalue
of C, then λi + τ2 is an eigenvalue of C + τ2I and the eigenvectors remain
the same (the proof is straightforward). The associated condition number is

κ(C + τ2I) = λmax + τ2

λmin + τ2
. The nugget parameter causes kriging to smoothen the

data and become non-interpolating.

Property 4 (Loss of interpolation in models regularized by nugget)
A conditional Gaussian process regularized by nugget has its mean no longer al-
ways equal to the output at data points, mNug(xi) 6= yi, i = 1, n.

This property can be understood as follows. A conditional GP with invertible
covariance matrix is interpolating because c(xi)>C−1y = Ci>C−1y = e>i y =
yi. This does not stand when C−1 is replaced by (C + τ2I)−1.

Recall that the term C−1y in the kriging mean of Equation (2) is denoted
by β. When nugget regularization is used, β is shown as βNug and, thanks to
the eigenvalue decomposition of (C + τ2I)−1, it is written

βNug =
r∑
i=1

(
Vi
)>

y

λi + τ2
Vi +

n∑
i=r+1

(
Wi
)>

y

τ2
Wi. (22)

The main difference between βPI (Equation (12)) and βNug lies in the second
part of βNug: the part that spans the null space of the covariance matrix. In
the following, we show that this term cancels out when multiplied by c(x)>, a
product that intervenes in kriging.

Property 5 (Orthogonality Property of c and Null(C))
For all x ∈ D, the covariance vector c(x) is perpendicular to the null space of
the covariance matrix C.

Proof : The kernel K(., .) is a covariance function [2], hence the matrix

Cx =

[
K(x,x) c(x)>

c(x) C

]
(23)

is positive semidefinite.
Let w be a vector in the null space of C. According to the definition of

positive semidefinite matrices, we have(
1
w

)>
Cx

(
1
w

)
= K(x,x) + 2

n∑
i=1

K(x, xi)wi + 0 ≥ 0. (24)

The above equation is valid for any vector γw as well, in which γ is a real

number. This happens only if
n∑
i=1

K(x, xi)wi is zero, that is to say, c(x)> is

perpendicular to the null space of C. �
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As a result of the Orthogonality Property of c and Null(C), the second term
of βNug in Equation (22) disappears in the kriging mean which becomes

mNug(x) = c(x)>
r∑
i=1

(
Vi
)>

y

λi + τ2
Vi. (25)

The Orthogonality Property applies similarly to the kriging covariance (Equa-
tion (3)), which yields

cNug(x,x′) = K(x,x′)− c(x)>
r∑
i=1

(
Vi
)>

c(x′)

λi + τ2
Vi

= K(x,x′)−
r∑
i=1

((
Vi
)>

c(x)
)((

Vi
)>

c(x′)
)

λi + τ2
.

(26)

Comparing Equations (13) and (25) indicates that the behavior of mPI and
mNug will be similar to each other if τ2 is small. The same holds for kriging
covariances (hence variances) cPI and cNug in Equations (14) and (26).

Property 6 (Equivalence of PI and nugget regularizations)
The mean and covariance of conditional GPs regularized by nugget tend toward
the ones of GPs regularized by pseudoinverse as the nugget value τ2 tends to 0.

In addition, Equations (14) and (26) show that cNug is always greater than cPI .
These results will be illustrated later in the Discussion Section.

4.2 Nugget and maximum likelihood

It is common to estimate the nugget parameter by maximum likekihood (ML,
cf. Appendix B, Equation (44)). As will be detailed below, the amplitude
of the nugget estimated by ML is increasing with the spread of observations
at redundant points. It matches the interpretation of nugget as the amount
of noise put on data: an increasing discrepancy between responses at a given
point is associated to more observations noise.

In Figure 3 two vectors of response values are shown, y (bullets) and y+

(crosses), located at k different x sites. The spread of response values y+ is

larger than that of y at some redundant points. Let s2
i and s+

i
2
,

i = 1, ..., k, denote the variances of y and y+ at the redundant points,

s2
i =

N1+...+Ni∑
j=N1+...+Ni−1+1

(yj − yi)2

Ni − 1
, (27)

and the same stands with y+ and its variance s+
i

2
.

The nugget that maximizes the likelihood, the other GP parameters being
fixed (the length-scales θi and the process variance σ2), is increasing when the
variance of the outputs increases.
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Theorem 1
Suppose that there are observations located at k different sites. If we are given
two vectors of response values y and y+ such that

1. s+
i

2 ≥ s2
i for all i = 1, . . . , k and

2. yi = y+
i for all i = 1, ..., k,

then the nugget amplitudes τ̂2 and τ̂+
2

that maximize the likelihood with other

GP parameters being fixed are such that τ̂+
2
≥ τ̂2.

A proof for Theorem 1 is given in Appendix B.

y

x1 x2 ... xk

Figure 3: The response values y and y+ are denoted by bullets and crosses,
respectively. At each location, the mean of y and y+ are identical, yi = y+

i,
but the spread of observations in y+ is never less than that of y at redundant
points.

5 Discussion: choice and tuning of the classical reg-
ularization methods

This section carries out a practical comparison of PI and nugget regularization
methods, which are readily available in most GP softwares [26, 22]. We start
with a discussion of how data and model match, which further allows to decide
whether nugget or PI should be used. Finally, we provide guidelines to tune
the regularization parameters.

Before starting with our discussion, note that nugget regularization is the
method of choice when the observed data is known to be corrupted by an
additive noise that is homogeneous in D since, in this case, the nugget amplitude
τ2 has the physical meaning of noise variance [22]. The loss of the interpolating
property at data points associated to nugget regularization is then an intended
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filtering effect. The rest of our discussion will assume no knowledge of the
eventual noise model affecting observations.

5.1 Model-data discrepancy

Model-data discrepancy can be measured as the distance between the observa-
tions y and the GP model regularized by pseudoinverse.

Definition 2 (Model-data discrepancy) Let X be a set of design points
with associated observations y. Let V and W be the normalized eigenvectors
spanning the image space and the null space of the covariance matrix C, respec-
tively. The model-data discrepancy is defined as

discr =
‖y −mPI(X)‖2

‖y‖2
=
‖WW>y‖2

‖y‖2
(28)

where mPI(. ) is the pseudoinverse regularized GP model of Equation (15).

The last equality in the definition of discr comes from Equations (16) and
(17). The discrepancy is a normalized scalar, 0 ≤ discr ≤ 1, where discr = 0
indicates that the model and the data are perfectly compatible, and vice versa
when discr = 1.

The definition of redundant points does not depend on the observations
y and the model-data discrepancy is a scalar globalizing the contributions of
all observations. An intermediate object between redundant points and dis-
crepancy is the gradient of the squared model-data error with respect to the
observations,

∇y‖y−mPI(X)‖2 = WW>y . (29)

It appears that the gradient of the error, ‖y−mPI(X)‖2, is equal to the model-
data distance, WW>y. This property comes from the quadratic form of the
error. The magnitude of the components of the vector WW>y measure the sen-
sitivity of the error to a particular observation. At repeated points, a gradient-
based approach where the y’s are optimized would advocate to make the ob-
servations closer to their mean proportionally to their distance to the mean. In
other words, −WW>y is a direction of reduction of the model-data distance
in the space of observations. Because the distance considered is quadratic, this
direction is colinear to the error, (y −mPI(X)). The indices of the non-zero
components of WW>y also designate the redundant points.

5.2 Two detailed examples

A common practice when the nugget value, τ2, is not known beforehand is to
estimate it by ML or cross-validation. In Appendix B, we show that the ML
estimated nugget value, τ̂2, is increasing with the spread of responses at redun-
dant points. This is one situation (among others, e.g., the additive example
hereafter) where the data and the model mismatch, and τ̂2 is large. Figure 4
is an example where τ̂2 is equal to 7.06. The kriging mean and the 68% con-
fidence interval, in this case of nugget regularization tuned by ML, are drawn
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with dashed lines. Some authors such as in [28, 3] recommend using cross-
validation instead of ML for learning the kriging parameters. In the example of
Figure 4, the estimated nugget value by leave-one-out cross-validation, denoted
by τ̂2

CV , is 1.75. The dash-dotted lines represent the kriging model regularized
by nugget that is estimated by cross-validation. The model-data discrepancy
is discr = 0.36 and WW>y = (0, 0,−3, 3, 0, 0)> which shows that points 3
and 4 are redundant and their outputs should be made closer to reduce the
model-data error. Whether or not in practice the outputs can be controlled is
out of the scope of our discussion.

1.0 1.5 2.0 2.5 3.0

-4
-2

0
2

4
6

8

x

y

Figure 4: Comparison of kriging regularized by PI (solid lines), nugget esti-
mated by ML (dashed lines) and nugget estimated by cross-validation (dash-
dotted lines). X = [1; 1.5; 2; 2.00001; 2.5; 3] and y = (−2, 0, 3, 9, 6, 3)>. The
estimated nugget values are τ̂2 = 7.06 and τ̂2

CV = 1.75.

We now give a two-dimensional example of a kriging model with additive ker-
nel defined over X = [(1, 1), (2, 1), (1, 2), (2, 2), (1.5, 1.5), (1.25, 1.75), (1.75, 1.25)],
cf. Figure 5. As explained in Section 2.2, the first four points of the DoE make
the additive covariance matrix non-invertible even though the points are not
near each other in Euclidean distance. Suppose that the design points have the
response values y = (1, 4,−2, 1, 1,−0.5, 2.5)> which correspond to the additive
true function f(x) = x2

1−x2
2 +1. The covariance matrix is the sum of two parts

Cadd = σ2
1K1 + σ2

2K2 ,

where σ2
i are the process variances and σ2

iKi the kernel in dimension i = 1, 2.
To estimate the parameters of Cadd, the negative of the likelihood is numer-

ically minimized (see Equation (44)) which yields a nugget value τ̂2 ≈ 10−12

(the lower bound on nugget used). A small nugget value is obtained because
the associated output value follows an additive function compatible with the
kernel: there is no discrepancy between the model and the data. Because of
the small nugget value, the models regularized by PI and nugget are very close
to each other (the left picture in Figure 5).
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We now introduce model-data discrepancy by changing the third response
from -2 to 2: additive kriging models can no longer interpolate these outputs.
The nugget value estimated by ML is equal to 1.91, so mNug(x) does not in-
terpolate any of the data points (x1 to x7). Regarding mPI(x), the projection
onto Im(C) make the GP predictions different from the observations at x1, x2,
x3 and x4. For example, mPI(x4) = 2 when y4 = 1. The projection applied to
points x5 to x7 (where no linear dependency between the associated columns
of C exists) show that mPI(x) is interpolating there, which is observed on the
right picture of Figure 5.
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Figure 5: Contour plots of kriging mean regularized by pseudoinverse (solid line)
vs. nugget (dashed line) for an additive GP. The bullets are data points. Left:
the response values are additive, y = (1, 4,−2, 1, 1,−0.5, 2.5)> and τ̂2 = 10−12.
Right: the third observation is replaced by 2, creating non-additive observations
and τ̂2 ≈ 1.91; mNug(x) is no longer interpolating, mPI(x) still interpolates x5

to x7.

The above observations point out that large estimated values of nugget
(whether by ML or cross-validation) indicate model-data discrepancy, in agree-
ment with the calculated discrepancies of Eq. (28): in the last additive ker-
nel example when all the outputs were additive, discr = 0 and WW>y =
(0, 0, 0, 0, 0, 0, 0)> (no redundant point); when the value of the third output
was increased to 2, discr = 0.37 and WW>y = (−1, 1, 1,−1, 0, 0, 0)> showing
that points 1 to 4 are redundant and that, to reduce model error, points 1 and
4 should increase their outputs while points 2 and 3 should decrease theirs.

For the sole purpose of quantifying model-data discrepancy, it is more effi-
cient to calculate discr than using the estimated nugget. Formula (28) involves
one pseudo-inverse calculation and two matrix products when nugget estima-
tion implies a nonlinear likelihood maximization with repeated embedded C
eigenvalues analyses.
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5.3 PI or nugget ?

On the one hand, models regularized by PI have predictions, mPI(. ), that
interpolate uniquely defined points and go through the average output at re-
dundant points (Property 2). The associated kriging variances, vPI(. ), are null
at redundant points (Property 3). On the other hand, models regularized by
nugget have predictions which are neither interpolating nor averaging (Prop-
erty 4) while their variances are non-zero at data points. Note that kriging
variance tends to σ2 as the nugget value increases (see Equation (26)). These
facts can be observed in Figure 6. Additionally, this Figure illustrates that
nugget regularization tends to PI regularization as the nugget value decreases
(Property 6). If there is a good agreement between the data and the GP model,
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Figure 6: One dimensional kriging regularized by PI (solid lines) and nugget
(dashed lines). The nugget amplitude is 1 on the left and 0.1 on the right. The
cut-off eigenvalue for the pseudoinverse (below which eigenvalues are rounded
off to 0) is η = 10−3. mNug(x) is not interpolating which is best seen at the
second point on the left. On the right, the PI and nugget models are closer to
each other. Same X and y as in Figure 4.

the PI regularization or equivalently, a small nugget, should be used. This can
also be understood through the Definition of model-data discrepancy and Prop-
erty 1: when discr = 0, the observations are perpendicular to Null(C) and,
equivalently, mPI(X) = y since mPI(. ) performs a projection onto Im(C).
Vice versa, if the model-data discrepancy measure is significant, choosing PI
or nugget regularization will have a strong impact on the model: either the
prediction averaging property is regarded as most important and PI should be
used, or a non-zero variance at redundant points is favored and nugget should
be selected; If the discrepancy is concentrated on few redundant points, nugget
regularized models will distribute the uncertainty (additional model variance)
throughout the x domain while PI regularized models will ignore it. From the
above arguments, it is seen that the decision for using PI or nugget regulariza-
tions is problem dependent.
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5.4 Tuning regularization parameters

Nugget values may be estimated by maximum likelihood ([22]) or cross-validation
([8, 3]), but as argued in the previous Section, it may also be preferred to fix
them to small numbers. How small can a nugget value be? Adding nugget to
the main diagonal of a covariance matrix increments all the eigenvalues by the
nugget amplitude. The condition number of the covariance matrix with nugget
is κ(C + τ2I) = λmax+τ2

λmin+τ2
. Accordingly, a “small” nugget is the smallest value

of τ2 such that κ(C + τ2I) is less than a reasonable condition number after
regularization, κmax (say, κmax = 108). With such targeted condition number,
the smallest nugget would be τ2 = λmax−κmaxλmin

κmax−1 if λmax − κmaxλmin ≥ 0,

τ2 = 0 otherwise.
Computing a pseudoinverse also involves a parameter, the positive threshold

η below which an eigenvalue is considered as null. The eigenvectors associated to
eigenvalues smaller than η are numerically regarded as null space basis vectors
(even though they may not, strictly speaking, be part of the null space). A
suitable threshold should filter out eigenvectors associated to points that are
almost redundant. The heuristic we propose is to tune η so that λ1/η, which is
an upper bound of the PI condition number2, is equal to κmax, i.e., η = λ1/κmax.

In the example shown in Figure 7, the covariance matrix is not numerically
invertible because the points 3 and 4 are near x = 2. The covariance matrix
has six eigenvalues, λ1 = 34.89 ≥ ... ≥ λ5 = 0.86 ≥ λ6 = 8.42 × 10−11 ≈ 0
and the eigenvector related to the smallest eigenvalue is W1 = (e4 − e3)/

√
2.

In Figure 7, we have selected η = 10−3, hence κPI(C) = 40.56. Any value of
η in the interval λ6 < η < λ5 would have yielded the same result. But if the
selected tolerance were e.g., η = 1, which is larger than λ5, the obtained PI
kriging model no longer interpolates data points.

6 Interpolating Gaussian distributions

6.1 Interpolation and repeated points

In our context of deterministic experiments, we are interested in interpolating
data. The notion of interpolation should be clarified in the case of repeated
points with different outputs (e.g., Figure 3) as a function cannot interpolate
them. Interpolation should then be generalized to redundant points, which
comprise repeated points, but to keep the explanations simple we do not do it
in the current paper. Here, we seek GPs that have the following interpolation
properties.

Definition 3 (Interpolating Gaussian Process) A GP interpolates a given
set of data points when

• its trajectories pass through uniquely defined data points (therefore the GP
has a null variance there),

2By PI condition number we mean κPI(C) = ‖C‖‖C†‖ = λ1/λr ≤ λ1/η
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Figure 7: Effect of the tolerance η on the kriging model regularized by PI.
Dashed line, η = 1; continuous line, η = 10−3. Except for η, the setting is
the same as that of Figure 6. When the tolerance is large (η = 1), the 5th
eigenvector is deleted from the effective image space of C in addition to the 6th
eigenvector, and the PI regularized model is no longer interpolating. Same X
and y as in Figure 4.

• and at repeated points the GP’s mean and variance are the empirical av-
erage and variance of the outputs, respectively.

The following GP model has the above interpolation properties for determin-
istic outputs, even in the presence of repeated points. In this sense, it can be
seen as a new regularization technique, although its potential use goes beyond
regularization.

6.2 A GP model with interpolation properties

We now introduce a new GP model, called distribution-wise GP, with the de-
sirable interpolation properties in the presence of repeated points. Accordingly,
it can be regarded as a regularization method. Moreover, it is computationally
more efficient than the point-wise GP models.

Following the same notations as in Section 3.2, the model is built from obser-
vations at k different x sites. The basic assumption that makes distribution-wise
GP different from point-wise GP is that observations are seen as realizations of
a known joint Gaussian probability distribution. In distribution-wise GP, it is
assumed that a distribution is observed at each location, as opposed to usual
conditional GPs where unique values of the process are observed. This is the
reason for the name “distribution-wise GP”. Observing distributions brings in
a framework which, as will now be seen, is compatible with repeated points.

Let Z(xi) ∼ N (µZi , σ
2
Zi

) denote the random outputs at locations xi , i =
1, . . . , k and their known probability distributions. Together, the k sets of
observations make the random vector Z = (Z(x1), . . . , Z(xk)) ∼ N (µZ ,ΓZ) in
which the diagonal of the matrix ΓZ is made of the σ2

Zi
’s.
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The distribution-wise GP is derived in two steps through conditioning: first
it is assumed that the vector Z is given, and the usual conditional GP (krig-
ing) formula can be applied; then the randomness of Z is accounted for. The
conditional mean and variance of the distribution-wise GP, mDist and vDist,
come from the laws of total expectation and variance applied to Z and the GP
outcomes ω ∈ Ω:

mDist(x) = EZ
(
EΩ(Y (x)|Y (xi) = Z(xi) , 1 ≤ i ≤ k

)
=

EZ
(
cZ(x)>C−1

Z Z
)

= cZ(x)>C−1
Z µZ (30)

where the Z subscript is used to distinguish between the point-wise and the
distribution-wise covariances. C is n × n and not necessarily invertible while
CZ is k × k and invertible because the k xi’s are different3. The variance is
calculated in a similar way

vDist(x) = EZ
(
VarΩ(Y (x)|Y (xi) = Z(xi) , 1 ≤ i ≤ k

)
+

VarZ
(
EΩ(Y (x)|Y (xi) = Z(xi) , 1 ≤ i ≤ k

)
=

cZ(x,x)− cZ(x)>C−1
Z cZ(x) + cZ(x)>C−1

Z (VarZZ)︸ ︷︷ ︸
ΓZ

C−1
Z cZ(x) .

(31)

The distribution-wise GP model interpolates the mean and the variance
of the distributions at the k locations. At an arbitrary location i, the term
cZ(x)>C−1

Z that appears in both mDist and vDist becomes e>i because cZ(xi)
is the ith column of CZ in this case. As a result

mDist(xi) = cZ(xi)>C−1
Z µZ = µZi and (32)

vDist(xi) = cZ(xi,xi)− cZ(xi)>C−1
Z cZ(xi) +

cZ(xi)>C−1
Z ΓZC−1

Z cZ(xi) = σ2
Zi
. (33)

In practice, µZ and ΓZ can be approximated by the empirical mean and
variance. Recall repeated points are grouped by sites, e.g., y1, . . . , yN1 are the

observations at x1. The output empirical mean and variance at xi are yi and s2
i

that we gather in the vector y and the k×k diagonal matrix Γ̂ made of the s2
i ’s.

Then, the mean and the variance of the distribution-wise GP are expressed as

mDist(x) ≡ cZ(x)>C−1
Z y, (34)

vDist(x) ≡ cZ(x,x)− cZ(x)>C−1
Z cZ(x) + cZ(x)>C−1

Z Γ̂C−1
Z cZ(x). (35)

Because detecting repeated points has a computational cost of at most O(n2),
the computational complexity of the distribution-wise GP is driven by the co-
variance matrix inversion, as is the case for point-wise GP: distribution-wise
GP applied to repeated points scales in O(k3) when traditional GP scale in

3Remember that only repeated points are considered here. For the more general redundant
points, invertibility of CZ will be needed but the way to achieve it is out of the scope of this
paper.
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O(n3). I The advantage of distribution-wise GP grows with the number of
repeated points. This result might not stand for the most general redundant
points whose characterization may imply an O(n3) eigendecomposition of C.

An example of distribution-wise GP is plotted in Figure 8 where the site
outputs empirical means and variances are used in the model.

1.0 1.5 2.0 2.5 3.0

-5
0

5
1
0

x

y

Figure 8: Distribution-wise GP, mDist(x) (thick line) ±2
√
vDist(x) (thin lines).

At the redundant point x = 2, the outputs are 1.5, 4, 7 and 7.5. The mean of
the distribution-wise GP passes through the average of outputs. Contrarily to
PI (cf. Figure 2), distribution-wise GP preserves the empirical variance: the

kriging variance at x = 2 is equal to s2
x=2 = 5.87.

So far, we have observed that both vDist and vNug are non-zero at repeated
points. However, there is a fundamental difference between the behaviors of
a distribution-wise GP and a GP regularized by nugget; as the number of
observations Ni at a redundant point xi increases, vNug(xi) tends to 0 while
vDist(xi) remains equal to σ2

Zi
.

This can be analytically seen by assuming that there is only one location
site, x1, with several observations, say n. In this situation, the correlation
between every two observations is one and so, the kriging variance regularized
by nugget at x1 is

vNug(x1) = σ2
(

1− [1, . . . , 1]
(
R + τ2/σ2I

)−1
[1, . . . , 1]>

)
. (36)

Here, the correlation matrix R is a matrix of 1’s with only one strictly positive
eigenvalue equal to λ1 = n, all other eigenvalues being equal to 0. The eigen-
vector associated to λ1 is (1, . . . , 1)>/

√
n. Adding nugget will increase all the

eigenvalues of R by τ2/σ2. In Equation (36) one can replace (R + τ2/σ2I)−1
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by its eigendecomposition that is,1/
√
n

... W
1/
√
n



σ2/nσ2 + τ2 0

σ2/τ2

. . .

0 σ2/τ2


[
1/
√
n . . . 1/

√
n

W>

]
,

(37)
which yields

vNug(x1) =
τ2

nσ2 + τ2
σ2, (38)

since [1, . . . , 1] is perpendicular to any of the other eigenvectors making the
columns of W. Consequently, vNug(x1) → 0 when n → ∞. Figure 9 further
illustrates the difference between distribution-wise and nugget regularization
models in GPs. The red bullets are data points generated by sampling from
the given distribution of Z’s,

Z ∼ N

2
3
1

 ,

0.25 0 0
0 0 0
0 0 0.25


and the right plot has more data points at x = 1 than the left plot. We observe
that the distribution-wise GP model is independent from the number of data
points and, in that sense, it “interpolates the distributions”: the conditional
variance of the distribution-wise GP model does not change with the increasing
number of data points at x = 1 while the variance of the GP model regularized
by nugget decreases; the mean of the distribution-wise GP is the same on the
left and right plots but that of the GP regularized by nugget changes and tends
to the mean of the distribution as the number of data points grows.

7 Conclusions

This paper provides a new algebraic comparison of pseudoinverse and nugget
regularizations, the two main methodologies to overcome the degeneracy of the
covariance matrix in Gaussian processes (GPs). By looking at non invertible
covariance matrices as the limit for ill-conditionned covariance matrices, we
have defined redundant points. Clear differences between pseudoinverse and
nugget regularizations have arised: contrarily to GPs with nugget, GPs with
pseudoinverse average the values of outputs and have zero variance at redundant
points; in GPs regularized by nugget, the discrepancy between the model and
the data turns into a departure of the GP from observed outputs throughout
the domain; in GPs regularized by pseudoinverse, this departure only occurs at
the redundant points and the variance is zero there. Some guidelines have been
given for choosing a regularization strategy.

In the last part of the paper, we have proposed a new regularization strategy
for GPs, the distribution-wise GP. This model interpolates normal distributions
instead of data points. It does not have the drawbacks of nugget and pseudoin-
verse regularizations: it not only averages the outputs at repeated points but
it also preserves the repeated points variances.
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Figure 9: Distribution-wise GP (solid lines) versus a GP model regularized by
nugget (dashed lines). At x = 1, the number of repeated points is 3 on the left
and 100 on the right. vNug(x = 1) (thin dashed lines) shrinks as the number of
repeated points increases while vDist(x = 1) remains constant.

Distribution-wise GPs shed a new light on regularization, which starts with
the creation of repeated points by clustering. A potential benefit is the reduc-
tion in covariance matrix size. Further studying distribution-wise GPs is the
main continuation of this work.

Acknowledgments

The authors would like to acknowledge support by the French national research
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A Examples of redundant points

This Appendix gives easily interpretable examples of DoEs with associated ker-
nels that make the covariance matrix non-invertible. The eigenvalues, eigenvec-
tors and orthogonal projection matrix onto the image space (cf. also Section 2.3)
are described.

A.1 Repeated points

Repeated design points are the simplest example of redundancy in a DoE since
columns of the covariance matrix c are duplicated. An example is given in
Figure 10 with a two-dimensional design, and a classical squared exponential
kernel. The eigenvalues and eigenvectors of the covariance matrix associated to
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Figure 10: Kernel and DoE of the repeated points example

Figure 10 are

λ =



3.12
1.99
0.90
0.00
0.00
0.00

 , V =



− 0.55 0.19 0.00
−0.55 0.19 0.00
−0.22 −0.64 −0.21
−0.22 −0.64 −0.21
−0.09 −0.28 0.96
−0.55 0.19 0.00

 and W =



0.00 −0.30 0.76
−0.71 0.12 −0.39
−0.04 0.66 0.26
0.04 −0.66 −0.26
0.00 0.00 0.00
0.71 0.18 −0.37

 ,

with the orthogonal projection matrix onto Im(C)

VV> =



0.33 0.33 0.00 0.00 0.00 0.33
0.33 0.33 0.00 0.00 0.00 0.33
0.00 0.00 0.50 0.50 0.00 0.00
0.00 0.00 0.50 0.50 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.33 0.33 0.00 0.00 0.00 0.33


Points {1, 2, 6} and {3, 4} are repeated and redundant.

A.2 First additive example

The first example of GP with additive kernel is described in Figure 11. As
explained in Section 2.2, the rectangular patterns of points {1, 2, 3, 4} and
{5, 6, 7, 8} create linear dependencies between the columns of C. The eigen-
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Figure 11: Kernel and DoE of the first additive GP example

values and eigenvectors of the covariance matrix are,

λ =



9.52
3.58
2.60
2.31
1.46
0.39
0.09
0.06
0.00
0.00


, V =



− 0.30 −0.32 0.45 −0.15 0.34 −0.10 0.22 0.40
−0.33 −0.24 0.29 −0.43 −0.22 −0.30 −0.43 0.04
−0.38 −0.22 −0.01 0.31 0.22 0.59 0.17 0.17
−0.41 −0.14 −0.17 0.04 −0.34 0.40 −0.47 −0.19
−0.38 0.01 −0.37 0.03 −0.40 −0.29 0.43 0.18
−0.28 0.45 0.03 0.44 −0.13 −0.27 −0.15 0.40
−0.25 0.19 −0.38 −0.62 0.11 0.13 0.30 −0.07
−0.15 0.64 0.02 −0.22 0.38 0.15 −0.29 0.15
−0.34 −0.13 −0.24 0.26 0.54 −0.43 −0.10 −0.51
−0.25 0.34 0.59 0.05 −0.22 0.08 0.35 −0.54



and W =



0.00 0.50
0.00 −0.50
0.00 −0.50
0.00 0.50
0.50 0.00
−0.50 0.00
−0.50 0.00
0.50 0.00
0.00 0.00
0.00 0.00


.
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The projection matrix onto the image space is

VV> =



0.75 0.25 0.25 −0.25 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.75 −0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00
0.25 −0.25 0.75 0.25 0.00 0.00 0.00 0.00 0.00 0.00
−0.25 0.25 0.25 0.75 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.75 0.25 0.25 −0.25 0.00 0.00
0.00 0.00 0.00 0.00 0.25 0.75 −0.25 0.25 0.00 0.00
0.00 0.00 0.00 0.00 0.25 −0.25 0.75 0.25 0.00 0.00
0.00 0.00 0.00 0.00 −0.25 0.25 0.25 0.75 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00


.

The redundancy between points 1 to 4 on the one hand, and 5 to 8 on the other
hand, is readily seen on the matrix.

A.3 Second additive example

This example shows how an incomplete rectangular pattern with additive ker-
nels can also make covariance matrices singular. In Figure 12, the point at
coordinates (0.3, 0.4), which is not in the design, has a GP response defined
twice, once by the points {1, 2, 3} and once by the points {4, 5, 6}. This redun-
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Figure 12: Kernel and DoE of the second additive GP example

dancy in the DoE explains why C has one null eigenvalue:

λ =



5.75
2.90
2.07
0.80
0.49
0.00

 , V =



− 0.50 0.34 −0.01 0.18 0.66
−0.49 0.25 0.20 0.57 −0.40
−0.48 0.17 −0.29 −0.69 −0.01
−0.32 −0.39 −0.65 0.17 −0.35
−0.36 −0.28 0.66 −0.33 −0.28
−0.20 −0.75 0.09 0.15 0.45

 , W =



− 0.41
0.41
0.41
−0.41
−0.41
0.41

 .
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The orthogonal projection matrix onto the image space of C tells us that all
the points in the design are redundant,

VV> =



0.83 0.17 0.17 −0.17 −0.17 0.17
0.17 0.83 −0.17 0.17 0.17 −0.17
0.17 −0.17 0.83 0.17 0.17 −0.17
−0.17 0.17 0.17 0.83 −0.17 0.17
−0.17 0.17 0.17 −0.17 0.83 0.17
0.17 −0.17 −0.17 0.17 0.17 0.83

 .

A.4 Periodic example
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Figure 13: Kernel and DoE of the periodic example

The kernel and DoE of the periodic example are given in Figure 13.
The eigenvalues and eigenvectors of the associated covariance matrix C are,

λ =



2.00
2.00
1.01
0.99
0.00
0.00

 , V =



− 0.50 0.50 0.01 −0.01
−0.50 0.50 0.01 −0.01
−0.50 −0.50 0.01 −0.01
−0.50 −0.50 0.01 −0.01
−0.03 0.00 −0.70 0.72
0.00 0.00 −0.72 −0.70

 and W =



0.00 0.71
0.00 −0.71
0.71 0.00
−0.71 0.00
0.00 0.00
0.00 0.00

 .

There are two null eigenvalues. The projector onto the image space is

VV> =



0.50 0.50 0.00 0.00 0.00 0.00
0.50 0.50 0.00 0.00 0.00 0.00
0.00 0.00 0.50 0.50 0.00 0.00
0.00 0.00 0.50 0.50 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00


which shows that points 1 and 2, on the one hand, and points 3 and 4, on the
other hand, are redundant.
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A.5 Dot product kernel example

The non-stationary dot product or linear kernel is k(x,x’) = 1 + x>x’.
We consider a set of three one dimensional, non-overlapping, observation points:

X =

0.20
0.60
0.80

. The associated eigenvalues and eigenvectors are,

λ =

3.90
0.14
0.00

 , V =

− 0.49 0.83
−0.59 −0.09
−0.64 −0.55

 and W =

 0.27
−0.80
0.53


The projection matrix onto the image space of C is

VV> =

 0.93 0.21 −0.14
0.21 0.36 0.43
−0.14 0.43 0.71


Because there are 3 data points which is larger than d + 1 = 2, all points are
redundant. With less than 3 data points, the null space of C is empty.

B Proof of Theorem 1

Before starting the proof, we need equations resulting from the positive defi-
niteness of the covariance matrix C:

y = PNull(C)y + PIm(C)y (39)

PIm(C)y =

n−N+k∑
i=1

〈y,Vi〉Vi (40)

PNull(C)y =

N−k∑
i=1

〈y,Wi〉Wi (41)∥∥PNull(C)y
∥∥2

=
∥∥y−PIm(C)y

∥∥2
, (42)

where 〈., .〉 denotes the inner product.
The natural logarithm of the likelihood function is

lnL(y|θ, σ2) = −n
2

ln(2π)− 1

2
ln |C| − 1

2
y>C−1y, (43)

where after removing fixed terms and incorporating nugget effect, becomes:

−2 lnL(y|τ2) ≈ ln
(∣∣C + τ2I

∣∣)+ y>
(
C + τ2I

)−1
y. (44)

The eigenvalue decomposition of matrix C + τ2I in (44) consists of(
V1, ...,Vn−N+k,W1, ...,WN−k

)
(45)

Σ = diag(τ2 + λ1, ..., τ
2 + λn−N+k, τ

2, ..., τ2︸ ︷︷ ︸
N−k

). (46)
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If Equation (44) is written based on the eigenvalue decomposition, we have

−2 lnL(y|τ2) ≈
n∑
i=1

ln(τ2 + λi) +
1

τ2

N−k∑
i=1

〈y,Wi〉2 +
n−N+k∑
i=1

〈y,Vi〉2

τ2 + λi
, (47)

or equivalently

−2 lnL(y|τ2) ≈
n∑
i=1

ln(τ2 + λi) +
1

τ2

∥∥y−PIm(C)y
∥∥2

+
n−N+k∑
i=1

〈PIm(C)y,V
i〉2

τ2 + λi
,(48)

with the convention λn−N+k+1 = λn−N+k+2 = ... = λn = 0. In the above
equations, ≈ means “equal up to a constant”. Based on (19), the term y −
PIm(C)y in Equation (48) is

y−PIm(C)y =



y1 − y1
...

yN1 − y1
...

yN1+...+Nk−1+1 − yk
...

yN1+...+Nk
− yk

0
...
0



, (49)

where yi, i = 1, ..., k, designates the mean of response values at location i.

According to Equations (49) and (27),
∥∥y−PIm(C)y

∥∥2
=

k∑
i=1

Nis
2
i . Hence,

Equation (48) using s2
i is updated as

−2 lnL(y|τ2) ≈
n∑
i=1

ln(τ2 + λi) +
1

τ2

k∑
i=1

Nis
2
i +

n−N+k∑
i=1

〈PIm(C)y,V
i〉2

τ2 + λi
. (50)

Let function ∆(τ2) express the difference between−2 lnL(y|τ2) and−2 lnL(y+|τ2).
Remark that PIm(C)y = PIm(C)y

+ because of our hypothesis yi = y+i , i =
1, ..., k. The function ∆(τ2) is defined as

∆(τ2) ≡ −2 lnL(y+|τ2) + 2 lnL(y|τ2) =
1

τ2

k∑
i=1

Ni

(
s+
i

2 − s2
i

)
, (51)

and is monotonically decreasing.

Now we show that τ̂+
2
, the ML estimation of nugget from y+, is never

smaller than τ̂2, the ML estimation of nugget from y. Firstly, τ̂+
2

cannot be
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smaller than τ̂2. Indeed, if τ2 ≤ τ̂2, then

−2 lnL(y+|τ2) = −2 lnL(y|τ2) + ∆(τ2) (52)

≥ −2 lnL(y|τ̂2) + ∆(τ2)

≥ −2 lnL(y|τ̂2) + ∆(τ̂2)

= −2 lnL(y+|τ̂2),

which shows that τ̂+
2
≥ τ̂2. Secondly, if s+

i
2

is strictly larger than s2
i , then

τ̂+
2
> τ̂2 because the slope of −2 lnL(y+|τ2) is strictly negative at τ2 = τ̂2:

The derivative of −2 lnL(y+|τ2) with respect to τ2 can be written as

d

dτ2

(
−2 lnL(y+|τ2)

)
=

d

dτ2

(
−2 lnL(y|τ2)

)
+
d∆(τ2)

dτ2
. (53)

Since τ̂2 = arg min−2 lnL(y|τ2), the second term in the right hand side of the
above equation is equal to zero. Therefore, the derivative of −2 lnL(y+|τ2)
with respect to τ2 reduces to

d

dτ2

(
−2 lnL(y+|τ̂2)

)
=

d

dτ2

(
1

τ2

k∑
i=1

Ni

(
s+
i

2 − s2
i

))
=
−1

τ4

k∑
i=1

Ni

(
s+
i

2 − s2
i

)
.(54)

The above derivative is strictly negative because s+
i

2 − s2
i is positive and the

proof is complete. �
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