Alain Denise 
  
Olivier Lespinet 
  
Mireille Régnier 
  
Guillaume Blin 
  
Gregory Kucherov 
  
Hélène Touzet 
  
Samer Abboud 
  
Vincent Lacroix 
  
Leandro Lima 
  
Helene Lopez-Maestre 
  
Marie-France Sagot 
  
Blerina Sinaimeri 
email: blerina.sinaimeri@inria.fr
  
Camille Marchet 
email: camille.marchet@irisa.fr
  
Clara Benoit 
  
Frank Picard 
  
Alice Julien-Laferrière 
  
Janice Kielbassa 
  
Lilia Brinza 
  
Superstring The 
  
Bastien Graph 
  
Eric Cazaux 
  
Rivals 
email: rivals@lirmm.fr
  
Matthieu Rosenfeld 
  
Michael Rao 
  
Fast Computation of Abelian Runs 
  
Gabriele Fici 
  
Tomasz Kociumaka 
  
Thierry Lecroq 
  
Arnaud Lefebvre 
  
Elise Prieur- Gaston 
  
Andreea Radulescu 
  
Guillaume Fertin 
  
Géraldine Jean 
  
Irena Rusu 
  
Yoann Dufresne 
  
Laurent Noé 
  
Valerie Leclere 
  
Maude Pupin 
  
Gaetan Benoit 
  
Claire Lemaitre 
  
Dominique Lavenier 
  
Erwan Drezen 
  
Guillaume Rizk 
  
Raluca Uricaru 
  
Rayan Chikhi 
  
Antoine Limasset 
  
Pierre Peterlongo 
  
Cécile Monat 
  
Christine Tranchant-Dubreuil 
  
François Sabot 
  
Bashar Al-Nuaimi 
  
Roxane Mallouhi 
  
Bassam Alkindy 
  
Christophe Guyeux 
  
Jean-François Couchot 
  
Joong Chae Na 
  
Hyunjoon Kim 
  
Heejin Park 
  
Martine Léonard 
  
Laurent Mouchard 
  
Kunsoo Park 
  
Evgenia Furletova 
  
Mireille Regnier 
  
Jan Holub 
  
Complexité 
  
Gilles Didier 
  
Laurent Tichit 
  
Mark Ward 
  
Vincent Le Gallic 
  
Yann Ponty 
  
Cedric Chauve 
  
Julien Courtiel 
  
Morgane Thomas-Chollier 
  
M.-F Sagot 
  
Bastien Cazaux 
  
Eric Rivals 
  
Michaël Rao 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Comité de programme

Nous tenons à dédier ces journées à notre collègue et ami Bernard Prum qui nous a quittés le 21 octobre dernier, à l'âge de 69 ans. Bernard Prum était l'un des pionniers et l'un des piliers de l'analyse statistique des séquences génomiques, il a été parmi ceux qui ont grandement contribué à la structuration et à l'animation de la communauté de bioinformatique moléculaire. Bernard était aussi une personne d'une humanité rare.

Préface

Ces journées SeqBio 2015 sont les seizièmes du nom. Journées nationales annuelles du groupe de travail COMATEGE commun au GdR Informatique-Mathématique et au GdR de Bioinformatique Moléculaire, elles rassemblent traditionnellement la communauté des informaticiens, bioinformaticiens et biologistes qui travaillent sur l'analyse des séquences, des aspects les plus théoriques à l'application à l'analyse des génomes.

Cette année elles sont organisées conjointement par trois équipes de l'Université Paris-Saclay : l'équipe Bioinformatique du LRI (Université Paris-Sud, CNRS), l'équipe AMIB du LIX (Ecole Polytechnique, CNRS, INRIA) et l'équipe Bioinformatique Moléculaire de l'I2BC (Université Paris-Sud, CNRS, CEA).

Nous avons le plaisir d'accueillir trois orateurs invités : Can Alkan (Université de Bilkent, Turquie), Morgane Tomas-Chollier (École Normale Supérieure de Paris) et Mark Daniel Ward (Université de Purdue, États-Unis). Les trois conférences invitées et les dix-sept exposés contributifs balaient tout le spectre scientifique de la communauté : combinatoire des mots, algorithmique des séquences et des structures, problématiques du séquençage à haut débit, génomique et évolution.

Nous remercions tout d'abord les responsables du groupe de travail COMATEGE, Thierry Lecroq et Irena Rusu, pour la confiance qu'ils nous ont accordée lors de la préparation de ces journées. Nous remercions aussi tous les organismes qui ont contribué au financement et à l'organisation de ces journées : le GdR Informatique-Mathématique du CNRS, le GdR de Bioinformatique Moléculaire du CNRS, l'Université Paris-Sud, Inria Saclay, l'Ecole Polytechnique, l'I2BC, le LIX, le LRI, et la COMUE Université Paris-Saclay qui fédère tous ces établissements. Nous remercions également les membres du comité de programme et ceux de l'équipe organisatrice, avec une mention spéciale pour Loïc Paulevé, Adeline Pierrot et Yann Ponty qui ont beaucoup donné de leur temps. Nous remercions enfin tous les orateurs et les participants, qui par leur nombre montrent que la communauté est active et dynamique.

uv is an abelian square if u is a permutation of the letters of v. Answering a question asked by Erdős [1], Keränen constructed a word over 4 letters that does not contain abelian-squares [2]. A question arised naturally from that (see Mäkelä's question in [3]): Is it possible to avoid long abelian square over three letters?

In this talk we give a positive answer to this question. We first explain how to decide if a fixed point of a morphism is abelian-n-power-free. Then we show how this algorithm can also decide if the word obtained by applying a second morphism contains additive-powers or long-abelian-powers. In the rest of the talk we present morphisms for which we can decide and we can answer Mäkelä's question and also demonstrate the following results [4]:

• There is a infinite ternary word that does not contain any square of period greater than 5.

• It is possible to avoid additive squares over Z 2 (with an alphabet of size 6).

• There is an infinite binary word that does not contain any 2-abelian-square of period greater than 60.

Definition 1 (Abelian period [1])

A factorization w = u 0 u 1 • • • u k-1 u k satisfying k ≥ 1, P u 1 = • • • = P u k-1
= P, and P u 0 ⊂ P ⊃ P u k is called a periodic factorization of w with respect to P. If a word w admits such a factorization, we say that P is an (abelian) period of w. If k ≥ 3, we also say that w is periodic with period P.

Definition 2 (Abelian run) A fragment w[i . . j] is called an abelian run with period

P if it is periodic with period P and maximal with respect to this property (i.e., each of w[i -1 . . j] and w[i . . j + 1] does not exist or is not periodic with period P).

Matsuda et al. [2] recently presented an offline algorithm for computing all abelian runs of a word of length n in O(n 2 ) time. Notice that, however, the definition of abelian run in [2] is slightly different from the one we consider here. Basically, our notion of abelian run is more general than the one of [2].

Given a word w of length n over an alphabet of cardinality σ and a Parikh vector P, an abelian run of period P in w is a maximal occurrence of a substring of w having abelian period P. The norm of a Parikh vector P is the sum of its components. We first give an online algorithm that finds all the abelian runs of period P in w in time O(n) and space O(σ + |P|), for any given Parikh vector P. We then present an online algorithm that computes all the abelian runs with periods of norm p in w in time O(np), for any given norm p. Finally we give an O(n 2 ) (resp. O(n 2 log n)) -time offline randomized (resp. deterministic) algorithm for computing all the abelian runs of w. These results improve those published in [3] Tandem repeats are parts of a genome sequence made of several copies of the same pattern, which are located next to each other. Present in the genome of most organisms, they play an important role in genome evolution and gene expression [1][2][3][4]. A significant number of tools were developed for tandem repeat detection on reference sequences. However, the tandem repeat detection remains a difficult problem in a de novo context (i.e. without a reference sequence) [5]. One of the main reasons is that the short reads obtained with the second-generation sequencing methods are not long enough to span regions that contain long repeats. The length limitation was tackled by the long reads obtained with the thirdgeneration sequencing platforms such as Pacific Biosciences technologies [6]. Unfortunately, the read length expansion came with a significant increase of the error rate and the main objective of most of the research work on long reads is to handle their high error rate, up to 16% [7].

Our hybrid algorithm MixTaR [8] is the first method that combines the high-quality of short reads and the significant size of long reads in order to detect tandem repeats in a de novo context. Based on a de Bruijn graph, MixTaR has three main steps. The first one consists in detecting potential tandem repeat patterns by analysing the de Bruijn graph built from the short reads. Due to the fragmentation of the reads into k-mers, tandem repeats can form cycles in the de Bruijn graph. Thus, we detect and analyse the cycles in the graph to identify tandem repeat patterns. However, at this step we can only find potential patterns because of the reduced size of the short reads. The patterns are then verified using the long reads throughout the second step. A potential tandem repeat pattern is validated if at least two approximate copies of the pattern are identified in at least one long read. Obtaining the exact tandem repeat sequences directly from the long reads is a difficult problem since the mean error rate of the long reads is very high. Therefore, we use again the set of short reads. In the third and last step we obtain the tandem repeat sequences by computing local greedy assemblies of a selected set of short reads.

For a complete analysis of its robustness to read errors we tested MixTaR with both simulated and real reads with different error rates. The obtained results emphasize the high precision and sensibility of our method. MixTaR is able to accurately identify a significant number of tandem repeats with pattern lengths varying within a significant interval.

Abstract

Chemists (pharmacists) and biologists study natural compounds because they are huge sources of new active molecules. Both types of analysis, chemical and biological, are complementary and help in improving the knowledge on these compounds. So, we have designed an efficient and accurate algorithm, implemented in the tool Smiles2Monomers (s2m), to infer the monomeric structure of a polymer from its chemical structure (http://bioinfo.lifl. fr/norine/smiles2monomers.jsp). Our algorithm identifies the monomers occurring in a target polymer based on a database of monomers. We design dedicated algorithms and data representation for the two steps of s2m. In the first step, monomers are mapped on the atomic structure of the polymer by a subgraph-isomorphism algorithm. The mapping is efficient thanks to a Markovian index built by a dynamic programming algorithm. In the second step, the best tiling is computed so that non-overlapping monomers cover all the structure of the target polymer. A greedy algorithm combines the mapped monomers into a consistent monomeric structure. If necessary, a local branch and cut algorithm refines the structure.

s2m was tested on 705 polymers extracted from two manually annotated databases (Norine and the Chemical Component Dictionary). It reached a recall of 92% and a precision of 83%. The average computation time per polymer is 2 s.

Abstract

Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method.

Most de novo methods either use a context-model to predict bases according to their context, followed by an arithmetic encoder, or re-order reads to maximize similarities between consecutive reads and therefore boost compression. However, by simply re-ordering reads read-pairing information is lost, thus many downstream analysis become impossible to run. Existing tools based on reads re-ordering, either lose the pairing information and achieve high compression, or provide an option to keep it at the cost of a much lower compression ratio.

We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies, in both FASTA and FASTQ format. Our approach, implemented in the software Leon, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded losslessly as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. Leon was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, Leon showed higher overall compression ratios than state-of-the-art compression software.

On a C. elegans whole genome sequencing dataset, Leon divided the original file size by more than 20, corresponding to 0.67 bits/base for DNA and 0.24 bits/quality score. Leon can compress large datasets, for example a 733 GB FASTQ file (whole human genome sequenced at 102x depth) is compressed in 11h using 9.5 GB of ram and 8 CPU threads.

Abstract

Many bioinformatics methods use de Bruijn graphs, notably genome assemblers. Typically, these graphs contain a huge number of nodes and need to reside entirely in memory. It is therefore critical that their data structures (i) occupy small space and (ii) answer graph traversal queries rapidly. Recent results have mostly focused on the succinctness of representations, e.g. [1,2]. In this work, I show that at the expense of slightly more space, one can design a navigational data structure [2] for de Bruijn graphs that answers graph traversal queries much faster than current approaches.

The representation is based on a minimal perfect hash function over the set of n nodes [3], which requires 2.61n + O(1) bits. An additional array, indexed by the perfect hash, encodes the presence/absence of all possible in-and out-neighbors for each node in a bit string. The total size of the structure is thus (2Σ + 2.61)n + O(1) bits, i.e. around 10.61 bits per node on a DNA alphabet.

The proposed structure is compared to cascading Bloom filters [1], a practical de Bruijn graph representation that occupies around 8.5 bits per node. Preliminary experiments show that traversal queries are answered 4x -14x faster (resp. on nodes of lengths 21 and 121). While the proposed structure is 1.25x larger, it is an attractive alternative due to much faster query operations. This data structure could serve as a basis for ultra-fast sequence analysis tools. An implementation is available in the GATB library (http://github.com/GATB/gatb-core).

There are many different forms of genomic structural variation that can be broadly classified as copy number variation (CNV) and balanced rearrangements. Although many algorithms are now available in the literature that aim to characterize CNVs, discovery of balanced rearrangements (inversions and translocations) remains an open problem. This is mainly because the breakpoints of such events typically lie within segmental duplications and common repeats, which reduce the mappability of short reads. The 1000 Genomes Project spearheaded the development of several methods to identify inversions, however, they are limited to relatively short inversions, and there are currently no available algorithms to discover large inversions using high throughput sequencing technologies (HTS). Here we propose to use a sequencing method (Kitzman et al., 2011) originally developed to improve haplotype resolution to characterize large genomic inversions. This method, called pooled clone sequencing, merges the advantages of clone based sequencing approach with the speed and cost efficiency of HTS technologies. Using data generated with pooled clone sequencing method, we developed a novel algorithm, dipSeq, to discover large inversions (¿500 Kbp). We show the power of dipSeq first on simulated data, and then apply it to the genome of a HapMap individual (NA12878).We were able to accurately discover all previously known and experimentally validated large inversions in the same genome. We also identified a novel inversion, and confirmed using fluorescent in situ hybridization. Example of ancestral reconstruction process between two genomes literature [5,6], but not in the specific case of chloroplastic genomes. Indeed it usually deals with permutations of integers: tools like Badger [7] or MLGO [8] do not support genomes of various length and with repeated/missing genes. Our problem applied to chloroplasts may appear as more difficult, as we relax the permutation hypothesis. However, in the classical Multiple Genome Rearrangement Problem [9], targeted genomes are bacterial or nucleus ones, which have much more genes than a chloroplast. Furthermore, gene order and content do not evolve so much when considering related plant species. Such observations explain why state-of-the-art algorithms cannot be applied to our particular problem, and why this latter should be solvable.

Bio

More precisely, two orders have been regarded in this research work, namely the Apiales and the Asterales. All complete genomes have been annotated using the accurate DOGMA tool [10], which is specific to such kind of genomes, and a well supported tree has been obtained based on their core genes and using RAxML. Then, after having reconstructed manually all ancestral genomes (ordered list of gene names) using a recursive naked eye comparison of each couple of sister species, we have designed dynamic programming based algorithms that have been able to recover all ancestral gene contents.

Fundamentally, the method consists in considering that all ordered sublist of genes shared by two sister species must be present too in their ancestor, while two or more cousins are used to solve conflict situations, as depicted in Figure 1.

Applying the proposed algorithms on the considered species, we found that the two studied families have not faced the same kind of genomic recombination. More precisely, Apiales family does not undergo insertions and deletions, while they are present in the Asterales case. Similarly, duplication of genes are quite different between the two considered families. Our intention, if this proposal is accepted, is to present both the algorithms and the results obtained on Apiales and Asterales.

This proposal is an ongoing work regarding the design of ancestral reconstruction of chloroplastic genomes. We intend to continue both the theoretical investigations and its applications to the Lamiids clade, encompassing Ericales, Solanales, Gentianales, Sapindules, and fabids orders. Next steps of such research work is to reconstruct too the ancestral DNA sequences, to extend the algorithms to larger genomes (of bacteria, for instance), to apply them on larger sets of species (e.g., the whole available complete genomes of chloroplasts), and to extract various knowledge from these ancestors regarding the evolution of genome sequences. ρ = at(cca/tca/ctt/aca)actc(c/a/a/c)c#, in which the common characters are written once and the underlined characters are enumerated in parentheses. We call ρ the alignment for the string set. Formally, given a set of m highly similar strings

S j = α 1 ∆ j 1 • • • α r ∆ j r α r+1 (1 ≤ j ≤ m)
, the alignment for the string set is denoted by

ρ = α 1 (∆ 1 1 / • • • /∆ m 1 ) • • • α r (∆ 1 r / • • • /∆ m r )α r+1 where α i (1 ≤ i ≤ r + 1
) is a common substring in all strings, and ∆ j i (1 ≤ i ≤ r) is a non-common substring in string S j . In the example above,

α 1 = at, α 2 = actc, α 3 = c#, ∆ 1 1 /∆ 2 1 /∆ 3 1 /∆ 4 1 = cca/tca/ctt/aca, and ∆ 1 2 /∆ 2 2 /∆ 3 2 /∆ 4 2 = c/a/a/c
. Without loss of generality, we assume only α 1 can be empty among all the α i 's and ∆ j i 's. Furthermore, we assume that

|∆ 1 i | = |∆ 2 i | = • • • = |∆ m i | for each 1 ≤ i ≤ r,
since a special character '-' can be inserted in case of indels.

The suffix tree of an alignment has been proposed in [1] while the suffix array of an alignment has been presented in [2]. Here we propose the FM-index of an alignment [3], a compressed index for highly similar strings with the functionalities of pattern search and random access. For this, we first design a new and improved version of the suffix array of an alignment. We also design a version of the Burrows-Wheeler Transform adapted for an alignment. The FM-index of an alignment comprises a sampling of this suffix array of an alignment and a Burrows-Wheeler Transform of an alignment. The FM-index of an alignment supports the LF-mapping and backward search, the key functionalities of the FM-index, but the LF-mapping and backward search of our index is significantly more involved than the original FM-index. We implemented the FM-index of an alignment and did experiments on 100 genome sequences from the 1000 Genomes Project. The index size of the FM-index of an alignment is about a half of that of RLCSA (Run-Length Compressed Suffix Array) [4].

Computer experiments show that, for degenerate patterns, sizes of proposed automata are significantly smaller than the patterns sizes. For example, amino acids degenerate pattern FLXXTXXXRXXXAXXQXXXLXXF (symbols except of X stand for specific amino acids, X stands for any amino acid) describing protein familia GAS VESICLE C from the database Prosite [SCea12] corresponds to a pattern containing about 10 29 words. Straightforward enumeration of the words and construction of corresponding Aho-Corasick automaton are impossible. DGTrie for this pattern has only 1480 states and 4900 edges. And OWA has states 89 and 17676 edges. Efficiency of our approach increases for larger alphabets.

|w|-1 ou |w|). Nous montrons que si un texte est Bernoulli alors la séquence des états internes d'un algorithme est une chaîne de Markov à états cachés dont on sait expliciter les probabilités de transition, ce qui permet d'en calculer la vitesse asymptotique.

Notre résultat principal est, qu'étant donnés un motif w, un entier k ≥ |w|-1 et un modèle Bernoulli, il existe, parmi les algorithmes d'ordre k, un algorithme de vitesse asymptotique maximale dont l'ensemble des états internes est en bijection avec un sous-ensemble des fonctions partielles f de {0, . . . , n} vers A telles que, pour tout i < |w|, si f (i) est défini alors f (i) = w i . Le nombre d'algorithmes vérifiant cette propriété étant fini, il est possible de tous les évaluer et de déterminer ainsi un algorithme optimal pour un motif, un ordre et un modèle Bernoulli donnés. La table ci-après présente les vitesses asymptotiques d'algorithmes usuels et de l'optimal à l'ordre 3 pour les fréquences 0.1/0.9 en a/b pour tous les motifs de taille 4. 

N a i v e M o

Introduction

Le problème du design d'ARN a été pour la première fois abordé par [6], qui propose l'algorithme RNAinverse, qui trouve une séquence par recherche stochastique.

Les algorithmes RNA-SSD [2], INFO-RNA [4] et NUPack [12] reposent également sur la recherche stochastique, en utilisant une heuristique diviser pour régner avec différentes stratégie de découpage du problème. RNA-ensign [7] et IncaRNAtion [11] utilisent la génération aléatoire, tandis que FRNAKenstein [8] et RNAExInv [3] sont des algorithmes génétiques. Il existe également des algorithmes exacts, de complexité expontentielle, comme RNAiFold [5].

Zhou et al. introduisent CFGRNAD [13] qui utilise des langages formels (automate et grammaire non-contextuelle) pour conditionner une génération aléatoire de séquences candidates à être un bon design. C'est cette méthode qu'on propose ici d'améliorer en optimisant certaines étapes du calcul.

Définition du problème

On modélise une structure secondaire d'ARN sans pseudo-noeuds par un mot bien parenthésé sur l'alphabet {(, ), •, }. L'absence de pseudo-noeud se traduit par le fait que les arcs ne se coupent pas dans une représentation linéaire de la molécule, comme illustré par la Figure 1. Pour une séquence de base azotées s repliée selon une structure S, on peut, étant donné un modèle d'énergie des structures secondaire d'ARN (typiquement, celui de Turner [10]), calculer son énergie libre E(s, S). Le problème du repliement consiste, pour une séquence s, à trouver l'ensemble de structures MFE(s) qui minimisent E(s, S). On peut alors définir le problème du repliement inverse, aussi appelé design négatif, tel que suit:

Repliement inverse Données : Structure secondaire S Résultat : Séquence s telle que MFE(s) = {S} si possible, ou ∅ sinon La complexité de ce problème est actuellement inconnue, même si il est soupçonné NP-complet, et il n'existe actuellement aucun algorithme polynomial offrant des garanties théoriques, exactes ou approchées, pour ce problème.

Dans des contextes applicatifs, il peut parfois être utile de construire des séquences s dont le repliement (MFE) n'est pas exactement S, mais une structure "proche". On veut de plus ajouter des contraintes supplémentaires au problème :

• Contraintes positionnelles. Exemple : À la position 27 de la séquence, il ne peut y avoir que A ou G;

• Motifs interdits. Exemple : AUGGG ne doit pas apparaître; 

Approche de Zhou et al [13]

Une solution exacte, en temps exponentielle, du problème a été proposée par [13], via une formulation issue de la théorie des langages.

Pour une structure S fixée, l'algorithme commence par créer une grammaire qui engendre le mot parenthésé représentant la structure S, comme l'illustre la Figure 2 : Pour ajouter les contraintes de mots obligatoires, on peut créer A M qui reconnaît tous les mots ayant pour facteurs tous les mots de M, dans n'importe quel ordre. Cela consiste à lire un mot de M, puis n'importe quel autre mot de M jusqu'à en avoir lu le bon nombre (cf figure 4).

S 1 → •S
S 1 → aS 2 | uS 2 | gS 2 | cS 2 S 2 → aS 3 u | uS 3 a | gS 3 c | cS 3 g | gS 3 u | uS 3 g . . . S 5 → a | u | g | c . . .

On obtient finalement A F ,M en faisant le produit des automates A

F et A M , dont l'ensemble d'état est Q F ,M tel que |Q F ,M | ∈ O   2 |M |   f ∈F |f | + m∈M |m|     .
Ainsi, G S gère les contraintes structurelles tandis que A F ,M gère les motifs interdits et obligatoires. Les contraintes positionnelles sont prises en compte dans la grammaire 

Contributions 4.1 Programmation dynamique pour un motif unique placé

Une faiblesse de l'approche purement linguistique de Zhou et al [13] apparaît lorsqu'on cherche à forcer un motif unique placé ω, afin qu'il soit présent à une position spécifique i ω , tout en étant interdit partout ailleurs. En effet, si l'on essaye d'exprimer cette contrainte dans la grammaire G S , l'automate interdisant le mot ω, le produit automate-grammaire sera vide, la grammaire n'engendrant que des mots contenant le motif ω, refusé par l'automate. En revanche, si l'on essaye de capturer cette contrainte dans l'automate A F ,M , alors le nombre d'états de l'automate minimal croit en Ω(n), ce qui résulte en un surcoût de complexité en O(n 3 ).

L'algorithme proposé ici permet de régler ce problème, à travers une fonction C(i, j, q, q ) qui compte les mots sur l'intervalle [i, j] remplissant le contrat partant d'un état q de l'automate, on arrive après lecture du mot dans un état q . La valeur nous intéressant au final est donnée par C(1, n, q 0 , q f ) pour tout q 0 (respectivement q f ) initial (resp. final) dans A F ,M . Chaque contrat dépend de sous-contrats de taille strictement inférieure (au sens : la distance ji est plus faible), ce qui permet d'envisager la programmation dynamique.

L'algorithme calcule (et mémorise) chacun des C(i, j, q, q ). Si la base i n'est pas appariée, remplir le contrat de C(i, j, q, q ) consiste à choisir une lettre a ∈ Σ et remplir C(i + 1, j, q after , q ) où q a → q after est une transition dans A F ,M . Si la base i est appariée à la base k, remplir C(i, j, q, q ) consiste à choisir une lettre a ∈ Σ, un état q ∈ Q et remplir C(i, k, q, q ) et C(k + 1, j, q after , q ) où q a → q after est une transition dans A F ,M . On en déduit immédiatement des équations de programmation dynamique, dont on présente uniquement le cas apparié dans un soucis de concision :

C(i, j, q, q ) = (a,b)∈C i ×C j q ∈Q              0 si δ(q, a) ∈ F ou δ(q , b) ∈ F 0 si δ(q, a) = ω et i -(|ω| -1) = i ω 0 si δ(q , b) = ω et k -(|ω| -1) = i ω C(i + 1, k -1, δ(q, a), q ) • C(k + 1, j, δ(q , b), q ) sinon
où les états de l'automate d'Aho Corasick (non minimal) sont confondus avec les suffixes maximaux de mots de F ∪ M ∪ {ω} par abus de notation. La complexité de l'algorithme reste donc en O(n • |Q| 3 ) malgré la contrainte de motif unique placé ω.

Amélioration empirique de la complexité

Le terme dominant de complexité de l'algorithme de Zhou et al [13] (ainsi que celui décrit en section 4.1) résulte de la simulation explicite de l'exécution de l'automate lors des règles de type produit. En effet, pour chaque règle de la grammaire de type produit S → (S )S l'algorithme créé autant de règles qu'il existe de triplets (q, q , q ) ∈ Q 3 . Cependant, pour certains triplets, il n'existe aucun chemin q → n q → n q dans A F , où n et n sont les tailles des mots engendrés par S et S respectivement.

Notre optimisation consiste donc à éviter la création de dérivations improductives, en pré-calculant les triplets (q, q , q ) tels qu'un tel chemin existe. On utilise pour cela un algorithme simple de programmation dynamique qui calcule et mémorise, pour chaque couple (q, n ) ∈ Q × N 2 , l'ensemble d(q, n ) (resp. i(q, n )) des états q ∈ Q tels qu'il existe au moins un chemin q → n q dans A F (resp. q → n q). Le calcul des triplets pertinents est alors obtenu comme une simple intersection.

Une fois ce précalcul effectué, on constate une économie empirique substantielle en temps de calcul.

Complexité de la génération à mots imposés

Le fait que l'algorithme ait une complexité exponentielle en le nombre de motifs imposés est peu surprenant, car le problème du design contraint est NP-difficile.

En effet, rappelons le problème Superstring :

Superstring Données : Ensemble {u 1 , . . . , u k } des mots sur un alphabet Σ et l ∈ N. Résultat : Vrai si il existe u tel que ∀i ∈ 1, k , u i u, et |u| l, Faux sinon
Ce problème est NP-difficile [9]. Si on considère le problème du design contraint avec les contraintes suivantes : S = • l (structure "vide" de taille l), F, M = {u 1 , . . . , u k }, alors, résoudre ce problème de design contraint et tester si le résultat est vide est équivalent au problème du Superstring.

Ainsi il n'est pas surprenant que la dépendance de la complexité en le nombre de mots interdits (k = m = |M|) soit exponentielle et il est peu probable qu'un algorithme vienne améliorer significativement la dépendance exponentielle en le nombre de motifs obligatoires.

Problèmes soulevés

Ce travail soulève les questions suivantes :

• L'automate A F est-il génériquement optimal [1] pour gérer la contrainte imposée par F ? Une minimisation a posteriori est en effet coûteuse, et entraîne des difficultés au niveau de la programmation dynamique.

• Notre algorithme ne garantit pas le repliement des séquences engendrées vers une structure cible S. Comment biaiser la génération aléatoire pour favoriser les séquences dont le repliement est "proche" de S ?

• Nous souhaitons enfin caractériser des classes d'automates/contraintes telles que l'économie obtenue par notre précalcul est asymptotiquement significative.

Introduction

Tree alignments are the natural analog of sequence alignments, and have been introduced by Jiang, Wang and Zhang [1] to model and quantify the similarity between two (ordered1 ) trees. Tree alignment has been used in a wide array of applicative contexts ranging from web crawling [2] to software engineering [3] through RNA Bioinformatics [4]. The minimal cost tree alignment between two trees of size n 1 and n 2 , under classic insertion/deletion/(mis)match operations, can be computed using dynamic programming (DP). The current best algorithms have a worst-case time and space complexity respectively in O(n

1 n 2 (n 1 + n 2 ) 2 ) and O(n 1 n 2 (n 1 + n 2 )
) [1] algorithms, and an average-case time and space complexity (on uniformly drawn instances) in O(n 1 n 2 ) [5].

In the context of sequence alignments, the enumeration of alignments has been the object of much interest in Computational Biology [6,7,8]. Alignments between two sequences over an alphabet Σ can be encoded as sequences over an extended alphabet Σ a , representing insertions, deletions and (mis)matches (e. Beyond purely theoretical considerations, the decompositions introduced for enumerating distinct sequence alignments were adapted into DP algorithms, e.g. for probabilistic alignment based on expectation maximization [10], or to compute Gibbs-Boltzmann measures of reliability [11].

In the present work, we consider similar questions on tree alignments. We are first interested in counting distinct tree alignments, i.e. enumerating, up to equivalence, ordered trees whose vertices are labeled in Σ a (called supertrees from now). For trees, the notion of equivalence of alignments generalizes that of sequence alignments, i.e. two alignments are equivalent when they align the same pairs of trees, and induce the same sets of (mis)matched positions. Unfortunately, contrasting with the case of sequence alignments, existing DP algorithms for computing an optimal tree alignment [1,12,13] cannot be easily adapted into enumeration schemes for tree alignments up to equivalence. This additional difficulty is due to the existence of ambiguities of different nature.

Our main contribution is a grammar for (distinct) tree alignments, which provably generates a single representative for each equivalence class. We use the symbolic method [START_REF] Flajolet | Analytic combinatorics[END_REF] to obtain the generating function of tree alignments, and asymptotic equivalents for various statistics of interest can easily be derived, such as the average number of alignments over trees of total size n. Finally, and, perhaps more importantly from an applied point of view, the grammar can be transformed into an unambiguous and complete DP algorithm for aligning two input trees. The resulting algorithm has the same asymptotic worst-case and average-case complexities, up to reasonable constants, as the current best -ambiguousalgorithm [1,12]. The main interest of such an algorithm is that it opens immediately the way to new applications for the tree alignment model, including a critical assessment of the reliability of optimal alignments, either obtained by counting co-optimal alignments, or by sampling suboptimal alignments according to a Gibbs-Boltzmann distribution (see [START_REF] Ponty | A combinatorial framework for designing (pseudoknotted) RNA algorithms[END_REF] for an example of this approach for the RNA folding problem).

Background

Trees and supertrees. Let Σ be an alphabet. A tree T on Σ is a rooted plane tree whose vertices are labeled by elements of Σ. We denote by V T the set of vertices of T . We remove a non-root vertex v from a tree T by contracting the edge between v and its parent u, that keeps its label. Removing the root r of a tree consists in creating a forest composed of the subtrees rooted at the children of r. We denote the operation of removing a vertex v from T by Tv. We denote by Σ a the alphabet defined by Σ a = (Σ ∪ {-}) 2 -{(-, -)}. An element (x, y) ∈ Σ a is an insertion (resp. deletion, match) if y = -(resp. x = -, (x, y) ∈ Σ 2 ). A supertree A is a tree on Σ a ; a vertex of A is an insertion (resp. deletion, match) if its label is an insertion (resp. deletion, match). The size of a supertree A is the number of its insertions and deletions, plus twice the number of its matches. A superforest is an ordered sequence of supertrees.

Given a supertree A on Σ, we define two forests π 1 (A) and π 2 (A) as follows: π 1 (A) (resp. π 2 (A)) is obtained by (1) iteratively removing all insertion (resp. deletions) of A, in an arbitrary order, and (2) replacing the label (x, y) of each remaining vertex by x (resp. y). We refer to Fig. 1 for an illustration. We extend the notations π 1 and π 2 on vertices: for a non-insertion (resp. non-deletion) vertex v of A, we denote by π 1 (v) (resp. π 2 (v)) the corresponding vertex in π 1 (A) (resp. π 2 (A)). A vertex x of π 1 (A) such that π -1 1 (x) is an insertion (resp. match) is said to be inserted (resp. matched) in A. Similarly, a vertex y of π 2 (A) such that π -1 2 (y) is a deletion (resp. match) is said to be deleted (resp. matched) in A.

Tree alignments. As forests π 1 (A) and π 2 (A) are embedded into the supertree A, the latter implicitly defines an alignment between the forests π 1 (A) and π 2 (A), i.e. a set of correspondences between vertices of π 1 (A) and π 2 (A), that is consistent with the structure of both forests [1]. We refer to Fig. 1 for an illustration. We now turn to the central notion of equivalent alignments, i.e. alignments of identical pairs of trees, that contain exactly the same set of matched vertices. Given a supertree A, representing an alignment between two trees S = π 1 (A) and T = π 2 (A), the set of matches of A is formed by the elements (x, y) of V S × V T such that π -1 1 (x) = π -1 2 (y) (i.e. there exists a vertex v of A such that π 1 (v) = x and π 2 (v) = y). Two supertrees A 1 and A 2 are equivalent if π 1 (A 1 ) = π 1 (A 2 ), π 2 (A 1 ) = π 2 (A 2 ), and the sets of matches of A 1 and A 2 are identical (see Fig. 1 

S = T = A 1 = A A C G U A C U A C C U A G U A * * * * * * A 2 = A 3 = * * * * * * * * A A C G U C U A A A G C U A C U

for an illustration).

A tree alignment is then defined as an equivalence class over supertrees with respect to the above-defined equivalence relation, for which π 1 (A) and π 2 (A) are trees. The notion of forest alignment is similarly defined when π 1 (A) and π 2 (A) are not restricted to trees. Given a set S of tree (resp. forest) alignments, a set T of supertrees (resp. superforests) is said to be representative of S if it contains exactly one supertree (resp. superforest) for each alignment (i.e. equivalence classes of supertrees and forests) in S. Tree alignments will now be the focus of our work.

Results

A grammar for tree alignments. In this section, we describe a context-free grammar for a set A of supertrees that is representative of the set of all tree alignments. Theorem 1 The set of supertrees A generated by the grammar (1)-( 8) is representative of the set of all tree alignments; i.e. A contains exactly one supertree for each equivalence class of supertrees.

Application: Enumerating tree alignments. For the sake of simplicity, we will restrict our attention to |Σ| = 1, i.e. the alphabet is restricted to a single letter. The general case follows easily, and will be described in an extended version of the paper. Using the symbolic

A = V ∅ ⊕ T I ⊕ T D ⊕ InsRoot (F I • T D ) (1) T I = InsRoot (F I ) , F I = {empty supertree} ⊕ InsRoot (F I ) • F I (2) T D = InsRoot (F D ) , F D = {empty supertree} ⊕ InsRoot (F D ) • F D (3) V ∅ = V ↑ ⊕ InsRoot (VH) (4) 
V ↑ = MatchRoot H I|D,∅,∅ ⊕ DelRoot F D • V ↑ • F D (5) VH = F I • VH ⊕ V ∅ • F I ⊕ DelRoot H I|D,↔,∅ • F I (6)
For every ν, M, M with ν ∈ {I|D, D} and M, M ∈ {∅, ↔, →}:

H ν,M,M =                        {empty supertree} if (M, M ) = (∅, ∅) T I • H ν,M,M if ν = D and if M =↔ T D • H D,M,M if M = ↔ V ∅ • H 1,1 M,M InsRoot H I|D,∅,↔ • H 1,+ M,M DelRoot (H D,↔,∅ ) • H +,1 M,M (7) 
For every M, M ∈ {∅, ↔, →} and i, j ∈ {1, +}: method [START_REF] Flajolet | Analytic combinatorics[END_REF], one classically translates the specification described by Eqs. ( 1)-(8) into a system of functional equations relating the generating functions of the sets of supertrees and forests. This leads to the following set of enumerative results, that characterize precisely the set of all tree alignments.

H i,j M,M = H I|D,α(M ),α(M ) ⊕                  F I if M = ∅ and M = → F I if M = ∅,

Theorem 2

The generating functions T (t, z) and F (t, z) of tree and forest alignments, whose size and number of matches are marked by t and z respectively, satisfy

T (t, z) = t 2 + t -t 2 z + t √ 1 -4t F (t, z), (9) 
(tzC(t) 2t 2 C(t) 2 + 2t)F (t, z) 2 + (t 2 C(t) 4 -2tC(t) 2 -1)F (t, z) + C(t) 2 = 0, (10) where C(t) = (1 -√ 1 -4t)/2t is the generating function of Catalan numbers.

Theorem 3

The number of tree alignments of size n is asymptotically equivalent to κ × n -3/2 × 6 n , where κ = √ 2(3 -√ 3)/(24 √ π).

Corollary 4

The average number of tree alignments for a random pair of trees of cumulated size n is κ × 1.5 n , where κ = √ 2(3 -√ 3)/6.

Application: Sampling alignments between two given trees. We now consider two fixed trees S and T , and consider the task of sampling a tree alignment A such that π 1 (A) = S and π 2 (A) = T , with respect to the Gibbs-Boltzmann probability distribution. , This can be used to assess the stability of a prediction. We refer the interested reader to our introduction for examples of further motivation and possible applications. Let T S,T be the set of all supertrees A such that π 1 (A) = S and π 2 (A) = T , and A S,T be a representative set of T S,T . In other words, A S,T can be interpreted as the set of all alignments between S and T . For any supertree A ∈ T S,T , we define its edit score s(A) as the sum of the number of insertions, deletions and matches (x, y) such that x = y. 2 For a given positive constant kT , the partition function Z S,T of A S,T and the Gibbs-Boltzmann probability Pr(A) of an alignment A ∈ A S,T are defined as Z S,T = A∈A S,T e -s(A)/kT , Pr(A) = e -s(A)/kT Z S,T .

When kT tends to 0, this distribution tends to the uniform distribution over supertrees of minimum edit score, while, when kT tends to +∞, it tends toward the uniform distribution over A S,T . We consider the following problem: given two trees S and T , and a positive constant K, design a sampling algorithm for alignments between S and T under the Gibbs-Boltzmann probability distribution. This problem generalizes the classic combinatorial optimization problem of computing a tree alignment between S and T having minimum edit score.

To address this problem, we rely on dynamic programming, by the approach described, among others, in [START_REF] Ponty | A combinatorial framework for designing (pseudoknotted) RNA algorithms[END_REF] for RNA folding. We proceed in two steps: adapting the grammar introduced in Section 3 into a grammar for A S,T , then using this grammar as the skeleton of an efficient Dynamic Programming sampling algorithm. This leads to the following result.

Theorem 5 Let S and T be two trees of respective sizes n S and n T . Sampling a supertree from A S,T under the Gibbs-Boltzmann distribution can be done with worst-case time and space complexities in O(n S n T (n S + n T ) 2 ), while the average-case time and space complexities are in O(n S n T ).

Following the program outlined in [START_REF] Ponty | A combinatorial framework for designing (pseudoknotted) RNA algorithms[END_REF], we are currently using our grammar and derived dynamic programming schemes to revisit the alignment of 3D models of RNA structures. More generally, it would be interesting to characterize the conditions under which an instance-agnostic grammar, enumerating a search space, could be adapted into a decomposition for a specific instance. Such a theory, at the confluence of enumerative combinatorics and algorithmic design, could provide another principled ways to design dynamic-programming algorithms.
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 1 Figure 1. Example of ancestral reconstruction process between two genomes
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 1 Figure 1. Représentation par arcs et par mot
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 242 Figure 2. Dérivation du mot dans la grammaire G Cette grammaire est alors développée afin d'émettre une des lettres {A, U, G, C} à chaque position non-appariée •, et de remplacer les couples de parenthèses ( ) en correspondance par des paires {{A, U}, {G, C}, {G, U}}. La grammaire G S ainsi obtenue reconnait le langage de toutes les séquences compatibles avec S :

Figure 3 .

 3 Figure 3. Automate A F , où F = {ACU, ACGG, GG}, ici représenté avec des ε-transitions appelées failure transitions, pouvant être précisées en temps O(|A F |) afin d'obtenir un automate déterministe.

G

  S via un filtrage des règles développées pour • et (). L'intersection d'un langage non contextuel et d'un langage régulier est un langage non contextuel, qui peut être reconnu en simulant l'exécution de l'automate au cours des dérivations de la grammaire, résultant en une grammaire ayant |G S | • |Q F ,M | 3 dérivations.

Figure 4 .

 4 Figure 4. Exemple de A M avec M = {AGC, GG}

  g. Σ = {a, b}, Σ a = {(a, -), (-, b), (a, b), (a, a), (b, a), (b, b)}). Many sequences over Σ a are equivalent if one considers only (mis)matches of the alignments, i.e. they align sequence of same lengths and induce the same sets of matched positions (e.g. (a, -), (-, b) and (-, b), (a, -)). It is a natural problem to enumerate distinct sequence alignments for two sequences of cumulated length n [9, pp. 188].

Figure 1 .

 1 Figure 1. (Left) A supertree A 1 with alphabet Σ = {A, C, G, U }, and the associated trees S = π 1 (A 1 ) and T = π 2 (A 1 ). represent the insertion vertices; the blue vertices, labeled by a blank then a star, represent the deletion vertices; the green vertices, labeled by a double star, represent the match vertices. The alignment of S and T defined by A is composed of two pairs of matched (A, A) and (U, A), indicated by dashed arrows. (Right) Two non-equivalent supertrees, representing two different tree alignments. However, while the supertrees A 1 and A 2 from the left part of the figure are equivalent.

  M = ↔ and j = +F D if M = → and M = ∅ F D if M = ↔, M = ∅ and i = + ∅ otherwise(8)where α(∅) = ∅ and α(↔) = α(→) = →.

Figure 2 .

 2 Figure 2. A context-free grammar for A, a representative set of all tree alignments.
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Abstract

Chloroplasts are one of many types of organelles in the plant cell. They are considered to have originated from cyanobacteria through endosymbiosis, when an eukaryotic cell engulfed a photosynthesizing cyanobacterium, which remained and became a permanent resident in the cell. The term of chloroplast comes from the combination of plastid and chloro, meaning that it is an organelle found in plant cells that contains the chlorophyll. Chloroplast has the ability to convert water, light energy, and carbon dioxide (CO 2 ) in chemical energy by using carbon-fixation cycle [1] (also called Calvin Cycle, the whole process being called photosynthesis). This key role explains why chloroplasts are at the basis of most trophic chains and are thus responsible for evolution and speciation. Moreover, as photosynthetic organisms release atmospheric oxygen when converting light energy in chemical one, and simultaneously produce organic molecules from carbon dioxide, they originated the breathable air and represent a mid to long term carbon storage medium.

Consequently, exploring the evolutionary history of chloroplasts is of great interest, and we propose here to investigate it by the mean of ancestral genomes reconstruction. This reconstruction will be achieved in order to discover how the molecules have evolved over time, at which rate, and to determine whether evidences of their cyanobacteria origin can be presented by this way. This long-term objective necessitates numerous intermediate research advances. Among other things, it supposes to be able to apply the ancestral reconstruction on a well-supported phylogenetic tree of a representative collection of wellannotated chloroplastic genomes. Indeed, sister relationship of two species must be clearly established before trying to reconstruct their ancestor.

We have already explained in previous works how to obtain accurately both annotated chloroplasts and their phylogenetic relationship [2,3,4]. This is why, in this proposal, we consider that the gene content and order of each species is well known, and that an accurate phylogenetic inference has already been obtained in the specific case of chloroplast sequences. Our objective is then to design algorithms making it possible to reach the last universal common ancestor of these chloroplasts.

Ancestral genome reconstruction has already been investigated several times in the

Abstract

Our study is motivated by the problem of functional fragments detection in biological sequences. Usually, methods select overrepresented occurrences of a pattern (set of specific words describing the fragments) to find potential functional fragments. The classical measures of overrepresentation of motifs are z-scores and p-values or score over probability weight matrices [START_REF] Stormo | DNA binding sites: representation and discovery[END_REF]. It is tightly related to the combinatorics of clumps, sequences of overlapping occurrences of a given pattern, see [START_REF] Reinert | Compound Poisson approximation for occurrences of multiple words in Markov chains[END_REF] and [START_REF] Regnier | Clump Combinatorics, Automata, and Word Asymptotics[END_REF].

We present a minimized compacted automaton (Overlap walking automaton, OWA) recognizing all the possible clumps for degenerate patterns and its usage for computation of probabilities of sets of clumps. OWA is the minimization of the automaton presented in the paper [START_REF] Regnier | Clump Combinatorics, Automata, and Word Asymptotics[END_REF]. Degenerate (indeterminate) pattern [START_REF] Holub | Algorithms on indeterminate strings[END_REF] can be presented as a word in a degenerate alphabet, degenerate letter is a subset of a main alphabet Σ. A word x = x 1 , . . . , x m in Σ belongs to a degenerate pattern π = π 1 , . . . , π m if x i ∈ π i . An example of a degenerate pattern is an Iupac consensus. We also present minimization of Aho-Corasick automaton DGTrie [START_REF] Aho | Efficient string matching: an aid to bibliographic search[END_REF], recognizing all the sequences ending with pattern occurrences.

We use DGTrie as an auxiliary structure for OWA construction. The states of DGTrie are equivalence classes on the prefixes of words (Pref (π)) of the pattern π. The set of states of OWA is a subset of DGTrie states that correspond to overlaps between pattern words. We introduce the following equivalence relation: Let x, y ∈ Pref (π); x ≡ y iff x = y or the following conditions are satisfied:

2) sl(x) ≡ sl(y) .

(

One can prove that DGTrie is also minimal automaton according to Nerode equivalence recognizing all the sequences ending with pattern occurrences. The introduced equivalence relation allow to construct DGTrie in linear time on the number of its states (it is bounded by 2 m , where m the length of pattern words). Owa can be constructed in linear time on the sum of its size and DGTrie size.