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Some More Functions

That Are Not APN Infinitely Often.

The Case of Gold and Kasami exponents

Eric Férard, Roger Oyono, and François Rodier

Abstract. We prove a necessary condition for some polynomials of Gold and
Kasami degree to be APN over Fqn for large n.

1. Introduction

The vector Boolean functions are used in cryptography to construct block ci-
phers and an important criterion on these functions is high resistance to differential
cryptanalysis.

Let q = 2n for some positive integer n. A function f : Fq −→ Fq is said to
be almost perfect nonlinear (APN) on Fq if the number of solutions in Fq of the
equation

f(x+ a) + f(x) = b

is at most 2, for all a, b ∈ Fq, a 6= 0. This kind of function has a good resistance to
differential cryptanalysis as was proved by Nyberg in [20].

So far, the study of APN functions has focused on power functions. Recently
it was generalised to other functions, particularly quadratic polynomials (Edel,
Kyureghyan and Pott [11], or Budaghyan, Carlet, Felke and Leander [4]) or poly-
nomials on small fields (Dillon [9]). On the other hand, several authors (Berger,
Canteaut, Charpin and Laigle-Chapuy [2], Byrne and McGuire [5], Jedlicka [17],
Rodier [21], or Férard and Rodier [12, 13]) showed that APN functions did not
exist in certain cases.

There are many classes of function for which it can be shown that each function
is APN for at most a finite number of extensions [23, 21]. So we fix a finite field Fq

and a function f : Fq → Fq given by a polynomial in Fq[x] and we set the question
of whether this function can be APN for an infinite number of extensions of Fq.

In this approach, Hernando and McGuire [14] showed a result on the clas-
sification of APN monomials which has been conjectured for 40 years: the only
exponents such that the monomial xd are APN over infinitely many extension of
F2 are of the form 2i + 1 or 4i − 2i + 1. One calls these exponents exceptional
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exponents. Then it is natural to formulate for polynomial functions the following
conjecture.

Conjecture 1.1 (Aubry, McGuire and Rodier). A polynomial on Fq

can be APN for an infinity of extensions of Fq only if it is CCZ equivalent (as
was defined by Carlet, Charpin and Zinoviev in [7]) to a monomial xt where t is
an exceptional exponent.

A means to prove this conjecture is to remark that the APN property is equiva-
lent to the fact that the rational points of the algebraic surfaceX in a 3-dimensional
space defined by

φ(x, y, z) =
f(x) + f(y) + f(z) + f(x+ y + z)

(x+ y)(x+ z)(y + z)

(which is a polynomial in Fq[x, y, z]) are all in a surface V made of the three planes
x+ y = 0, x+ z = 0, y + z = 0.

Some cases of this conjecture have been studied already, in particular the case
of polynomials of odd degree, not Gold or Kasami [1]. It is also true for polynomials
of degree < 13 (see [1] and [21]). Some partials results have been obtain in case
of polynomials of Gold degree or of even degree [1, 22]. We recall them in Section
3 (see Theorems 3.1 to 3.5). Nevertheless, in characteristic 3, there exists polyno-
mials, not equivalent to monomials, which are PN for an infinity of extensions of
Fq (see [18, théorème 3.3.7] or [8, 10]). In this paper, we will study polynomials
of Kasami degree. The proofs happen to be somehow the same as in Gold degree,
with a few changes anyway.

In Section 5, we study the special case of binomials of Gold and Kasami degree.
For instance, we prove that any binomial of Gold degree could not be APN on
infinitely many extensions of Fq.

2. Preliminaries

We define

φ(x, y, z) =
f(x) + f(y) + f(z) + f(x+ y + z)

(x+ y)(x+ z)(y + z)

which is a polynomial in Fq[x, y, z]. This polynomial defines a surface X in the
three dimensional affine space A

3.
If X is absolutely irreducible (or has an absolutely irreducible component de-

fined over Fq) then f is not APN on Fqn for all n sufficiently large. As shown in
[21], this follows from the Lang-Weil bound for surfaces, which guarantees many
Fqn -rational points on the surface for all n sufficiently large.

We call φj(x, y, z) the φ function associated to the monomial xj . The function
φj(x, y, z) is homogeneous of degree j − 3.

We recall a result due to Janwa, Wilson, [15, Theorem 5] about Kasami expo-
nents.

Theorem 2.1. If f(x) = x22k−2k+1 then

(2.1) φ(x, y, z) =
∏

α∈F
2k

−F
2

pα(x, y, z)

where for each α, pα(x, y, z) is an absolutely irreducible polynomial of degree 2k +1

on F2k such that pα(x, 0, 1) = (x− α)2
k+1.
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3. Some Functions That Are Not APN Infinitely Often

The best known examples of APN functions are the Gold functions x2k+1 and

the Kasami-Welch functions x4k−2k+1. These functions are defined over F2, and
are APN on any field F2m where gcd(k,m) = 1. For other odd degree polynomial
functions, we can state a general result.

Theorem 3.1 (Aubry, McGuire and Rodier, [1]). If the degree of the polynomial
function f is odd and not a Gold or a Kasami-Welch number then f is not APN
over Fqn for all n sufficiently large.

In the even degree case, we can state the result when half of the degree is odd,
with an extra minor condition.

Theorem 3.2 (Aubry, McGuire and Rodier, [1]). If the degree of the polynomial
function f is 2e with e odd, and if f contains a term of odd degree, then f is not
APN over Fqn for all n sufficiently large.

In [22] we have some results for the case of polynomials of degree 4e where e
is odd.

Theorem 3.3. If the degree of the polynomial function f is even such that
deg(f) = 4e with e ≡ 3 (mod 4), and if the polynomials of the form

(x + y)(y + z)(z + x) + P

with

(3.1) P (x, y, z) = c1(x
2 + y2 + z2) + c4(xy + xz + zy) + b1(x+ y + z) + d

for c1, c4, b1, d ∈ Fq3 , do not divide φ then f is not APN over Fqn for n large.

We have more precise results for polynomials of degree 12.

Theorem 3.4. If the degree of the polynomial f defined over Fq is 12, then
either f is not APN over Fqn for large n or f is CCZ equivalent to the Gold
function x3. In this case f is of the form

L(x3) + L1 or (L(x))3 + L1

where L is a linearized polynomial

x4 + x2(c1+q + c1+q2 + cq+q2 ) + xc1+q+q2 ,

c is an element of Fq3 such that c+ cq + cq
2

= 0 and L1 is a q-affine polynomial of
degree at most 8 (that is a polynomial whose monomials are of degree 0 or a power
of 2).

We have some results on the polynomials of Gold degree d = 2k + 1.

Theorem 3.5 (Aubry, McGuire and Rodier, [1]). Suppose f(x) = xd + g(x)

where deg(g) ≤ 2k−1 + 1. Let g(x) =
∑2k−1+1

j=0 ajx
j. Suppose moreover that there

exists a nonzero coefficient aj of g such that φj(x, y, z) is absolutely irreducible
(where φi(x, y, z) denote the polynomial φ(x, y, z) associated to xi). Then f is not
APN over Fqn for all n sufficiently large.
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4. Polynomials of Kasami Degree

Suppose the degree of f is a Kasami number d = 22k − 2k +1. Set d to be this
value for this section. Write f as f(x) = xd + g(x) with deg(g) ≤ d− 1.

Then the degree of φ is d − 3 = 22k − 2k − 2. We will prove the absolute
irreducibility for a certain type of f .

4.1. The case deg(g) ≤ 22k−1 − 2k−1 + 1.

Theorem 4.1. Suppose f(x) = xd + g(x) where deg(g) ≤ 22k−1 − 2k−1 + 1.

Let g(x) =
∑22k−1

−2k−1+1
j=0 ajx

j . Suppose moreover that there exists a nonzero

coefficient aj of g such that φj(x, y, z) is absolutely irreducible. Then φ(x, y, z) is
absolutely irreducible.

Proof: Suppose φ(x, y, z) = P (x, y, z)Q(x, y, z) with degP ≥ degQ. Write
each polynomial as a sum of homogeneous parts:

(4.1)

d
∑

j=3

ajφj(x, y, z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0)

where Pj , Qj are homogeneous of degree j. Then from the Theorem 2.1 we get

PsQt =
∏

α∈F
2k

−F
2

pα(x, y, z).

In particular this implies that Ps and Qt are relatively prime as the product is
made of distinct irreducible factors.

The homogeneous terms of degree less than d−3 and greater than 22k−1−2k−1

are 0, by the assumed bound on the degree of g. Equating terms of degree s+ t− 1
in the equation (4.1) gives PsQt−1 + Ps−1Qt = 0. Hence Ps divides Ps−1Qt which
implies Ps divides Ps−1 because gcd(Ps, Qt) = 1, and we conclude Ps−1 = 0 as
degPs−1 < degPs. Then we also get Qt−1 = 0. Similarly, Ps−2 = 0 = Qt−2,
Ps−3 = 0 = Qt−3, and so on until we get the equation

PsQ0 + Ps−tQt = 0

since we suppose that s ≥ t. This equation implies Ps divides Ps−tQt, which implies
Ps divides Ps−t, which implies Ps−t = 0. Since Ps 6= 0 we must have Q0 = 0.

We now have shown that Q = Qt is homogeneous. In particular, this means
that φj(x, y, z) is divisible by pα(x, y, z) for some α ∈ F2k − F2 and for all j such
that aj 6= 0. We are done if there exists such a j with φj(x, y, z) irreducible. Since
φj(x, y, z) is defined over F2 it implies that pα(x, y, z) also, which is a contradiction
with the fact that α is not in F2.

⊔⊓

Remark 4.1. As in Theorem 3.5, the above theorem and the next corollary
are true with the weaker hypothesis that there exists a nonzero coefficient aj such
that φj is prime to φd. We give in Section 5 some criterion about j < d satisfying
gcd(φj , φd) = 1.

Corollary 4.1. Suppose f(x) = xd + g(x) where g is a polynomial in Fq[x]

such that deg(g) ≤ 22k−1 − 2k−1 + 1. Let g(x) =
∑22k−1

−2k−1+1
j=0 ajx

j. Suppose
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moreover that there exists a nonzero coefficient aj of g such that φj(x, y, z) is abso-
lutely irreducible. Then the polynomial f is not APN on infinitely many extensions
of Fq.

Remark 4.2. It is well possible that, for a polynomial f as in Corollary 4.1,
there is no extension of Fq where f is APN. This is an interesting but non trivial
problem.

4.2. Next step: The case deg(g) = 22k−1 − 2k−1 + 2.

If we jump one degree more we need other arguments to prove irreducibility.

Theorem 4.2. Let q = 2n. Suppose f(x) = xd + g(x) where g(x) ∈ Fq[x] and
deg(g) = 22k−1 − 2k−1 + 2. Let k ≥ 3 be odd and relatively prime to n. If g(x)

does not have the form ax22k−1
−2k−1+2+a2x3 then φ is absolutely irreducible, while

if g(x) does have the form ax22k−1
−2k−1+2 + a2x3 then either φ is irreducible or φ

splits into two absolutely irreducible factors which are both defined over Fq.

Proof: Suppose φ(x, y, z) = P (x, y, z)Q(x, y, z) with degP ≥ degQ and let

g(x) =

22k−1
−2k−1+2
∑

j=0

ajx
j .

Write each polynomial as a sum of homogeneous parts:

d
∑

j=3

ajφj(x, y, z) = (Ps + Ps−1 + · · ·+ P0)(Qt +Qt−1 + · · ·+Q0).

Then
PsQt =

∏

α∈F
2k

−F
2

pα(x, y, z).

In particular this means Ps and Qt are relatively prime as in the previous theorem.
Since s ≥ t, we have s ≥ 22k−1 − 2k−1 − 1. Comparing each degree gives

Ps−1 = 0 = Qt−1, Ps−2 = 0 = Qt−2, and so on until we get the equation of degree
s+ 1

PsQ1 + Ps−t+1Qt = 0

which implies Ps−t+1 = 0 = Q1.
If s 6= t then s ≥ 22k−1 − 2k−1. Note then that as+3φs+3 = 0. The equation of

degree s is
PsQ0 + Ps−tQt = as+3φs+3 = 0.

This means that Ps−t = 0, so Q0 = 0. We now have shown that Q = Qt is
homogeneous. In particular, this means that φ(x, y, z) is divisible by pα(x, y, z) for
some α ∈ F2k −F2 , which is impossible, as we will show. Indeed, since the leading
coefficient of g is not 0, the polynomial φ22k−1−2k−1+2 occurs in φ; as

(4.2) φ22k−1−2k−1+2 = φ2
22k−2−2k−2+1(x + y)(y + z)(z + x),

this polynomial is prime to φ, because if pα(x, y, z) occurs in the polynomials
φ22k−1−2k−1+2, then it will occur in φ22k−2−2k−2+1. If that is the case, the polyno-

mial pα(x, 0, 1) = (x− α)2
k+1 would divide φ22k−2−2k−2+1(x, 0, 1). One has

(x+ y)(y + z)(z + x)φ22k−2−2k−2+1(x, y, z)

= x22k−2
−2k−2+1 + y2

2k−2
−2k−2+1 + z2

2k−2
−2k−2+1 + (x+ y + z)2

2k−2
−2k−2+1



6 ERIC FÉRARD, ROGER OYONO, AND FRANÇOIS RODIER

hence

x(x + 1)φ22k−2−2k−2+1(x, 0, 1) = x22k−2
−2k−2+1 + 1 + (x + 1)2

2k−2
−2k−2+1.

Let u = x− α. We have, for some polynomial R:

x(x + 1)φ22k−2−2k−2+1(x, 0, 1)

= (u + α)(u + α+ 1)φ22k−2−2k−2+1(u + α, 0, 1)

= (u + α)2
2k−2

−2k−2+1 + 1 + (u + α+ 1)2
2k−2

−2k−2+1

= α22k−2
−2k−2+1 + uα22k−2

−2k−2

+ u2k−2

α22k−2
−2k−1+1 + 1 +

+(α+ 1)2
2k−2

−2k−2+1 + u(α+ 1)2
2k−2

−2k−2

+u2k−2

(α+ 1)2
2k−2

−2k−1+1 + u2k−2+1R(u).

As α2k−1 = 1 we have α22k−2
−2k−2

= α2k−2(2k−1) = 1. So

x(x + 1)φ22k−2−2k−2+1(x, 0, 1)

= α+ u+ u2k−2

α1−2k−2

+ 1 + (α+ 1) + u+ u2k−2

(α+ 1)1−2k−2

+ u2k−2+1R(u)

= u2k−2

(α1−2k−2

+ (α + 1)1−2k−2

) + u2k−2+1R(u)

which is a contradiction.
Suppose next that s = t = 22k−1−2k−1−1 in which case the degree s equation

is

PsQ0 + P0Qs = as+3φs+3.

If Q0 = 0, then

φ(x, y, z) =

d
∑

j=3

ajφj(x, y, z) = (Ps + P0)Qs

which implies that

φ(x, y, z) = adφd(x, y, z) + a22k−1−2k−1+2φ22k−1−2k−1+2(x, y, z) = PsQt + P0Qt

and P0 6= 0, since g 6= 0. So one has φ22k−1−2k−1+2 divides φd(x, y, z) which is
impossible by (4.2).

We may assume then that P0 = Q0. Then we have

(4.3) φ(x, y, z) = (Ps + P0)(Qs +Q0) = PsQs + P0(Ps +Qs) + P 2
0 .

Note that this implies aj = 0 for all j except j = 3 and j = s+ 3. This means

f(x) = xd + as+3x
s+3 + a3x

3.

So if f(x) does not have this form, this shows that φ is absolutely irreducible.
If on the contrary φ splits as (Ps + P0)(Qs + Q0), the factors Ps + P0 and

Qs +Q0 are irreducible, as can be shown by using the same argument.
Assume from now on that f(x) = xd + as+3x

s+3 + a3x
3 and that (4.3) holds.

Then a3 = P 2
0 , so clearly P0 =

√
a3 is defined over Fq. We claim that Ps and Qs

are actually defined over F2.
We know from (2.1) that PsQs is defined over F2.
Also P0(Ps + Qs) = as+3φs+3, so Ps + Qs = (as+3/

√
a3)φs+3. On the one

hand, Ps+Qs is defined over F2k by Theorem 2.1. On the other hand, since φs+3 is
defined over F2 we may say that Ps +Qs is defined over Fq. Because (k, n) = 1 we
may conclude that Ps +Qs is defined over F2. Note that the leading coefficient of
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Ps+Qs is 1, so a2s+3 = a3. Whence if this condition is not true, then φ is absolutely
irreducible.

Let σ denote the Galois automorphism x 7→ x2. Then PsQs = σ(PsQs) =
σ(Ps)σ(Qs), and Ps + Qs = σ(Ps + Qs) = σ(Ps) + σ(Qs). This means σ either
fixes both Ps and Qs, in which case we are done, or else σ interchanges them. In
the latter case, σ2 fixes both Ps and Qs, so they are defined over F4. Because they
are certainly defined over F2k by Theorem 2.1, and k is odd, they are defined over
F2k ∩ F4 = F2.

Finally, we have now shown that X either is irreducible, or splits into two
absolutely irreducible factors defined over Fq. ⊔⊓

Remark 4.3. For k = 3, the polynomial φ corresponding to f(x) = x57+ax30+
a2x3 where a ∈ Fq is irreducible. Indeed if it were not, we would have P27 and Q27

defined over F2, so by Theorem 2.1, P27 = pβ(x, y, z)pβ2(x, y, z)pβ4(x, y, z) and
Q27 = pβ3(x, y, z)pβ5(x, y, z)pβ6(x, y, z) for some β ∈ F8 − F2. So, up to inversion,
we would check that P27(x, 0, 1) = (1 + x+ x3)9 and Q27(x, 0, 1) = (1 + x2 + x3)9,
hence P27(x, 0, 1)+Q27(x, 0, 1) = (1+ x+ x3)9 +(1+x2 +x3)9, and one can check
that this is not equal to φ30(x, 0, 1) as it should be.

5. Binomials that are not APN infinitely often

Another class of functions which are known not to be APN on infinitely many
extensions of Fq comes from certain binomials:

Theorem 5.1 (Voloch[23]). Let f(x) = xm+cxr, where c ∈ F
∗

2n , 3 ≤ r < m are
coprime integers, not both even, neither a power of two and such that (m− 1, r− 1)
is a power of two. Then f is not APN on infinitely many extension of F2n .

We note that the assumption m, r coprime could be omitted as mentioned in
[21]. In the following we will look at binomials of Kasami degree or Gold degree,

i.e. binomials of the form f(x) = xd + axd′

with d = 22k − 2k + 1 or d = 2k + 1,
d′ < d. We will restrict to such d′ which are not a power of 2 since the class of APN
functions is invariant by addition of a q-affine polynomial.

5.1. Binomials of Gold degree. Let d = 2k +1 be a Gold exponent, a ∈ F
∗

q

and d′ < d an integer not a power of two. We deduce immediately from Voloch’s
theorem the following result:

Theorem 5.2. Let k ≥ 1, d = 2k+1, a ∈ F
∗

q and d′ < d an integer not a power

of two. If f(x) = xd + axd′ ∈ Fq[x], then the polynomial φ(x, y, z) is absolutely
irreducible, and f is in particular not APN on infinitely many extensions of Fq.

5.2. Binomials of Kasami degree. Let k ≥ 3 an integer and d = 22k−2k+1
a Kasami exponent. In what follows, we will prove:

Theorem 5.3. Let k ≥ 3, d = 22k − 2k + 1 and a ∈ F
∗

q . Let d
′ < d an integer

not a power of two and not of the form 2v(2kℓ+ 1) where ℓ is an integer such that

gcd(ℓ, 2k − 1) 6= 1. If f(x) = xd + axd′ ∈ Fq[x], then the polynomial φ(x, y, z) is
absolutely irreducible, and f is in particular not APN on infinitely many extensions
of Fq.

To prove Theorem 5.3, we will first derive the following lemma:
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Lemma 5.4. Let 3 ≤ t < d be an odd integer. If there is some α ∈ F2k − F2

such that pα divides φt, then t = 2kℓ+1 where ℓ is an integer not coprime to 2k−1.

Proof: Suppose that there is some α ∈ F2k −F2 such that pα divides φt. Then,
t− 3 ≥ 2k + 1 and there is a polynomial r(x, y, z) such that

(x+ y)(x+ z)(y + z)pα(x, y, z)r(x, y, z) = xt + yt + zt + (x+ y + z)t.

Evaluating the above equality at y = 0 and z = 1 yields

x(x + 1)pα(x, 0, 1)r(x, 0, 1) = xt + 1 + (x+ 1)t.

Let u = x+ α. Then

(u + α)(u + α+ 1)u2k+1r(u + α, 0, 1) = (u+ α)t + 1 + (u + α+ 1)t ,

and thus

(u+ α)t + (u+ α+ 1)t + 1 = 0 mod u2k+1 .

On the other hand, we know that

1 + (u+ α)t + (u + α+ 1)t = 1 +

t
∑

i=0

(

t

i

)

(

αt−i + (α+ 1)t−i
)

ui

= 1 + αt + (α+ 1)t + (αt−1 + (α + 1)t−1)u

+

2k
∑

i=2

(

t

i

)

(

αt−i + (α+ 1)t−i
)

ui mod u2k+1 .

Now, if αt+(α+1)t+1 = αt−1+(α+1)t−1 = 0, we then have (α+1)t = αt−1(α+1)
and thus

1 = αt + (α+ 1)t = αt + αt−1(α+ 1) = αt−1.

From αt−1 = 1 and α2k−1 = 1 we conclude that the order of α 6= 1 should
divide gcd(t− 1, 2k − 1), and thus gcd(t− 1, 2k − 1) > 1.

Recall that αt + (α+ 1)t + 1 = αt−1 + (α+ 1)t−1 = 0. For any integer j:

αt−1−2j + (α+ 1)t−1−2j =
αt−1

α2j
+

(α+ 1)t−1

(α+ 1)2j

=
αt−1

α2j
+

αt−1

(α+ 1)2j
=

αt−1

α2j (1 + α2j )
6= 0 .

From this, we conclude that
(

t
1+2j

)

≡ 0 mod 2 for any j ∈ [1, k − 1], which is

equivalent, by Lucas theorem’s [19][p. 230], to say that the (j + 1)-th bit of t is 0
for j in the range [1, k− 1] i.e. 2k divides t− 1 since t is odd. In particular there is
some integer ℓ such that t−1 = 2kℓ and thus gcd(t−1, 2k−1) = gcd(ℓ, 2k−1) > 1.
⊔⊓

We will use the following Lemma 5.1 from [21] to prove that φ is absolutely
irreducible.

Lemma 5.5. Let φ(x, y, z) ∈ Fq[x, y, z] be the sum of two homogeneous polyno-
mials, i.e. φ = φr + φd where φi is a homogeneous polynomial of degree i, r < d.
Suppose that gcd(φd, φr) = 1 and either φd or φr factors into distinct factors over
Fq. Then φ is absolutely irreducible.
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Proof of Theorem 5.3: According to the definition of φ and from f(x) = xd +

axd′

we get

φ(x, y, z) = φd(x, y, z) + aφd′(x, y, z) ,

where φd (resp. φd′) is a homogeneous polynomial of degree d− 3 (resp. d′ − 3).
Let denote by v the 2-adic valuation of d′ and t odd such that d′ = 2v · t where

t is ≥ 3.
From Theorem 2.1 we know that φd factors over Fq as

∏

α∈F
2k

−F
2

pα(x, y, z). In

order to prove that φ is absolutely irreducible, and as a consequence of Lemma 5.5,
it is then sufficient to show that gcd(φd, φd′) = 1. Suppose that gcd(φd, φd′) 6= 1,
i.e. there is an α ∈ F2k − F2 such that pα divides φd′ . Since d′ = 2vt, we have

φd′(x, y, z) = φ2v

t (x, y, z) · ((x+ y)(x+ z)(y + z))
2v−1

,

and in particular pα divides φt which is impossible by Lemma 5.4. ⊔⊓
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10 ERIC FÉRARD, ROGER OYONO, AND FRANÇOIS RODIER
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