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Sum rules and large deviations for spectral matrix measures

Fabrice Gamboa∗ Jan Nagel† Alain Rouault‡
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Abstract

A sum rule relative to a reference measure on R is a relationship between the reversed

Kullback-Leibler divergence of a positive measure on R and some non-linear functional built

on spectral elements related to this measure (see for example Killip and Simon 2003). In this

paper, using only probabilistic tools of large deviations, we extend the sum rules obtained in

Gamboa, Nagel and Rouault (2015) to the case of Hermitian matrix-valued measures. We

recover the earlier result of Damanik, Killip and Simon (2010) when the reference measure

is the (matrix-valued) semicircle law and obtain a new sum rule when the reference measure

is the (matrix-valued) Marchenko-Pastur law.

Keywords : Sum rules, block Jacobi matrix, matrix orthogonal polynomials, matrix-valued

spectral measures, large deviations, random matrices.

MSC 2010: 60F10, 42C05, 47B36, 15B52

1 Introduction

For a probability measure µ on the unit circle T with Verblunsky coefficients (αk)k≥0, Verblunsky’s

form of Szegő’s theorem may be written as

(1.1) K
(
dθ
2π
|µ
)
= −

∑

k≥0

log(1− |αk|2) ,
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France, e-mail: alain.rouault@uvsq.fr

1



where K is the relative entropy, defined by

(1.2) K(ν | µ) =





∫

T

log
dν

dµ
dν if ν is absolutely continuous with respect to µ,

∞ otherwise.

Identity (1.1) is a sum rule1 connecting an entropy and a functional of the recursion coefficients,

and remains one of the most important result of the theory of orthogonal polynomials on the

unit circle (OPUC) (see [Sim05a] for extensive history and bibliography).

The corresponding result in the theory of orthogonal polynomials on the real line (OPRL) is the

Killip-Simon sum-rule ([KS03]). The reference measure is the semicircle distribution

SC(dx) :=

√
4− x2

2π
1[−2,2](x)dx .

The right hand side involves the Jacobi coefficients and in the left hand side appears an extra

term corresponding to a contribution of isolated masses of µ outside [−2, 2] (bounds states).

In a previous paper ([GNR16b]), we gave an interpretation and a new proof of this result from a

probabilistic point of view. This approach allowed us to prove new sum rules, when the reference

measure is the Marchenko-Pastur distribution

MP(τ)(dx) =

√
(τ+ − x)(x− τ−)

2πτx
1(τ− ,τ+)(x)dx,

where τ ∈ (0, 1], τ± = (1±√
τ )2, and also the Kesten-McKay distribution

KMKu−,u+(dx) =
Cu−,u+

2π

√
(u+ − x)(x− u−)

x(1 − x)
1(u− ,u+)(x)dx ,

where Cu−,u+ is the normalizing constant.

Besides, known extensions of Szegő’s theorem ([DGK78]) and of the Killip-Simon sum rule

([DKS10]) are available in the context of matrix-valued measures and the Matrix Orthogonal

Pololynomials on the Unit Circle (MOPUC) or Matrix Orthogonal polynomials on the Real Line

(MOPRL).

It seems natural to see if the probabilistic methods are robust enough to encompass this matricial

framework. Actually, the answer is positive. For the MOPUC context see [GR14] and [GNR16a].

The aim of the present article is precisely to treat the MOPRL case. This allows to give interpre-

tation and new proof of the Damanik-Killip-Simon’s sum rule and also to state a matrix version

of the sum rule relative to the Marchenko-Pastur distribution.

1see the preface of [Sim05a]
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Let us explain the main features of our method2. As mentioned by several authors ([Kil07],

[Sim11]), the main characteristic of the above sum rules both sides are nonegative (possibly infi-

nite) functionals. We will identify them as rate function of large deviations for random measures.

Roughly speaking, that means that a sequence of random measures converges to a deterministic

limit exponentially fast and the probabilities of deviating from the limit is measured by the rate

function. We give two different encodings of the randomization with two rate functions IA and

IB, for which the uniqueness of rate functions yields the equality IA = IB.

To be more specific, let us give some notation. For p ≥ 1 (fixed in all the sequel), let us denote

by Mp the set of all p×p matrices with complex entries and by Hp ⊂ Mp the subset of Hermitian

matrices.

A matrix measure Σ = (Σi,j)i,j of size p on R is a matrix of signed complex measures, such that

Σ(A) = (Σi,j(A))i,j ∈ Hp for any Borel set A ⊂ R. Further, if for any A, Σ(A) is a nonnegative

matrix we say that Σ is nonnegative. We denote by Mp(T ) the set of p× p nonnegative matrix

measures with support in T ⊂ R. Further, Mp,1(T ) is the subset of Mp(T ) of normalized

measures Σ satisfying Σ(T ) = 1, where 1 is the p× p identity matrix..

A natural example of matrix measures comes from an application of the spectral theorem. More

precisely, a Hermitian matrix X of size N × N may be written as UDU∗ where D = diag(λi)

contains the eigenvalues of X and U is the matrix formed by an orthonormal basis of eigenvectors.

Assume that the system (e1, . . . , ep) of the p first vectors of the canonical basis of CN is cyclic,

i.e. that Span{Akei, k ≥ 0, i ≤ N} = CN . Then, for p ≤ N , there exists a unique spectral matrix

measure ΣX ∈ Mp(R) supported by the spectrum of X , such that for all k > 0 and 1 ≤ i, j ≤ p

(Xk)i,j =

∫

R

xkdΣX
i,j(x),(1.3)

Let us assume that all the eigenvalues of X have a single multiplicity. For j = 1, · · · , N , let

uj := (Ui,j)i=1,··· ,p be the jth truncated column of U . Then, obviously

ΣX
p (dx) =

N∑

j=1

uju
∗
jδλj

(dx),(1.4)

where δa is the Dirac measure in a. That is, {λ1, . . . , λN} is the support of ΣX and u1u
∗
1, . . . uNu

∗
N

are the weights. Furthermore, as U is unitary we have
∑

j uju
∗
j = 1 so that ΣX ∈ Mp,1(T ).

If we assume further that N = pn for some positive integer n then it is possible to build a block

2Note that recently Breuer et al. [BSZ16] posted on arxiv a paper exposing the method to a non probabilistic

audience and giving some developments.

3



tridiagonal matrix

(1.5) Jn =




B1 A1

A∗
1 B2

. . .
. . .

. . . An−1

A∗
n−1 Bn




such that ΣX = ΣJn . Here, all the blocks of Jn are elements of Mp. The case p = 1 is the most

classical and relies on the construction of the OPRL in L2(ΣX) (see for example [Sim05a]). The

general case is more complicated and requires technical tools from the theory of MOPRL (see

[Sim05b]). In Section 2.1, we will recall the construction of such tridiagonal representations.

As a result, we have two encodings of ΣX : (1.4) and (1.5).

Our measures are random in the sense that we first draw a random matrix X in HN (with

N ≥ p) and then considering its spectral measure ΣX . In a large class of random matrix models,

invariance by unitary transformations is postulated, which means that X is sampled in HN from

the distribution

Z−1
N e−trNV (X)dX,(1.6)

for V a confining potential and dX is the Lebesgue measure on HN . Its eigenvalues behave

as a Coulomb gas (see formula (3.3)) and the matrix of eigenvectors follows independently

the Haar distribution in the set of N × N unitary matrices. The most popular models

are the Gaussian Ensemble, corresponding to the potential V (x) = x2/2, the Laguerre

Ensemble, with V (x) = τ−1x − (τ−1 − 1) log x (x > 0) and the Jacobi Ensemble with

V (x) = −κ1 log x− κ2 log(1− x) (x ∈ (0, 1)).

We will prove in this paper that, under convenient assumptions on V , as N goes to infinity, the

random spectral matrix measure ΣX converges to some equilibrium matrix measure (depending

on V ) at exponential rate. Indeed, we show that this random object satisfies a large deviation

principle (LDP). To be self contained, we recall in Section 3.2 the definition and useful facts

on LDP. Furthermore, the rate function of this LDP involves a matrix extension of the reversed

Kullback-Leibler information with respect to the equilibrium matrix measure (see equation (2.12)

and Theorem 5.2) and a contribution of the outlying eigenvalues.

Looking for the right hand side of a possible sum rule is equivalent to look for a LDP for the en-

coding by means of the sequence of blocks Ak and Bk. In the scalar case (p = 1), it is well known

that the above classical ensembles have very nice properties [DE02]. For the Gaussian Ensemble
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the coefficients appearing in the tridiagonal matrix are independent with simple distributions.

The diagonal terms have Gaussian distribution while the subdiagonal ones have so-called χ dis-

tributions [DE02]. We will give in Lemmas 6.1 and 6.3 results in the same spirit in the general

block case both for the Gaussian and Laguerre ensembles. These properties allow to compute the

rate function of the LDP by the way of the blocks involved in the Jacobi representation. Further,

the uniqueness of a rate function leads to our two main Theorems 2.3 and 2.5 that are sum rules.

Theorem 2.3 has been proved in [DKS10] by strong analysis tools. We recover this result by

using only probabilistic arguments. For p = 1, it has been proved earlier in [KS03]. Up to our

knowledge, our Theorem 2.5 is new and is the matrix extension of the one we have obtained in

[GNR16b] for p = 1.

We stress that one of the main differences with purely functional analysis methods is that, for

us, the SC distribution and the free semi-infinite matrix (corresponding to Ak ≡ 1 and Bk ≡ 0,

with 0 the p× p matrix of zeros) do not have a central role. Additionally, the non-negativity of

both sides of the sum rule is automatic.

For the Jacobi ensemble, the method used in the scalar case, based on the Szegő mapping, is not

directly extendible. So, getting a sum rule needs a more careful study. To avoid long developments

here, we keep this point for a forthcoming paper.

Our paper is organized as follows. In Section 2, we first give definitions and tools to handle MO-

PRL and spectral measures. Then, we state our main results concerning sum rules for spectral

matrix measures. In Section 3, we introduce random models and state Large Deviations Princi-

ples, first for random spectral measures drawn by using a general potential and then for block

Jacobi coefficients in the Hermite and Laguerre cases. Section 4 is devoted to proofs of both sum

rules, up to the LDP’s. The most technical proofs of LDP’s are postponed to Sections 5 and 6.

2 MOPRL and block Jacobi matrices

2.1 Construction

We will need to work with polynomials with coefficients in Mp. They will be orthogonal with

respect to some matrix measure on R. Let us give some notation and recall some useful facts (see

[DPS08] for details). Let Σ ∈ Mp(R) be a compactly supported matrix measure. Further, let F

and G be continuous matrix valued functions F,G : R → Mp. We define the two pseudo-scalar
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products p× p (which are elements of Mp) by setting

〈〈F,G〉〉R =

∫

R

F (z)∗dΣ(z)G(z) ,

〈〈F,G〉〉L =

∫

R

G(z)dΣ(z)F (z)∗ .

A sequence of functions on R, (ϕj) with values in Mp is called right-orthonormal if

〈〈ϕi, ϕj〉〉R = δij1 .

The orthogonal polynomial recursion is built as follows. First, assume that Σ is nontrivial, that

is,

tr〈〈P, P 〉〉R > 0(2.1)

for any non zero matrix polynomial P (see Lemma 2.1 of [DPS08] for equivalent characterizations

of nontriviality). Applying the Gram-Schmidt procedure to {1, x1, x21, . . . }, we obtain a sequence

(PR
n )n of right monic matrix orthogonal polynomials. In other words, PR

n is the unique matrix

polynomial PR
n (x) = xn1+ lower order terms such that 〈〈xk1, PR

n 〉〉R = 0 for k = 0, . . . , n − 1.

For nontrivial matrix measures, this is possible for any n ≥ 0 and this sequence satisfies the

recurrence relation

(2.2) xPR
n (x) = PR

n+1(x) + PR
n (x)uR

n + PR
n−1v

R
n .

If we set

γn := 〈〈PR
n , PR

n 〉〉R,

then γn is positive definite and we have

vRn = γ−1
n−1γn .

To get normalized orthogonal polynomials pRn we set

(2.3) pR0 = 1 , pRn = PR
n κR

n

where for every n, κR
n ∈ Mp has to satisfy

(2.4) γn =
(
κR
n

(
κR
n

)∗)−1
.

This constraint opens several choices for κR
n (see Section 2.1.5 of [DPS08]). Let us leave the choice

open, setting

(2.5) κR
n = γ−1/2

n σn

with σn unitary and σ0 = 1.
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Remark 2.1 We can define similarly the sequence of monic polynomials PL
n and the sequence of

left-orthonormal polynomials pLn in the same way. We have

PR
n = (PL

n )
∗

and

〈〈PL
n , P

L
n 〉〉L = γn

and the recurrence relation:

xPL
n (x) = PL

n+1(x) + uL
nP

L
n (x) + vLnP

L
n−1(2.6)

with

vLn = γnγ
−1
n−1 .

The above condition (2.5) is replaced by pLn = τnγ
−1/2
n PL

n .

To formulate the recursion in terms of orthonormal polynomials, we use (2.3) and get

xpRn = pRn+1(κ
R
n+1)

−1κR
n + pRn (κ

R
n )

−1uR
nκ

R
n + pRn−1(κ

R
n−1)

−1vRn κ
R
n(2.7)

i.e.

xpRn = pRn+1A
∗
n+1 + pRnBn+1 + pRn−1An(2.8)

with

An = (κR
n−1)

−1vRn κ
R
n = σ∗

n−1γ
1/2
n−1v

R
n γ

−1/2
n σn = σ∗

n−1γ
−1/2
n−1 γ1/2

n σn(2.9)

Bn+1 = (κR
n )

−1uR
nκ

R
n = σ∗

nγ
1/2
n uR

n γ
−1/2
n σn .

Note that (2.9) yields

(2.10) AnA
∗
n = σ∗

n−1γ
−1/2
n−1 γnγ

−1/2
n−1 σn−1 .

In other terms the map f 7→ (x 7→ xf(x)) defined on the space of matrix polynomials is a right

homomorphism and is represented in the (right-module) basis {pR0 , pR1 , . . . } by the matrix

J =




B1 A1

A∗
1 B2

. . .
. . .

. . .


(2.11)
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with Bk Hermitian and Ak non-singular. Moreover the measure Σ is again the spectral measure

of the matrix J defined as in (1.3) (Theorem 2.11 of [DPS08]). Let us remark that although

to each Σ corresponds a whole equivalence class of Jacobi coefficients given by the different σn,

there is exactly one representative such that all Ak are Hermitian positive definite (Theorem 2.8

in [DPS08]).

Starting with a finite dimensional Jacobi matrix Jn as in (1.5), the spectral matrix measure of

Jn is supported by at most n points and is in particular not nontrivial. However, we may still

define pR1 , . . . , p
R
n−1 by the recursion (2.8). As long as the Ak’s are invertible, these polynomials

are orthonormal with respect to the spectral measure of Jn and (2.1) holds for all polynomials

up to degree n− 1.

If Σ is a quasi scalar measure, that is if Σ = σ · 1 with σ a scalar measure and if Π is a positive

matrix measure with Lebesgue decomposition

Π(dx) = h(x)σ(dx) + Πs(dx) ,

we extend the definition (1.2) by

(2.12) K(Σ|Π) := −
∫

log det h(x) σ(dx) .

Remark 2.2 It is possible to rewrite the above quantity in the flavour of Kullback-Leibler infor-

mation (or relative entropy) with the notation of [MS71] or [RR68], i.e.

K(Σ|Π) =
∫

log det
dΣ(x)

dΠ(x)
dσ(x) ,

if Σ is strongly absolutely continuous with respect to Π, and infinity otherwise. See Corollary 8

in [GR14].

2.2 Measures on [0,∞)

When the measures are supported by [0,∞), there is a specific form of the Jacobi coefficients,

leading to a particularly interesting parametrization, which will be crucial in the Laguerre en-

semble.

In [DS02], it is proved that if a nontrivial matrix measure Σ has a support included in [0,∞)

then there exists a sequence (ζn)n of non-singular elements of Mp such that

(2.13) uR
n = ζ2n+1 + ζ2n , vRn = ζ2n−1ζ2n
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with ζ0 = 0 and moreover,

(2.14) ζn = h−1
n−1hn, (n ≥ 1)

with h0 = 1 and for n ≥ 1, hn ∈ Hp is positive definite. Note that this implies

γn = ζ1 . . . ζ2n = h2n .

From (2.9) we then have the representations of the Jacobi coefficients

Bn+1 = σ∗
nγ

1/2
n (ζ2n+1 + ζ2n)γ

−1/2
n σn(2.15)

An = σ∗
n−1γ

1/2
n−1ζ2n−1ζ2nγ

−1/2
n σn .

In the scalar case, this yields B1 = ζ1 and for n ≥ 1

(2.16) Bn+1 = ζ2n+1 + ζ2n, (An)
2 = ζ2n−1ζ2n .

In the matrix case, we may set

(2.17) Z2n+1 = σ∗
nγ

1/2
n ζ2n+1γ

−1/2
n σn , Z2n = σ∗

nγ
1/2
n ζ2nγ

−1/2
n σn .

To highlight a further decomposition, we set

Cn = σ∗
nh

1/2
2n h

−1/2
2n−1, Dn+1 = σ∗

nh
−1/2
2n h

1/2
2n+1 .

With these definitions and (2.14) we see that the matrices

(2.18) Z2n+1 = Dn+1D
∗
n+1, Z2n = CnC

∗
n

are in fact Hermitian positive definite. For the recursion coefficients we get the following matrix

analogues of (2.16), B1 = D1D
∗
1, and for n ≥ 1

(2.19) Bn+1 = Dn+1D
∗
n+1 + CnC

∗
n = Z2n+1 + Z2n, An = DnC

∗
n .

In other words, the Jacobi operator J can in fact be decomposed as J = XX∗, where X is the

bidiagonal matrix

(2.20) X =




D1 0

C1 D2
. . .

. . .
. . .


 .

Moreover, the entries of X can be chosen to be Hermitian positive definite. We are still free to

choose the unitary matrices σn (although we have to fix σ1 = 1) in the definition of orthonormal
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polynomials and we let U be the block-diagonal matrix with σ1, σ2, . . . on the diagonal. Moreover,

let P denote a block-diagonal matrix with unitary p×p matrices τ1, τ2, . . . on the diagonal. Then

our measure Σ is also the spectral matrix measure of UXPP ∗X∗U∗ = (UXP )(UXP )∗. The

matrix UXP has the form

UXP =




σ1D1τ1 0

σ2C1τ1 σ2D2τ2 0

σ3C2τ2 σ3D3τ3
. . .

. . .
. . .




.

For the first entry, σ1 = 1 and D1 is always Hermitian positive definite, so we may set τ1 =

1. Recall that for A a non-singular matrix, there exists a unique unitary σ such that Aσ is

Hermitian positive definite, and if Σ is nontrivial, all Dk, Ck are non-singular. Therefore, we

can recursively choose σk+1 such that σk+1Ckτk is Hermitian positive definite and then τk+1 such

that σk+1Dk+1τk+1 is positive definite. This yields a unique decomposition with positive definite

blocks.

2.3 Sum rules

For α− < α+, let Sp = Sp(α
−, α+) be the set of all bounded nonnegative measures Σ ∈ Mp(R)

with

(i) supp(Σ) = K ∪ {λ−
i }N

−

i=1 ∪ {λ+
i }N

+

i=1, where K ⊂ I = [α−, α+], N−, N+ ∈ N ∪ {∞} and

λ−
1 < λ−

2 < · · · < α− and λ+
1 > λ+

2 > · · · > α+.

(ii) If N− (resp. N+) is infinite, then λ−
j converges towards α− (resp. λ+

j converges to α+).

Such a measure Σ can be written as

Σ = Σ|I +

N+∑

i=1

Γ+
i δλ+

i
+

N−∑

i=1

Γ−
i δλ−

i
,(2.21)

for some nonnegative Hermitian matrices Γ+
1 , · · · ,Γ+

N+,Γ
−
1 , · · · ,Γ−

N−. Further, we define Sp,1 =

Sp,1(α
−, α+) := {Σ ∈ Sp(α

−, α+)|Σ(R) = 1}.

2.3.1 The Hermite case revisited

In the scalar frame (p = 1), the Killip-Simon sum rule gives two different expressions for the

divergence between a probability measure and the semicircle distribution (see [KS03] and [Sim11],
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Chapter 3). In the more general case p ≥ 2, it gives two forms for the divergence with respect to

ΣSC = SC ·1 with SC(dx) =

√
4− x2

2π
1[−2,2](x) dx

supported by [α−, α+] = [−2, 2]. We refer to [DKS10] Formula (10.4) and [Sim11], Formula

(4.6.13) for this matrix sum rule. The block Jacobi matrix associated with ΣSC has entries

BSC
k = 0, ASC

k = 1,

for all k ≥ 1. The spectral side of the sum rule involves a contribution of outlying eigenvalues,

for which we define

F+
H(x) :=





∫ x

2

√
t2 − 4 dt = x

2

√
x2 − 4− 2 log

(
x+

√
x2−4
2

)
if x ≥ 2,

∞ otherwise

and F−
H(x) = F+

H(−x). Let G be the very popular function (Cramér transform of the exponential

distribution)

G(x) = x− 1− log x (x > 0) .

We adopt the convention of the functional calculus, so that for X ∈ Hp positive, we have

(2.22) trG(X) = trX − log detX − p .

Here is the first sum rule. This remarkable equality has been first proven by [DKS10]. In Section

4, we give a probabilistic proof. Indeed, we show that this sum rule is a consequence of two large

deviation results.

Theorem 2.3 Let Σ ∈ Mp,1(R) be a spectral measure with Jacobi matrix (2.11). If Σ ∈
Sp,1(−2, 2), then

K(ΣSC |Σ) +
N+∑

k=1

F+
H(λ

+
k ) +

N−∑

k=1

F−
H(λ

−
k ) =

∞∑

k=1

1
2
trB2

k + trG(AkA
∗
k),

where both sides may be infinite simultaneously. If Σ /∈ Sp,1(−2, 2), the right hand side equals

+∞.

We remark that since trG(σAA∗σ∗) = trG(AA∗) for any unitary σ, the value of the right hand

side in Theorem 2.3 is independent of the choice of σn’s in (2.9).
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Let us restate the sum rule as in the notation of [Sim11]. To a spectral measure Σ supported by

[−2, 2], we associate the m-function (Stieltjès transform)

m(z) =

∫
1

x− z
dΣ(x), (z ∈ C \ [−2, 2]).

For z ∈ D (interior of the unit disk), the function M(z) = −m(z + z−1) admits radial limits :

for almost all θ ∈ [0, 2π], the limit M(eiθ) = limr↑1M(reiθ) exists and is neither vanishing nor

infinite. Finally, let

(2.23) Q(Σ) =
1

π

∫ 2π

0

log

(
sinp θ

det(ImM(eiθ))

)
sin2 θ dθ .

Then the following statement is the combination of Theorem 4.6.1 and Theorem 4.6.3 in Simon’s

book [Sim11]. It is a gem, as defined on p.19 of [Sim11].

Theorem 2.4 Let An, Bn be the entries of the block Jacobi matrix J and let Σ denote the spectral

measure of J . Then

∞∑

n=1

tr((AnA
∗
n)

1/2 − I)2 + trB2
n < ∞

if and only if

(a) The essential support of J satisfies

σess(J) ⊂ [−2, 2]

(b) The eigenvalues {λj}∞j=1 /∈ σess(J) satisfy

∞∑

k=1

(|λk| − 2)3/2 < ∞

(c) If Σ admits the decomposition

dΣ(x) = f(x)dx+ dΣs(x)

with f ∈ and dΣs singular with respect to dx, then

∫ 2

−2

√
4− x2 log det f(x)dx > −∞ .

12



In this case, we have

(2.24)

∞∑

n=1

(
1
2
tr(B2

n) + tr(G(AnA
∗
n))
)
= Q(Σ) +

∑

λ/∈σess(J)

F (λ).

Here, F is defined to be equal to F+
H on [2,∞) and equal to F−

H on (−∞, 2].

Note that the integral Q(Σ) appearing in (2.24) and defined in (2.23) can be interpreted as

a relative entropy, like in the scalar case treated in [Sim11], Lemma 3.5.1. For a measure Σ

supported on [−2, 2], the (inverse) Szegő mapping pushes forward Σ to a measure ΣSz on the

unit circle symmetric with respect to complex conjugation, such that for all measureable and

bounded ϕ,

∫ π

0

ϕ(2 cos(θ))dΣSz(e
iθ) =

∫ 2

−2

ϕ (x) dΣ(x).

A straightforward generalization of the arguments in the above reference show

ImM(eiθ) = Imm(2 cos θ) = πf(2 cos θ)

for θ ∈ [0, π]. Then, using the symmetry and setting x = 2 cos θ, we obtain

Q(Σ) =
2

π

∫ 2

−2

log

(
2−p(4− x2)−p/2

det πf(x)

)
1

4

√
4− x2 dx

=

∫ 2

−2

log det

(
1

2π

√
4− x2f(x)−1

)
1

2π

√
4− x2 dx

=

∫
log det

(
dΣSC

dΣ

)
d SC = K(ΣSC |Σ).

2.3.2 Our new sum rule: the Laguerre case

In the Laguerre case, the central measure is the matrix Marchenko-Pastur law with scalar version

MP(τ)(dx) =

√
(τ+ − x)(x− τ−)

2πτx
1(τ− ,τ+)(x) dx,

where τ ∈ (0, 1], α± = τ± = (1±√
τ )2 and we set ΣMP(τ) = MP(τ) · 1. The block Jacobi matrix

associated with ΣMP(τ) has entries:

AMP
k =

√
τ · 1 , (k ≥ 1) , BMP

1 = 1 , BMP
k = (1 + τ) · 1 , (k ≥ 2) ,

13



which corresponds to ζ2k−1 = 1 , ζ2k = τ · 1.
For the new Laguerre sum rule, we have to replace F±

H by

F+
L (x) =





∫ x

τ+

√
(t− τ−)(t− τ+)

tτ
dt if x ≥ τ+,

∞ otherwise

and

F−
L (x) =





∫ τ−

x

√
(τ− − t)(τ+ − t)

tτ
dt if x ≤ τ−,

∞ otherwise.

One of our main results is Theorem 2.5. Up to our knowledge, this result is new. The proof is

again in Section 4.

Theorem 2.5 Assume the Jacobi matrix J is nonnegative definite and let Σ be the spectral

measure associated with J . Then for any τ ∈ (0, 1], if Σ ∈ Sp,1(τ
−, τ+),

K(ΣMP (τ) |Σ) +
N+∑

n=1

F+
L (λ

+
n ) +

N−∑

n=1

F−
L (λ

−
n ) =

∞∑

k=1

τ−1trG(ζ2k−1) + trG(τ−1ζ2k)

where both sides may be infinite simultaneously and ζk is defined as in (2.13). If Σ /∈ Sp,1(τ
−, τ+),

the right hand side equals +∞.

Since the matrices ζk can be decomposed as in (2.14), they are in fact similar to a Hermitian

matrix

ζk = h
−1/2
k−1

[
h
−1/2
k−1 hkh

−1/2
k−1

]
h
1/2
k−1 ,

hence the sum on the right hand side in Theorem 2.5 is real valued.

Similar to the matrix gem , Theorem 2.4, we can formulate equivalent conditions on the matrices

ζk and the spectral measure, which characterize finiteness of the sum. The following corollary is

the matrix counterpart of Corollary 2.4 in [GNR16b]. It follows immediately from Theorem 2.5,

since F−
L (0) = ∞ and

F±
L (τ

± ± h) =
4

3τ 3/4(1±√
τ)2

h3/2 + o(h3/2) (h → 0+)

and, for H similar to a Hermitian matrix,

trG(1+H) =
1

2
trH2 + o(||H||) (||H|| → 0).

Here, || · || is any matrix norm.

14



Corollary 2.6 Assume the Jacobi matrix J is nonnegative definite and let Σ be the spectral

measure of J . Then

∞∑

k=1

[tr(ζ2k−1 − 1)2 + tr(ζ2k − τ1)2] < ∞(2.25)

if and only if

1. Σ ∈ Sp,1(τ
−, τ+)

2.
∑N+

i=1(λ
+
i − τ+)3/2 +

∑N−

i=1(τ
− − λ−

i )
3/2 < ∞ and if N− > 0, then λ−

1 > 0.

3. the spectral measure Σ of J with Lebesgue decomposition dΣ(x) = f(x)dx+ dΣs(x) satisfies
∫ τ+

τ−

√
(τ+ − x)(x− τ−)

x
log det(f(x))dx > −∞.

3 Randomization and large deviations

3.1 Matrix random models

The results of the previous section rely on two classical distributions of random Hermitian matri-

ces: the Gaussian (or Hermite) and the Laguerre (or Wishart) ensemble. We denote by N (0, σ2)

the centered Gaussian distribution with variance σ2. A random variable X taking values in HN

is distributed according to the Gaussian unitary ensemble GUEN , if all real diagonal entries are

distributed as (0, 1) and the if the real and imaginary parts of off-diagonal variables are inde-

pendent and N (0, 1/2) distributed (this is called complex standard normal distribution). All

entries are assumed to be independent up to symmetry and conjugation. The random matrix

X/
√
N has then the distribution given by (1.6) and the joint density of the (real) eigenvalues

λ = (λ1, . . . , λN) of X is (see for example [AGZ10])

gG(λ) = cG
∏

1≤i<j≤N

|λi − λj|2
N∏

i=1

e−λ2
i /2.(3.1)

In analogy to the scalar χ2 distribution, the Laguerre ensemble is the distribution of the square

of Gaussian matrices as follows. If G denotes a N×γ matrix with independent complex standard

normal entries, then GG∗ is said to be distributed according to the Laguerre ensemble LUEN(γ)

with parameter γ. If γ ≥ N , the eigenvalues have the density (see for example [AGZ10])

gL(λ) = cγL
∏

1≤i<j≤N

|λi − λj |2
N∏

i=1

λγ−N
i e−λi1{λi>0}.(3.2)

15



It is a well-known consequence of the invariance under unitary conjugation, that in the classical

ensembles (1.6), the array of random eigenvalues and the random eigenvector (unitary) matrix

are independent. Further, this latter matrix is Haar distributed ([Daw77]). This implies the

following equality in distribution for the weights given in Lemma 3.2 (see Proposition 3.1 in

[GR14]), which is a matrix version of the beta-gamma relation for scalar random variables. First

we need a definition.

Definition 3.1 1. If v1, . . . , vN are independent complex standard normal distributed vectors

in Cp, set Vj = vjv
∗
j for j ≤ N . We say that (V1, . . . , VN) follows the distribution Gp,N on

(Hp)
N .

2. If U be Haar distributed in the set of N×N unitary matrices, set uj = (Ui,j)1≤i≤p ∈ Cp and

Wj = uju
∗
j for j ≤ N . We say that (W1, . . . ,WN) follows the Dp,N distribution on (Hp)

N .

In the scalar case, the array of weights Wj = u2
j is uniformly distributed on the simplex

{w1, . . . wN ∈ [0, 1] :
∑

iwi = 1}.

Lemma 3.2 If (V1, . . . , VN) follows the distribution Gp,N and if H =
∑N

k=1 Vk, then(
H−1/2V1H

−1/2, . . . , H−1/2VNH
−1/2

)
follows the distribution Dp,N .

Our first large deviation principle will hold for a general class of p×p matrix measures. We draw

the random eigenvalues λ1, . . . , λN from the absolute continuous distribution PV
N

dPV
N(λ) =

1

ZN
V

∏

1≤i<j≤N

|λi − λj |2
N∏

i=1

e−NV (λi).(3.3)

We suppose that the potential V is continuous and real valued on the interval (b−, b+) (−∞ ≤
b− < b+ ≤ +∞), infinite outside of [b−, b+] and limx→b± V (x) = V (b±) with possible limit

V (b±) = +∞. Under the assumption

(A1) Confinement: lim inf
x→b±

V (x)

log |x| > 2 ,

the empirical distribution µ
(N)
u of eigenvalues λ1, . . . , λN has a limit µV in probability, which is

the unique minimizer of

µ 7→ E(µ) :=
∫

V (x)dµ(x)−
∫∫

log |x− y|dµ(x)dµ(y).(3.4)

and which has a compact support (see [Joh98] or [AGZ10]). This convergence can be viewed as

a consequence of the LDP for the sequence (µ
(N)
u )N . We need two additional assumptions on µV :
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(A2) One-cut regime: the support of µV is a single interval [α−, α+] ⊂ [b−, b+] ( α− < α+).

(A3) Control (of large deviations): the effective potential

JV (x) := V (x)− 2

∫
log |x− ξ| dµV (ξ)(3.5)

achieves its global minimum value on (b−, b+) \ (α−, α+) only on the boundary of this set.

In the Hermite case, we have V (x) = 1
2
x2 and the equilibrium measure µV is the semicircle law.

In the Laguerre case, we may set V (x) = τ−1x− (τ−1 − 1) log(x) for τ ∈ (0, 1] and V (x) = +∞
for negative x. In this case, µV is the Marchenko-Pastur law MP(τ). In both the Hermite and the

Laguerre case, the assumption (A1), (A2) and (A3) are satisfied. We need one more definition

related to outlying eigenvalues:

F+
V (x) =




JV (x)− infξ∈R JV (ξ) if α+ ≤ x ≤ b+,

∞ otherwise,
(3.6)

F−
V (x) =




JV(x)− infξ∈RJV (ξ) if b− ≤ x ≤ α−,

∞ otherwise.
(3.7)

One may check that in the Hermite case, F±
V = F±

H and in the Laguerre case, F±
V = F±

L , where

F±
H and F±

L have been defined in the previous section.

3.2 Basics on Large Deviations

In order to be self-contained, let us recall the definition of large deviations an some important

tools ([DZ98]).

Definition 3.3 Let E be a topological Hausdorff space and let I : E → [0,∞] be a lower semi-

continuous function. We say that a sequence (Pn)n of probability measures on (E,B(E)) satisfies

a large deviation principle (LDP) with rate function I and speed an i f:

(i) For all closed sets F ⊂ E:

lim sup
n→∞

1

an
logPn(F ) ≤ − inf

x∈F
I(x)

(ii) For all open sets O ⊂ E:

lim inf
n→∞

1

an
logPn(O) ≥ − inf

x∈O
I(x) .
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The rate function I is good if its level sets {x ∈ E| I(x) ≤ a} are compact for all a ≥ 0. We

say that a sequence of E-valued random variables satisfies a LDP if their distributions satisfy a

LDP.

We will frequently use the following principle ([DZ98], p. 126).

Contraction principle. Suppose that (Pn)n satisfies an LDP on (E,B(E)) with good rate

function I and speed an. Let f be a continuous mapping from E to another topological Hausdorff

space F . Then Pn ◦ f−1 satisfies a LDP on (F,B(F )) with speed an and good rate function

I ′(y) = inf
{x∈E|f(x)=y}

I(x), (y ∈ F ).

To prove our main large deviation principle, we will use a special extension of Baldi’s theorem,

which extends also Bryc’s lemma. This new theorem is given in the Appendix.

To apply this theorem in our setting, we remark that the topological dual of Mp(T ) is the space

Cp(T ) of bounded continuous functions f : T → Hp with the pairing

〈Σ, f〉 = tr

∫
fdΣ.

3.3 Large Deviations

3.3.1 Random measures

Our first LDP holds for p× p matrix measures

Σ(N) =
N∑

k=1

Wkδλk
,

whose support (λ1, · · · , λN) is P
V
N distributed and where the distribution of weights (W1, · · · ,WN)

is Dp,N as in the case of classical ensembles. As explained in the introduction, this is precisely

the distribution of the spectral measure of an N × N matrix XN , drawn from the distribution

(1.6). Recall that under assumption (A1), the empirical measure of the eigenvalues converges

to an equilibrium measure µV , supported by [α−, α+]. The rate function of our large deviation

principle involves the reference matrix measure

ΣV = µV · 1 .
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We recall that F±
V has been defined in (3.6) and (3.7). The following theorem is the matrix

counterpart of Theorem 3.1 in [GNR16b]. Note that in the scalar case, we had an additional

parameter β > 0, corresponding to the inverse temperature of the log-gas. In the matrix case,

we choose to fix β = 2 (for complex matrices) due to the nature of the matrix spaces.

Theorem 3.4 Assume that the potential V satisfies the assumptions (A1), (A2) and (A3). Then

the sequence of spectral measures Σ(N) under PV
N ⊗Dp,N satisfies the LDP with speed N and good

rate function

IV (Σ) = K(ΣV |Σ) +
N+∑

k=1

F+
V (λ

+
k ) +

N−∑

k=1

F−
V (λ

−
k )

if Σ ∈ Sp,1(α
−, α+) and IV (Σ) = ∞ otherwise.

Remark 3.5 A natural extension of Theorem 3.4 holds for potentials V = VN depending on N ,

provided that VN converges to a deterministic potential V in an appropriate sense. For example, it

holds if we suppose that VN : R → (−∞,+∞] is a sequence converging to V uniformly on the level

sets {V ≤ M}, where V satisfies assumptions (A1), (A2) and (A3) and such that VN (x) ≥ V (x).

3.3.2 Jacobi coefficients

In the cases of Hermite and Laguerre ensembles, the particular form of the distribution of the

parameters (A1, B1, . . . ) and (ζ1, ζ2, · · · ) respectively, allows us to prove further LDP’s for the

spectral measure, independently of Theorem 3.4. They are in the subset Mp,1,c of compactly

supported normalized matrix measures. Since we need a specific block structure, we assume

N = np.

Theorem 3.6 Let Σ(n) be the spectral measure of 1√
np
Xn. Assume that Xn is distributed accord-

ing to the Hermite ensemble GUEN (N = np). Then the sequence (Σ(n))n satisfies the LDP in

Mp,1,c(R) with speed pn and good rate function

IH(Σ) =

∞∑

k=1

[
1
2
trB2

k + trG(AkA
∗
k)
]

where Bk, Ak are the recursion coefficients of Σ as in (2.8) if Σ is non-trivial and IH(Σ) = ∞ if

Σ is trivial.
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Theorem 3.7 Let Yn be distributed according to the Laguerre ensemble LUEN (pγn), with (N =

np), γn ≥ n an integer sequence such that n
γn

→ τ ∈ (0, 1] and let Σ(n) be the spectral measure of
1

pγn
Yn with a decomposition of recursion coefficients as in Section 2. Then the sequence (Σ(n))n

satisfies the LDP in Mp,1,c([0,∞)) with speed pn and good rate function

IL(Σ) =

∞∑

k=1

[
τ−1G(ζ2k−1) +G(τ−1ζ2k)

]
,

with ζk as in (2.14). If Σ is a trivial measure, we have IL(Σ) = ∞.

In order to prove LDP’s for the spectral measures in terms of the recursion coefficients we need

the following results for matrices of fixed size. The first and third are straightforward extensions

of the scalar case, the second one can be found in [GNRW12], with small changes to allow a

general sequence of parameters.

Lemma 3.8 (i) If X ∼ GUEp with p fixed, then the sequence ( 1√
n
X)n satisfies the LDP with

speed n and good rate function

I1(X) = 1
2
trX2.

(ii) Let Yn ∼ LUEp(γn) with a positive sequence (γn)n such that γn
n
→ γ > 0, then the sequence

( 1
n
Yn)n satisfies the LDP with speed n and good rate function

I2(Y ) = γ trG(γ−1Y )

if Y is Hermitian and nonnegative and I2(Y ) = ∞ otherwise.

(iii) Let Z ∼ LUEp(1) with p fixed, that is, Z = vv∗ when v is a vector of independent complex

standard normal random variables. Then the sequence ( 1
n
Z)n satisfies the LDP with speed

n and good rate function

I3(Z) = trZ

if Z is Hermitian and nonnegative and I3(Z) = ∞ otherwise.
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4 Proof of Theorems 2.3 and 2.5: From large deviations

to sum rules

Proof of Theorem 2.3:

Consider the matrix measure Σ(n) with N = np support points with density

1

ZN
V

∏

1≤i<j≤N

|λi − λj|2
N∏

i=1

e−Nλ2
i /2

and weight distribution Dp,N independent of the support points. By Theorem 3.4, the sequence

(Σ(n))n satisfies the LDP with speed np and rate function IV , where µV is the semicircle law and

furthermore F±
V = F±

H . That is, the rate function is precisely the left hand side of the equation

in Theorem 2.3. On the other hand, Σ(n) is also the spectral measure of the random matrix
1√
pn
Xn, where Xn ∼ GUEpn. By Theorem 3.6, the sequence (Σ(n))n satisfies also the LDP in

the space of compactly supported measures with speed np and rate function IH , the right hand

side of the equation in Theorem 2.3. Since a large deviation rate function is unique, we must

have IV (Σ) = IH(Σ) for any compactly supported Σ ∈ Mp,1,c. If Σ is not compactly supported,

it suffices to remark that the recursion coefficients cannot satisfy supn (||An||+ ||Bn||) < ∞,

as otherwise J would be a bounded operator. But tr B2 + tr G(A) diverges as ||A|| → ∞ or

||B|| → ∞ and so the right hand side in Theorem 2.3 equals +∞. 2

Proof of Theorem 2.5:

Fix τ ∈ (0, 1] and let V (x) = τ−1x − (τ−1 − 1) log x for x ≥ 0 and V (x) = +∞ if x < 0. From

Theorem 3.4 we get that under the distribution P
V
N ⊗Dp,N the sequence (Σ(n))n satisfies the LDP

with speed N = np and rate function IV . In this case, the equilibrium measure is the Marchenko-

Pastur law MP(τ) multiplied by 1. Further, we have F±
V = F±

L . So that, IV is nothing more

than the left hand side of the sum rule in Theorem 2.5. We would like to combine this result

with the LDP in Theorem 3.7, but since this requires integer parameters, we need to modify the

potential slightly. Define γn = ⌈nτ−1⌉ and consider the eigenvalue distribution with density

1

ZN
V

∏

1≤i<j≤N

|λi − λj |2
N∏

i=1

λpγn−pn
i e−pγnλi1[0,∞)(λi)(4.1)

This is the eigenvalue distribution of the matrix 1
pγn

Yn, when Yn ∼ LUEpn(pγn). By Theorem

3.7, the spectral measure of this matrix satisfies the LDP with speed pn and rate function IL

which is the right hand side of the sum rule in Theorem 2.5. We may as well write the eigenvalue
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density (4.1) as

1

ZN
V

∏

1≤i<j≤N

|λi − λj|2
N∏

i=1

e−pnVn(λi),(4.2)

where

Vn(x) =
⌈nτ−1⌉

n
x−

(⌈nτ−1⌉
n

− 1

)
log x(4.3)

for nonnegative x. Then Vn(x) ≥ V (x) for all x and on the sets {x| V (x) ≤ M}, the potentials

Vn converge uniformly to V . Note that the point 0 is included in the level sets of V only if τ = 1.

Therefore, by Remark 3.5, the spectral measure with support point density (4.2) satisfies the

same LDP as under the density PV
pn and then with rate function IV . This yields IV (Σ) = IH(Σ)

for any compactly supported measure Σ. The extension to measures with non-compact support

follows as in the proof of Theorem 2.3. 2

5 Proof of Theorem 3.4: Spectral LDP for a general po-

tential

This section is devoted to the proof of Theorem 3.4. We will follow the track of the proof

developed for the scalar case in [GNR16b] and will often refer to this paper for more details. The

main idea is to apply the projective method and study a family of matrix measures restricted to

the support I = [α−, α+] of the equilibrium measure and a fixed number of extremal eigenvalues.

For Σ ∈ Sp with

Σ = Σ|I +
N+∑

i=1

Γ+
i δλ+

i
+

N−∑

i=1

Γ−
i δλ−

i
(5.1)

we define the j-th projector πj by

πj(Σ) = Σ|I +

N+∧j∑

i=1

Γ+
i δλ+

i
+

N−∧j∑

i=1

Γ−
i δλ−

i
,

that is, all but the j-th largest and smallest eigenvalues outside of I = [α−, α+] are omitted. Note

that πj is not continuous in the weak topology. For this reason we need to change our topology

on Sp by identifying Σ as in (5.1) with the vector

(
Σ|I , (λ

+
i )i≥1, (λ

−
i )i≥1, (Γ

+
i )i≥1, (Γ

−
i )i≥1

)
(5.2)
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with λ+
i = α+ and Γ+

i = 0 if i > N+ and λ−
i = α− and Γ−

i = 0 if i > N−. Then we say that Σ(n)

converges to Σ if:

Σ
(n)
|I −−−→

n→∞
Σ|I weakly and for every i ≥ 1

(
λ+
i (Σ

(n)), λ−
i (Σ

(n)),Γ+
i (Σ

(n)),Γ−
i (Σ

(n))
)
−−−→
n→∞

(
λ+
i (Σ), λ

−
i (Σ),Γ

+
i (Σ),Γ

−
i (Σ)

)
.

(5.3)

Analogously to Lemma 4.5 in [GNR16b], one can show that on the smaller set Sp,1 of normalized

measures, this topology is (strictly) stronger than the weak topology.

Let for j fixed and N > 2j

λ+(j) = (λ+
1 , . . . , λ

+
j ) , λ−(j) = (λ−

1 , . . . , λ
−
j ) .

Then the following joint LDP holds for the largest and/or smallest eigenvalues, where we write

R↑j (resp. R↓j) for the subset of Rj of all vectors with non-decreasing (resp. non-increasing)

entries and, with a slight abuse of notation, we write α± for the vector (α±, . . . , α±) ∈ Rj .

Theorem 5.1 Let j be a fixed integer and the potential V such that (A1), (A2) and the control

condition (A3) are satisfied.

1. If b− < α− and α+ < b+, then the law of (λ+(j), λ−(j)) under PV
N satisfies the LDP in R2j

with speed N and good rate function

Iλ±(x+, x−) :=





∑j
k=1F+

V (x
+
k ) +

∑j
k=1F−

V (x
−
k ) if (x+

1 , . . . , x
+
j ) ∈ R↓j and (x−

1 , . . . , x
−
j ) ∈ R↑j

∞ otherwise.

2. If b− = α−, but α+ < b+, the law of λ+(j) satisfies the LDP with speed N and good rate

function

Iλ+(x+) = Iλ±(x+, α−) =





∑j
k=1F+

V (x
+
k ) if (x+

1 , . . . , x
+
j ) ∈ R↓j

∞ otherwise.

3. If b− < α−, but α+ = b+, the law of λ−(j) satisfies the LDP with speed N and good rate

function

Iλ−(x−) = Iλ±(α+, x−) =





∑j
k=1F−

V (x
−
k ) if (x−

1 , . . . , x
−
j ) ∈ R↑j

∞ otherwise.
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5.1 LDP for the restricted measure and extremal eigenvalues

Suppose now that the distribution of Σ(N) is as in Theorem 3.4 and the assumptions (A1), (A2)

and (A3) are satisfied. By Lemma 3.2, we may decouple the weights and consider the (non-

normalized) measure

Σ̃(N) =
1

N

N∑

k=1

vkv
∗
kδλk

,(5.4)

where the entries of v1, . . . , vN ∈ C
p are independent complex standard normal distributed ran-

dom vectors. The original distribution can then be recovered as the pushforward under

Σ̃ 7→ Σ̃(R)−1/2 · Σ̃ · Σ̃(R)−1/2.

Let I(j) := I \ {λ+
1 , λ

−
1 , . . . , λ

+
j , λ

−
j } denote the interval I without the j largest and smallest

eigenvalues. Analogously, let I+(j) := I \ {λ+
1 , . . . , λ

+
j } and I−(j) := I \ {λ−

1 , . . . , λ
−
j }. Then we

write Σ̃
(N)
I(j) for the restriction of Σ̃(N) to I(j). We use the analogous notation for the restrictions

to I+(j), I−(j) and I. The main result in this section is a joint LDP for the restricted measure

and the collection of extremal eigenvalues.

Theorem 5.2 Suppose that the law of eigenvalues and weights is given by PV
N⊗Gp,N and consider

Σ̃(N) as a random element in Sp with topology (5.3).

1. If b− < α− < α+ < b+, then for any fixed j ∈ N, the sequence
(
Σ̃

(N)
I(j), λ

+(j), λ−(j)
)
satisfies

the joint LDP with speed N and good rate function

I(Σ, x+, x−) = K(ΣV |Σ) + tr Σ(R)− p+ Iλ±(x+, x−)

2. If b− = α−, but α+ < b+ (or b+ = α+, but α− > b−), then, with the same notation as in

Theorem 5.1,
(
Σ̃

(N)
I+(j), λ

+(j)
)
(or

(
Σ̃

(N)
I−(j), λ

−(j)
)
respectively,) satisfies the LDP with speed

N and good rate function

I+(Σ, x+) = I(Σ, x+, α−) (or I−(Σ, x−) = I(Σ, α+, x−) respectively) .

Proof: We show here only the first part of the theorem, for the other cases just omit the largest

or smallest eigenvalues. To begin with, for M > max{|α+|, |α−|}, let λ+
M(j) (resp.λ−

M (j)) be the

collection of truncated eigenvalues

λ+
M,i = min{λ+

i ,M} (resp. λ−
M,i = max{λ−

i ,−M}) ,

24



for i = 1, . . . , j. To further simplify the notations, set λ±
M(j) := (λ+

M,1, . . . , λ
+
M,j, λ

−
M,1, . . . , λ

−
M,j).

The sequence (Σ̃
(N)
I(j), λ

±
M(j)) is exponentially tight, since, with the compact set

Kγ,M =
{
(Σ, λ) ∈ Mp(I)× R

2j | Σ(I) ≤ γ · 1, λ ∈ [−M,M ]2j
}
,

we have

lim sup
N→∞

1

N
logP

(
(Σ̃

(N)
I(j), λ

±
M(j)) /∈ Kγ,M

)
≤ lim sup

N→∞

1

N
logP

(
1

N

N∑

k=1

vkv
∗
k > γ1

)
≤ −cγ,

where we used the fact that
∑N

k=1 vkv
∗
k follows the LUEp(N) distribution. We prove the joint

LDP by applying Theorem 7.3. For this, let D be the set of continuous f : [α−, α+] → Hp such

that for all x ∈ [α−, α+], f(x) < 1, i.e., the eigenvalues of f(x) are smaller than 1. For f ∈ D

and ϕ a bounded continuous function from R2j to R , we consider the joint moment generating

function

GN(f, ϕ) = E

[
exp

{
N

(
tr

∫
fdΣ̃

(N)
I(j) + ϕ(λ±

M(j))

)}]
.

Since the weights vkv
∗
k of Σ̃

(N)
I(j) are independent, we may first integrate with respect to the vk’s,

so that

GN(f, ϕ) = E


exp

(
Nϕ(λ±

M(j))
) ∏

i:λi∈I(j)
E [exp {tr(f(λi)vkv

∗
k)} |λ1, . . . , λn]


(5.5)

= E


exp

(
Nϕ(λ±

M(j))
) ∏

i:λi∈I(j)
E [exp {v∗kf(λi)vk} |λ1, . . . , λn]


 .(5.6)

Now, it is clear that for v a standard normal complex vector in Cp and A ∈ Hp such that A < 1,

we have

(5.7) logE [exp (v∗Av)] = − log det(1− A) =: L(A)

so that (5.5) becomes,

GN (f, ϕ) = E

[
exp

{
N
(
µ
(N)
u,I(j)(L ◦ f) + ϕ(λ±

M(j))
)}]

,

where µ
(N)
u,I(j) is the restriction of the (scalar) empirical eigenvalue distribution to I(j). It remains

to calculate the expectation with respect to PV
N .
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By Theorem 5.1, the extremal eigenvalues λ±(j) of the spectral measure satisfy the LDP with

speed N rate function Iλ± . By the contraction principle (see [DZ98] p.126), the truncated eigen-

values satisfy the LDP with rate function

IM,λ±(x±) =




Iλ±(x+, x−) if x± = (x+, x−) ∈ [−M,M ]2j ,

∞ otherwise.

Since the truncated eigenvalues are bounded, we can conclude from Varadhan’s Integral Lemma

([DZ98] p. 137)

lim
N→∞

1

N
logE

[
exp

{
Nϕ(λ±

M (j))
}]

= J(ϕ) := sup
y∈R2j

{ϕ(y)− IM,λ±(y)} .(5.8)

Since µ
(N)
u satisfies a LDP with speed N2, but we consider only the slower scale at speed N , we

may replace it by the limit measure µV at a negligible cost. For the exact estimates, we may

follow along the lines of [GNR16b] to conclude

lim
N→∞

1

N
log GN(f, ϕ) = lim

N→∞

1

N
logE

[
exp

{
N
(
µV (L ◦ f) + ϕ(λ±

M(j))
)}]

= G(f) + J(ϕ)

where

G(f) =

∫
L ◦ f dµV

and L is given in (5.7). Theorem 7.3 yields the LDP for (Σ̃
(n)
I , λ±

M) with good rate

I(Σ, λ) = G∗(Σ) + IM,λ±(λ) ,

once we show the second assumption therein is satisfied.

Theorem 5 of [Roc71] identifies G∗ as

G∗(Σ) =

∫
L∗(h)dµV +

∫
r

(
dΣS

dθ

)
dθ,(5.9)

where:

• L∗ is the convex dual of L

• r its recession function

• the Lebesgue-decomposition of Σ with respect to µV is

dΣ(x) = h(x)dµV (x) + dΣS(x)
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• θ is any scalar measure such that ΣS is absolutely continuous with respect to θ.

We begin by calculating L∗ and r. By definition,

L∗(X) = sup
Y ∈Hp

{tr(XY )− L(Y )} .

The recession function is

r(X) = sup {tr(XW ) | ||W ||∞ < 1} .

The function L is convex (as in the scalar case, apply Hölder’s inequality in the definition (5.7))

and analytic. The supremum is then reached at a critical value. We denote by D[F (Y )] the

Fréchet derivative of a function F : Hp → R at Y and look for Y such that

(5.10) D[tr(XY )− L(Y )](Z) = 0

for every Z. It is well known that, as functions of Y for X fixed, D[tr(XY )](Z) = tr(XZ) and

D[log det Y ](Z) = tr(Y −1Z) so that (5.10) becomes, by the chain rule,

tr(XZ)− tr((1− Y )−1Z) = 0

for every Z i.e. X − (I − Y )−1 = 0 hence Y = 1−X−1 and

(5.11) L∗(X) = tr (X − 1) + log det(X−1) = trX − p+ log det(X−1) = trG(X) .

If X has a negative eigenvalue, then r(X) = ∞. For X nonnegative definite, the supremum is

attained for W = 1, so that

(5.12) r(X) = trX.

Gathering (5.11) and (5.12) and plugging into (5.9) we get

G∗(Σ) = tr

∫
hdµV −

∫
log det hdµV − p+ tr

∫
dΣS

= K(ΣV |Σ) + trΣ(I)− p.

It remains to show that G∗ is sufficiently convex. A measure Σ ∈ Mp([α
−, α+]) is a point of strict

convexity (an exposed point) of G∗ if there exists an exposing hyperplane f ∈ Cp([α
−, α+]), such

that

tr

∫
fdΣ−G∗(Σ) > tr

∫
fdζ −G∗(ζ)(5.13)
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for all ζ 6= Σ (see (7.1)). Let Σ = hΣµV be absolutely continuous with respect to µV with positive

definite continuous density hΣ and choose

f = 1− h−1
Σ .

Then f ∈ D and, by continuity and compactness of [α−, α+], there exists a γ > 1 such that

γf ∈ D. Let ζ = hζµV + ζS the Lebesgue-decomposition of ζ . Recalling the representation (5.9)

and (5.11), inequality (5.13) is satisfied as soon as

∫
log det hΣ dµV − p >

∫
log det hζ dµV − tr

∫
h−1
Σ dζ .(5.14)

Since tr
∫
h−1
Σ dζ ≥ tr

∫
h−1
Σ hζdµV , it is enough to prove

∫
log det hΣ dµV − p >

∫
log det hζ dµV − tr

∫
h−1
Σ hζdµV .(5.15)

This inequality follows from

log detA− log detB > p− tr(A−1B)(5.16)

for Hermitian positive A 6= B. In order to prove (5.16), write

log detA− log detB =

p∑

i=1

log
(
λi(A)λi(B)−1

)
≥ p−

p∑

i=1

λi(A
−1)λi(B)(5.17)

with λi(A), λi(B) the eigenvalues of A,B written in any order. If we choose to order the eigen-

values of A−1 in decreasing order (i.e. those of A increasing) and those of B in increasing order,

it follows from the Hardy-Littlewood rearrangement inequality (see [Mir59]) that

p∑

i=1

λi(A
−1)λi(B) ≤ tr(A−1B).

With this ordering of eigenvalues, (5.17) is strict unless A,B have the same eigenvalues. If all

eigenvalues of A and B coincide, then the left hand side of (5.16) is 0, while the right hand side

is p − trH with detH = 1. The minimum value of trH is p which is achieved only for H = 1,

in which case A = B. We get that Λ∗ is strictly convex at all points Σ = hµV with h positive

definite and continuous.

It remains to show that the set of exposed points of G∗ is dense in Mp([α
−, α+]). For a given

Σ ∈ Mp([α
−, α+]), we divide [α−, α+] by dyadic points into intervals

Ik,n = [α− + (k − 1)(α+ − α−)/2n, α− + k(α+ − α−)/2n]
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and put Ik,n = [α− + (k − 1)(α+ − α−)/2n + 2−2n, α− + k(α+ − α−)/2n − 2−2n], i.e., Ik,n is

constructed from Ik,n by cutting off subintervals of length 2−2n. Define hn on Ik,n as

hn
∣∣Ik,n ≡

(
(1− 2−2n)Σ(Ik,n) + 2−2n · I

)
ΣV (Ik,n)

−1

and let hn be the continuous function on [α−, α+] obtained by linear interpolation of the step

function hn. Then hn is positive definite and continuous on [α−, α+] and as in the scalar case,

hn · ΣV converges weakly to Σ. This concludes the proof of the LDP for
(
Σ̃

(N)
I(j), λ

±
M(j)

)
.

In order to extend the LDP to the untruncated eigenvalues, note that the LDP for (λ+(j), λ−(j))

implies the exponential tightness of the (unrestricted) extremal eigenvalues that is, for every

K > 0 there exists a M such that

lim sup
N→∞

1

N
logP

(
λ+
1 > M or λ−

1 < −M
)
≤ −K.

In particular,

lim
M→∞

lim sup
N→∞

1

N
logP

(
λ±
M(j) 6= λ±(j)

)
= −∞,

so that as M → ∞, the truncated eigenvalues are exponentially good approximation of the unre-

stricted ones. Moreover, (Σ̃
(N)
I(j), λ

±
M(j)) are exponentially good approximations of (Σ̃

(N)
I(j), λ

±(j)).

By Theorem 4.2.16 in [DZ98] (Σ̃
(N)
I(j), λ

±(j)) satisfies the LDP with speed n and rate function

I(Σ, x±) = K(ΣV |Σ) + trΣ(I)− p+ Iλ±(x±)

= K(ΣV |Σ) + trΣ(I)− p+

j∑

i=1

F+(x+
i ) + F−(x−

i ) ,

which ends the proof of Theorem 5.2. 2

5.2 LDP for the projective family

Theorem 5.3 For any fixed j, the sequence of projected spectral measures πj(Σ̃
(N)) as elements

of Sp with topology (5.3) satisfies the LDP with speed N and rate function

Ĩj(Σ̃) = K(ΣV | Σ̃) + tr Σ̃(I)− p+

N+∧j∑

i=1

(
F+

V (λ
+
i ) + tr Γ+

i

)
+

N−∧j∑

i=1

(
F−

V (λ
−
i ) + tr Γ−

i

)
.
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Proof: The proof is similar to the proof of Theorem 4.3 in [GNR16b] and we omit the details

for the sake of brevity. It is a combination of the LDP in Theorem 5.2 and the LDP of the weights
1
N
Γk =

1
N
vkv

∗
k corresponding to the extreme eigenvalues. Indeed Γi ∼ LUEp(1), so by Proposition

3.8 (iii), each individual weight 1
N
Γk satisfies the LDP with speed N and rate function

I3(X) =




trX if X ≥ 0,

∞ otherwise.

The independence of the weights and an application of the contraction principle complete then

the proof. 2

In order to come back to a normalized matrix measure in Sp,1, we note that the LDP for πj(Σ̃
(N))

also implies the joint LDP for

(
πj(Σ̃

(N)), πj(Σ̃
(N))(R)

)
,

with the rate function

Ij(Σ̃, Z) = Ĩj(Σ̃)

if Σ̃(R) = Z and Ij(Σ̃, Z) = ∞ otherwise. Keeping the weights along the way, we may apply

the projective method (the Dawson-Gärtner Theorem, p. 162 in the book of [DZ98]) to the

family of projections (πj(Σ̃
(N)), πj(Σ̃

(N))(R))j and get a LDP for the pair (Σ̃(N), Σ̃(N)(R)) with

rate function

I(Σ̃, Z) = sup
j

Ij(Σ̃, Z) .

This rate function equals +∞ unless Σ̃(R) = Z and in this case is given by

I(Σ̃, Z) = K(ΣV | Σ̃) + trZ − p+

N+∑

i=1

F(λ+
i ) +

N−∑

i=1

F(λ−
i ).(5.18)

We remark that normalizing the matrix measure is not possible unless we keep track of the total

mass for any j, as the mapping Σ̃ 7→ Σ̃(R)−1/2Σ̃Σ̃(R)−1/2 is not continuous in the topology (5.3).

However, we may now apply the continuous mapping (Σ̃, Z) 7→ Z−1/2Σ̃Z−1/2 and obtain a LDP

for the sequence of measures Σ(N) in Sp,1. The rate function is

I(Σ) = inf
Σ̃=Z1/2ΣZ1/2, Z>0

Ĩ(Σ̃) = inf
Z>0

Ĩ(Z1/2ΣZ1/2).
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By (5.18), we need to minimize over positive definite Z ∈ Hp the function

−
∫

log det

(
d(Z1/2ΣZ1/2)

dµV

)
dµV + trZ − p

= −
∫

log det

(
Z1/2 dΣ

dµV
Z1/2

)
dµV + trZ − p

= −
∫

log det

(
dΣ

dµV

)
dµV − log detZ + trZ − p

= −
∫

log det

(
dΣ

dµV

)
dµV + I2(Z) .

The term I2(Z) comes from Lemma 3.4 (ii) with γ = 1 and attains its minimal value 0 for

Z = 1. 2

We have obtained the LDP claimed in Theorem 3.4 on the subset Sp,1 in the topology induced

by (5.3). On Sp,1 this is stronger than the weak topology and the rate function can be extended

to Mp,1 by setting I(Σ) = ∞ for Σ /∈ Sp,1. This yields Theorem 3.4.

5.3 Proof of Remark 3.5

Let A be a measurable subset of Mp,1 and set

AN =

{
(λ,W ) ∈ R

N ×HN
p

∣∣∣∣∣

N∑

k=1

Wkδλk
∈ A

}
.

The LDP for Σ(N) with eigenvalue distribution P
VN
N will follow from the LDP for eigenvalue

distribution PV
N once we show

lim sup
N→∞

1

N
log(PVN

N ⊗ Dp,N)(AN ) ≤ lim sup
N→∞

1

N
log(PV

N ⊗ Dp,N)(AN)(5.19)

and

lim inf
N→∞

1

N
log(PVN

N ⊗ Dp,N)(AN) ≥ lim inf
N→∞

1

N
log(PV

N ⊗ Dp,N)(AN).(5.20)

In fact, this does not require A to be closed or open, respectively. For this, let

ΓV
N(AN) =

∫∫

AN

∏

1≤i<j≤N

|λi − λj |2
N∏

i=1

e−NV (λi)dλ dDp,N(W ) ,

31



and define ΓVN
N (AN ) analogously, with V replaced by VN . Since VN ≥ V , we have

ΓVN
N (AN) ≤ ΓV

N(AN).(5.21)

To get a reverse inequality, let KN,M be the set of (λ,W ) ∈ RN ×HN
p , where V (λi) ≤ M for all

i. Then

ΓVN
N (AN) ≥ ΓVN

N (AN ∩KN,M) ≥
(

inf
x:V (x)≤M

eV (x)−VN (x)

)N

ΓV
N(AN ∩KN,M).

Since by assumption eV (x)−VN (x) converges to 1 uniformly on {x| V (x) ≤ M}, this implies

lim
N→∞

1

N
log

ΓVN
N (AN)

ΓV
N(AN )

≥ lim
N→∞

1

N
log

ΓV
N(AN ∩KN,M)

ΓV
N (AN)

.(5.22)

If we take now A = Mp,1, then ΓV
N(AN ) = ZV

N and the right hand side of (5.22) becomes

lim
N→∞

1

N
logPV

N(∀ i : V (λi) ≤ M).

By the LDP for the extreme eigenvalues, Theorem 5.1, this limit tends to 0 as M → ∞. Together

with (5.21), we have shown that for A = Mp,1

lim
N→∞

1

N
log

ΓVN
N (AN )

ΓV
N (AN)

= lim
N→∞

1

N
log

ZVN
N

ZV
N

= 0.

Since (PVN
N ⊗ Dp,N)(AN) = (ZV

N )
−1ΓV

N(AN ), the inequality (5.21) leads to the inequality (5.19)

and the arguments for (5.22) yield

lim inf
n→∞

1

N
log(PVN

N ⊗ Dp,N)(AN) ≥ lim inf
N→∞

1

N
log(PV

N ⊗ Dp,N)(AN ∩KN,M)

for any M ≥ 0. Letting M → ∞, this implies inequality (5.20), as by the LDP for the extreme

eigenvalues we have

lim
M→∞

lim sup
N→∞

1

N
log(PV

N ⊗ Dp,N)(K
c
N,M) = −∞.

2

6 Proof of Theorems 3.6 and 3.7

6.1 Hermite block case

The starting point for the proof of Theorem 3.6 is the following block-tridiagonal representation

of the Gaussian ensemble. It is a matrix extension of a famous result of Dumitriu and Edelman

[DE02].
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Lemma 6.1 Let Dk ∼ GUEp and Ck be Hermitian non-negative definite such that C2
k ∼

LUEp(p(n − k)) for k = 1, . . . , n and let all these matrices be independent. Then the p × p

spectral measure of the block-tridiagonal matrix

Gn =




D1 C1

C1 D2
. . .

. . .
. . . Cn−1

Cn−1 Dn




(6.1)

has the same distribution as the spectral measure of the Hermite ensemble GUEpn.

Proof: Starting from a matrix Xn distributed according to the Hermite ensemble GUEpn, we

can construct the tridiagonal matrix Gn as

Gn = TXnT
∗,

where T is unitary and leaves invariant the subspaces spanned by the first p unit vectors. Con-

sequently, the spectral measure of Xn is also the spectral measure of Gn. The transformation T

is a composition of unitaries T1, . . . , Tn−1 analogous to the ones used by [DE02]. To illustrate the

procedure, we construct the first transformation T1. By xi,j we denotes the p× p subblock of Xn

in position i, j, let x̄1 = (x1,2, . . . , x1,n)
∗ and X̄ = (xi,j)2≤i,j≤n. With this notation, Xn can be

structured as

Xn =

(
x1,1 x̄∗

1

x̄1 X̄

)
.

Note that the Gaussian distribution implies that all (square) blocks are almost surely invertible.

Then, set

ξ = [(x∗
2,1)

−1(x̄∗
1x̄1)(x2,1)

−1]1/2x2,1 ∈ Mp,p

Γ = (ξ∗, 0, . . . , 0)∗ ∈ M(n−1)p,p

and define for Z ∈ M(n−1)p,p the block-Householder reflection

H(Z) = I(n−1)p − 2Z(Z∗Z)−1Z∗.

If we set Z = Γ− x̄1 one may check that

Γ∗Γ = ξ∗ξ = x̄∗
1x̄1, Γ∗x̄1 = ξ∗x2,1 = x∗

2,1ξ = x̄∗
1Γ, Z∗Z = −2Z∗x̄1
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and H(Z)x̄1 = Γ. We extend H(Z) to an operator Ĥ on Cnp leaving the first p unit vectors

invariant, which yields

ĤXnĤ
∗ =

(
1 0

0 H(Z)

)(
x1,1 x̄∗

1

x̄1 X̄

)(
1 0

0 H(Z)∗

)
=

(
x1,1 Γ∗

Γ H(Z)X̄H(Z)∗

)
.

Finally, let W ∈ M(n−1)p,(n−1)p be the unitary block-diagonal matrix with the blocks

((ξ∗ξ)1/2ξ−1, 1, . . . , 1) on the diagonal and extend W to an operator Ŵ on Cnp as we did with

H(Z). Then T1 = Ŵ Ĥ is unitary, leaves the subspace spanned by the first p unit vectors invariant

and

T1XnT
∗
1 =

(
x1,1 Γ̃

Γ̃∗ WH(Z)X̄H(Z)∗W ∗

)
.

with

Γ̃ = ((x̄∗
1x̄1)

1/2, 0, . . . , 0).

The block x̄∗
1x̄1 is distributed according to LUEp(p(n−1)) and since the definition of W and H(Z)

is independent of X̄ , the block WH(Z)X̄H(Z)∗W ∗ is again a matrix of the Gaussian ensemble

GUEp(n−1). The assertion follows then from an iteration of these reflections. 2

Proof of Theorem 3.6:

By Lemma 6.1, the spectral measure Σ(n) is also the spectral measure of the rescaled matrix
1√
np
Gn. If we consider each block entry of this matrix separately, we are up to a linear change of

the speed in the setting of Lemma 3.8. Thus, for any fixed k, the block D
(n)
k := Dk/

√
np of the

matrix in (6.1) satisfies the LDP in Hp with speed pn and rate function I1. Similarly, if we let

C
(n)
k = Ck/

√
np, then the block (C

(n)
k )2 satisfies the LDP with speed pn and rate function I2 or

equivalently, C
(n)
k satisfies the LDP with speed np and good rate

I ′
2(Y ) = I2(Y

2)

if Y is nonnegative definite and I ′
2(Y ) = ∞ otherwise. Since the block entries are independent, we

get a joint LDP for any fixed collection (D
(n)
1 , C

(n)
1 , . . . , D

(n)
k ) with rate given by the corresponding

sum of rate functions I1 and I ′
2.

Now, we follow the strategy developed in [GR11] for the scalar case. The random matrix measure

Σ(n) belongs to M1
p,c(R). Since the topology Tm of the convergence of moments on M1

p,c(R) is

stronger than the trace Tw of the weak topology, it is enough to prove the LDP with respect to

Tw.
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For each k > 0, the subset Xk of matrix probability measures with support in [−k, k] is compact

for Tm. Since the extremal eigenvalues satisfy the LDP with speed N and a rate function tending

to infinity, we deduce that Σ(N) is exponentially tight in Tm.

The mapping

m : M1
p,c(R) → HN0

p , m(Σ) :=

(
mk(Σ) :=

∫
xkdΣ(x)

)

k≥1

being a continuous injection, the LDP of Σ(N) in M1
p,c(R) is then a consequence of the following

LDP on the sequence of moments and of the inverse contraction principle (see [DZ98] Theorem

4.2.4 and the subsequent Remark (a)).

Proposition 6.2 The sequence (m(Σ(n))n) satisfies the LDP in HN0

p with speed np and good rate

function Im defined as follows. This function is finite in (m1, m2, . . . ) if and only if there exists

a sequence (B1, A1, . . . ) ∈ HN0

p with Ak > 0, such that

∞∑

k=1

1

2
trB2

k + trG(A2
k) < ∞

and such that

(6.2) (mr)i,j = 〈eiJrej〉 , i, j = 1, . . . , p, r ≥ 1

where J is the infinite block Jacobi matrix with blocks (B1, A1, . . . ) as in (2.11).

In that case

(6.3) Im =
∞∑

k=1

1

2
trB2

k + trG(A2
k) .

Proof: First, as we said in the beginning of this proof, for fixed k, (D
(n)
1 , C

(n)
1 , . . . , D

(n)
k ) satisfies

the LDP in H2k−1
p with speed np and good rate function

I(k)(D1, C1, . . . , Dk) =
k∑

j=1

1

2
trD2

j +
k−1∑

j=1

trG(C2
k) .

If J is the kp × kp Jacobi matrix build from the blocks D1, C1, . . . , Dk, then the moments

(m1(Σ
(n)), . . . , m2k−1(Σ

(n))) of the spectral measure of J are given by (6.2) and depend con-

tinuously on Dj , Cj. By the contraction principle, the sequence (m1(Σ
(n)), . . . , m2k−1(Σ

(n))) sat-

isfies the LDP with speed np and good rate function I(k)
m defined as follows. It is infinite in
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(m1, . . . , m2k−1) unless there exist block coefficients (B1, A1, . . . , Bk) of the kp×kp matrix J with

Ak > 0 such that (6.2) holds. In this case the coefficients are necessarily unique and

I(k)
m (m1, . . .m2k−1) = I(k)(B1, A1, . . . , Bk).

As in the scalar case, we do not consider the even case, since there is no injectivity there.

The Dawson-Gärtner theorem (see [DZ98]) yields the LDP for the whole moment sequence

m(Σ(n)) in HN0

p with good rate

Im(m1, . . . ) = sup
k≥1

I(k)
m (m1, . . .m2k−1).

This supremum is finite if and only if there exists a (unique) sequence (B1, A1, . . . ) of coefficients

satisfying Ak > 0 and (6.2). Note that this implies in particular that (m1, . . . ) is the moment

sequence of a nontrivial measure Σ. In this case

Im(m1, . . . ) = sup
k≥1

I(k)(B1, A1, . . . , Bk)

= sup
k

k∑

j=1

1

2
trB2

j +
k−1∑

j=1

trG(A2
j )

=

∞∑

k=1

(
1

2
trB2

k + trG(A2
k)

)
.

2

6.2 Laguerre block case

The starting point for the proof of Theorem 3.6 is the following block-bidiagonal representation.

It is a matrix extension of a famous result of Dumitriu and Edelman [DE02].

Lemma 6.3 Let m ≥ n and for k = 1, . . . , n let Dk and Ck for k = 1, . . . , n be independent

random non-negative definite matrices in Hp such that

C2
k ∼ LUEp(p(n− k)) , D2

k ∼ LUEp(p(m− k + 1))

and define the block matrix

Zn =




D1 0

C1 D2
. . .

. . .
. . . 0

Cn−1 Dn




.
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Then the p × p spectral matrix measure of Ln = ZnZ
∗
n has the same distribution as the spectral

matrix measure of a pn× pn matrix, distributed according to the LUEpn(pm) (m ≥ n).

Proof: We use the construction of the Laguerre ensemble Ln = WnW
∗
n , with Wn a pn × pm

matrix with independent complex Gaussian entries. Writing wi,j for the p × p block of Wn in

position i, j, let R be a pm × pm unitary matrix constructed analogously to the matrix ŴĤ in

the proof of Lemma 6.1, such that

WnR =

(
w̃

W̃

)

with

w̃ = (w1,1, . . . , w1,m)R =



(

m∑

i=1

w∗
1,iw1,i

)1/2

, 0p,p, . . . , 0p,p


 .

The matrix R can be chosen independently of wi,j, i ≥ 2 such that the entries of W̃ are again

independent complex Gaussian, independent of w̃. Similarly, write zi,j for the p×p block of WnR

in position i, j and let L be a p(n− 1)× p(n− 1) unitary matrix such that

L(z∗2,1, . . . , z
∗
n,1)

∗ =



(

n∑

i=2

z∗1,iz1,i

)1/2

, 0p,p, . . . , 0p,p




∗

If L̃ = I ⊕ L is the extension of L to an operator on Cpn, leaving the subspace of the first p unit

vectors invariant, then

L̃WnR =




D1 0 . . . 0

C1

0 LW̃R
...




.

The first blocks satisfy D2
1 ∼ LUEp(pm), C2

1 ∼ LUEp(p(n − 1)) and by the invariance of the

Gaussian distribution, the entries of LW̃R are again Gaussian distributed. Since we started

with independent entries, all blocks in L̃WnR are independent. The conjugation by L̃ leaves the

first p eigenvector rows invariant, so L̃LnL̃
∗ = L̃WnRR∗W ∗

n L̃
∗ has the same spectral measure as

Ln. This yields the first step in the reduction, the iterations are straightforward. 2

Proof of Theorem 3.7:

As in the proof of Theorem 3.6, we start by looking at the individual entries of the tridiagonal
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representation of Lemma 6.3, now multiplied by 1
pγn

. For any k, the rescaled block 1
pγn

C2
k satisfies

by Lemma 3.8 the LDP with speed pγn and rate I2 with γ = τ . With the speed pn we would

like to consider, 1
pγn

C2
k satisfies then the LDP with rate trG(τ−1 ·) and, taking the square root,

C
(n)
k := 1√

pγn
Ck satisfies the LDP with speed pn and rate function

IC(C) = trG(τ−1C2)

for C positive definite and IC(C) = ∞ otherwise. Similarily, if we let D
(n)
k := 1√

pγn
Dk, then

(D
(n)
k )2 satisfies the LDP with speed pγn and rate function I2 of Lemma 3.8 with γ = 1. If we

consider the speed pn and the square root D
(n)
k , this changes the rate to

ID(D) = τ−1trG(D2)

for D positive definite and ID(D) = ∞ otherwise.

Then we follow the same way as for the Hermite model. By the independence of the matrices

Ck, Dk, this yields the LDP for any finite sequence (D
(n)
1 , C

(n)
1 , D

(n)
2 , . . . , D

(n)
k , C

(n)
k ) in the sequence

space of Hermitian non-negative definite matrices with speed pn and good rate

(6.4) ID,C(D1, C1, . . . , Dk, Ck) =

k∑

j=1

τ−1trG(D2
j ) + trG(τ−1C2

j ).

From (2.19), this yields the LDP for (B
(n)
1 , A

(n)
1 , . . . , B

(n)
k ) with k fixed. As in the Hermite case,

we may conclude a LDP for a finite collection of moments and then for the complete sequence

of moments m(Σ(n)) by application of the Dawson-Gärtner theorem. The resulting good rate

function Im is finite in (m1, . . . ) ∈ HN0

p only if (m1, . . . ) is the moment sequence of a nontrivial

measure with support in [0,∞). By the discussion in Section 2.2, this is equivalent to the

existence of a sequence of positive definite matrices D1, C1, D2, . . . such that (m1, . . . ) is the

moment sequence of the spectral measure of J = XX∗ with X as in (2.20). In this case

Im(m1, . . . ) =
∞∑

j=1

τ−1trG(D2
j ) + trG(τ−1C2

j ).

We use the fact that tr(AB) = tr(BA) and det(AB) = det(BA) to get

trG(D2
k) = trG(DkD

∗
k) = trG(Z2k−1) = trG(ζ2k−1)

with Z2k−1 as in (2.17) and (2.18), and

trG(τ−1C2
k) = tr (τ−1CkC

∗
k) = tr (τ−1Z2k) = tr (τ−1ζ2k).
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So the value of the rate function does not depend on the unitary matrices σn and τn in the con-

struction of Dk, Ck, but only on the matrices ζk, which in particular are uniquely determined by

(m1, . . . ). The inverse contraction principle implies then the LDP for the spectral measure Σ(n). 2

7 Appendix: Extension of Baldi’s theorem and Bryc’s

lemma

In this part we prove a theorem which combines a LDP with a convex rate function and a LDP

with a non-convex one. It is one of the key tool for the statements in Section 4 in [GNR16b] and

it will be used in [GNR16a]. The first LDP deals with a random spectral measure restricted to

the support of the equilibrium measure and the second LDP deals with a subset of outliers.

To give the theorem in a general setting, assume that X and Y are Hausdorff topological vector

spaces. Let X ∗ be the topological dual of X and equip X with the weak topology. We denote

by Cb(Y) the set of all bounded continuous functions ϕ : Y → R. A point x ∈ X is called an

exposed point of a function F on X , if there exists x∗ ∈ X ∗ (called an exposing hyperplane for

x) such that

F (x)− 〈x∗, x〉 < F (z)− 〈x∗, z〉(7.1)

for all z 6= x.

7.1 Some classical results in large deviations

Let us recall two well known results in the theory of large deviations, which have to be combined

carefully in order to get our general theorem. The first one is the inverse of Varadhan’s lemma

(Theorem 4.4.2 in [DZ98]), the second one is a version of the so-called Baldi’s theorem (Theorem

4.5.20 in [DZ98]). The latter differs from the version in [DZ98] in a straightforward condition

to identify the rate function, which was applied for instance in [GRZ99] (see also [DG07]). The

proof of our Theorem 7.3 will be quite similar to the proof of these two classical theorems.

Theorem 7.1 (Bryc’s Inverse Varadhan Lemma) Suppose that the sequence (Yn) of ran-

dom variables in Y is exponentially tight and that the limit

Λ(ϕ) := lim
n→∞

1

n
logEenϕ(Yn)
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exists for every ϕ ∈ Cb(Y). Then (Yn) satisfies the LDP with the good rate function

I(y) = sup
ϕ∈Cb(Y)

{ϕ(y)− Λ(ϕ)} .

Furthermore, for every ϕ ∈ Cb(Y),

Λ(ϕ) = sup
y∈Y

{ϕ(y)− I(y)} .

Theorem 7.2 (A version of Baldi’s Theorem) Suppose that the sequence (Xn) of random

variables in X is exponentially tight and that

1. There is a set D ⊂ X ∗ and a function GX : D → R such that for all x∗ ∈ D

(7.2) lim
n→∞

1

n
logE exp (n〈x∗, Xn〉) = GX(x

∗) ;

2. The set F of exposed points x of

G∗
X(x) = sup

x∗∈D
{〈x∗, x〉 −GX(x

∗)}

with an exposing hyperplane x∗ satisfying x∗ ∈ D and γx∗ ∈ D for some γ > 1, is dense in

{G∗
X < ∞}.

Then (Xn) satisfies the LDP with good rate function G∗
X .

7.2 A general theorem

Our extension is the following combination of the two above theorems. The main point is that

the rate function does not need to be convex, but we still only need to control linear functionals

of Xn.

Theorem 7.3 Assume that Xn ∈ X and Yn ∈ Y are defined on the same probabilistic space and

that the two sequences (Xn) and (Yn) are exponentially tight. Assume further that

1. There is a set D ⊂ X ∗ and functions GX : D → R, J : Cb(Y) → R such that for all x∗ ∈ D

and ϕ ∈ Cb(Y)

(7.3) lim
n→∞

1

n
logE exp (n〈x∗, Xn〉+ nϕ(Yn)) = GX(x

∗) + J(ϕ) ;

40



2. The set F of exposed points x of

G∗
X(x) = sup

x∗∈D
{〈x∗, x〉 −GX(x

∗)},

with an exposing hyperplane x∗ satisfying x∗ ∈ D and γx∗ ∈ D for some γ > 1, is dense in

{G∗
X < ∞}.

Then, the sequence (Xn, Yn) satisfies the LDP with speed n and good rate function

I(x, y) = G∗
X(x) + IY (y) ,

where

IY (y) = sup
ϕ∈Cb(Y)

{ϕ(y)− J(ϕ)}.

Let us note that in view of Varadhan’s Lemma we have

J(ϕ) = sup
y∈Y

{ϕ(y)− IY (y)}.

Proof:

Upperbound: The proof follows the lines of the proof of part (b) of Theorem 4.5.3 in [DZ98].

Note that since the sequence (Xn, Yn) is exponentially tight it suffices to show the upper bound

for compact sets.

Lowerbound: As usual, it is enough to consider a neighbourhood ∆1 × ∆2 of (x, y) where

I(x, y) < ∞. Take lim infn→∞
1
n
log P((Xn, Yn) ∈ ∆1 × ∆2) and get a lower bound tending to

I(x, y) when the size of the neighbourhood tends to zero. Actually, due to the density assumption

2. it is enough to study the lower bound of P(Xn ∈ ∆1, Yn ∈ ∆2) when x ∈ F and IY (y) < ∞.

As in [DZ98] (Proof of Lemma 4.4.6), let ϕ : Y → [0, 1] be a continuous function, such that

ϕ(y) = 1 and ϕ vanishes on the complement ∆c
2 of ∆2. For m > 0, define ϕm := m(ϕ− 1). Note

that

J(ϕm) ≥ −IY (y) .

We have

P(Xn ∈ ∆1, Yn ∈ ∆2) = E
[1{Xn∈∆1}1{Yn∈∆2}e

n〈x∗,Xn〉+nϕm(Yn)e−n〈x∗,Xn〉−nϕm(Yn)
]
.

Now −ϕm ≥ 0 and on ∆1, −〈x∗, Xn〉 ≥ −〈x∗, x〉 − δ for a δ > 0, so that

(7.4) P(Xn ∈ ∆1, Yn ∈ ∆2) ≥ E
[1{Xn∈∆1}1{Yn∈∆2}e

n〈x∗,Xn〉+nϕm(Yn)
]
e−n〈x∗,x〉−nδ .
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Denoting

ℓn =
1

n
logEen〈x

∗,Xn〉 , Ln :=
1

n
logEen〈x

∗,Xn〉+nϕm(Yn)

and P̃ the new probability on X × Y such that

dP̃

dP
= en〈x

∗,Xn〉+nϕm(Yn)−nLn ,

we get

(7.5) P(Xn ∈ ∆1, Yn ∈ ∆2) ≥ P̃(Xn ∈ ∆1, Yn ∈ ∆2)e
−n〈x∗,x〉−nδ+nLn .

For the exponential term we have

(7.6) lim inf
n→∞

1

n
log e−n〈x∗,x〉−nδ+nLn ≥ 〈x∗, x〉 − δ +GX(x

∗) + J(ϕm) ≥ −G∗
X(x)− IY (y)− δ.

We may choose δ arbitrarily small by choosing ∆1 sufficiently small, so that it will be enough to

prove that

(7.7) P̃(Xn ∈ ∆1, Yn ∈ ∆2) −−−→
n→∞

1

or equivalently, that

(7.8) P̃(Xn ∈ ∆c
1) + P̃(Yn ∈ ∆c

2) −−−→
n→∞

0 .

For the first term, note that under P̃ the moment generating function of Xn satisfies

lim
n→∞

1

n
log Ẽ[en〈z

∗,Xn〉] = lim
n→∞

1

n
logE[en〈z

∗+x∗,Xn〉+ϕm(Yn)−nLn ]

= GX(z
∗ + x∗) + J(ϕm)−GX(x

∗)− J(ϕm)

= GX(z
∗ + x∗)−GX(x

∗)

=: G̃X(z
∗),

for z∗ ∈ D̃ := {z∗ : x∗ + z∗ ∈ D}. We may then follow the argument on p.159-160 in [DZ98]

(as an auxiliary result in their proof of the lower bound). Using that x∗ ∈ D is an exposing

hyperplane, we get

lim sup
n→∞

1

n
log P̃(Xn ∈ ∆c

1) < 0.

Considering the second term in (7.8), we have, on ∆c
2

dP̃

dP
= e−nm+n〈x∗,Xn〉−nLn
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so that

P̃(Yn ∈ ∆c
2) ≤ e−nm+nℓn−nLn .

Taking the logarithm, this implies

lim sup
n→∞

1

n
log P̃(Yn ∈ ∆c

2) ≤ −m+GX(x
∗)−GX(x

∗)− J(ϕm)

= −m− sup
z∈Y

{ϕm(z)− IY (z)} ≤ −m+ IY (y)

which tends to −∞ when m → ∞.

To summarize, we have proved (7.8), i.e. (7.7), which with (7.5) and (7.6) gives

lim
∆1↓x,∆2↓y

lim inf
n→∞

1

n
logP(Xn ∈ ∆1, Yn ∈ ∆2) ≥ −G∗

X(x)− IY (y) ,

which leads to the lower bound of the LDP. 2

Remark 7.4 In Section 4 of [GNR16b], and similar to Section 5.1 of the present paper, we

studied the joint moment generating function of (µ̃
(n)
I , λ±

M). For s ∈ R2j we introduced

Gn(f, s) = E

[
exp

{
n

∫
f dµ̃

(n)
I + n〈s, λ±

M〉
}]

,

and proved that for all f such that log(1− f) is continuous and bounded (and all s ∈ R
2j),

lim
n→∞

1

n
logGn(f, s) = G(f) +H(s) .(7.9)

Actually H is the Legendre dual of IM,λ±, i.e.

H(s) = sup
y∈R2j

{〈s, y〉 − IM,λ±(y)} = (IM,λ±)∗ (s) .

However, the rate IM,λ± might be non-convex (when V is not convex) and hence the dual H∗ is

not strictly convex on a dense set, and then the Assumption 2 of Theorem 7.2 may not be verified.

The convergence in (7.9) is therefore not enough to conclude the joint LDP for (µ̃
(n)
I , λ±

M) directly

from the Theorem 7.2 above. A complete proof of Theorem 3.1 in [GNR16b] needs actually an

application of Theorem 7.3.
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