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Sum rules and large deviations for spectral matrix measures

Fabrice Gamboa, Jan Nagel and Alain Rouault

January 28, 2016

Abstract

A sum rule is a relationship between the reversed Kullback-Leibler divergence of a posi-

tive measure on R and some non-linear functional built on spectral elements related to this

measure (see for example [13] or [20]). In this paper, using only probabilistic tools of large

deviations, we extend the sum rules obtained in [9] to the case of an Hermitian matrix valued

measure. We recover earlier result of Damanik et al ([3]) for the case of the semi-circular

law and obtain new sum rules for Hermitian matrix measures in the Pastur-Marchenko case.

1 Introduction

The main mathematical objects considered in this paper rely on the notion of Hermitian matrix

measure (that we shorten in matrix measure). To begin with, let us recall what is a matrix

measure. For p, q ∈ N∗, let denote by Mp,q the set of all complex matrices of size p× q. Further,

let Hp be the set of Hermitian matrices of size p × p. A matrix measure Σ = (Σi,j)i,j of size p

on R is a matrix of signed complex measures, such that Σ(A) = (Σi,j(A))i,j ∈ Hp for any Borel

set A ⊂ R. Further, if for any A, Σ(A) is a nonnegative matrix we say that Σ is nonnegative.

We denote by Mp(T ) the set of p × p nonnegative matrix measures with support in T ⊂ R.

Further, Mp,1(T ) is the subset of Mp(T ) of normalized measures Σ satisfying Σ(T ) = Ip. For

p = 1, a member of Mp,1(T ) is called a scalar measure (classical probability measure). An

obvious example of matrix measure is the spectral matrix measure. It is nothing more than the

projections of the spectral resolution of a Hermitian matrix. More precisely, a Hermitian matrix

X of size N may be written as UDU∗ where D = diag(λi) contains the eigenvalues of X and U

is the matrix formed by an orthonormal basis of eigenvectors. Then, for p ≤ N , there exists a

unique spectral matrix measure ΣXp ∈ Mp(R) supported by the spectrum of X , such that for all

1



k > 0 and v, w ∈ Cp

(v∗, 01,N−p)X
k

(
w

0N−p,1

)
=

∫
xkd(v∗ΣXp w)(x),(1.1)

where for r, s ∈ N∗, 0r,s is the null matrix of Mr,s. For j = 1, · · · , N , let uj,p := (Ui,j)i=1,··· ,p be

the jth truncated column of U . Then, obviously

ΣXp (dx) =

N∑

j=1

uju
∗
jδλj (dx),(1.2)

where δa is the Dirac measure in a. That is, {λ1, . . . , λN} is the support of ΣXp and u1u
∗
1, . . . uNu

∗
N

are the weights. Furthermore, as U is unitary we have
∑

j uju
∗
j = Ip so that ΣXp ∈ Mp,1(T ).

If we assume further that N = pn for some positive integer n and that all the eigenvalues of X

have a single multiplicity then it is possible to build a block tridiagonal matrix

(1.3) Jn =




B1 A1

A∗
1 B2

. . .
. . .

. . . An−1

A∗
n−1 Bn



.

such that ΣXp = ΣJnp . Here, all the blocks of Jn are matrices of Mp,p. The case p = 1 is the

most classical and relies on the construction of the orthogonal polynomials with respect to ΣX1

(see for example [18]). The general case is more complicated and requires more technical tools

from the theory of matrix orthogonal polynomials (see [19]). In Section 2.1, we will recall the

construction of such tridiagonal representations. Notice that the case p = 1 is also useful in the

context of random matrix theory. In this case, the tridiagonal representation (1.3) of the classical

ensembles of random matrices have very nice properties [8]. First, of course, X and Jn share

the same spectrum. Further, for the Gaussian unitary ensemble the coefficient appearing in the

tridiagonal matrix are independent with simple distributions. The diagonal terms have Gaussian

distribution while the subdiagonal ones have χ2 distributions [8]. We will give in Lemmas 5.1

and 6.1 results in the same spirit in the general block case both for the Gaussian and Laguerre

ensembles. In this paper, we assume that X is random and has quite general distribution. It is

sampled in HN with a unitarily invariant distribution of the form

Z−1
N e−trNV (X)dX,(1.4)

for V a confining potential. Its eigenvalues behave as a Coulomb gas with potential V (see

formula (3.3)) and the matrix of eigenvectors follows independently the Haar distribution in the

set of unitary matrices.
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One of our main result is that, as N goes to infinity, the random spectral matrix measure ΣXp

converges to some equilibrium matrix measure (depending on the potential) at exponential rate.

Indeed, we show that this random object satisfies a large deviations principle (LDP). To be self

contained, we recall in Section 3.2 the definition and useful facts on LDP. Furthermore, the rate

function of this LDP involves a matrix extension of the reversed Kullback-Leibler information

with respect to the equilibrium matrix measure (see equation (2.13) and Theorem 4.2) and a

contribution of the outlying eigenvalues. In the Gaussian and Laguerre unitary ensembles, as

pointed out before, the coefficients encoding the Jacobi matrix Jn have very nice properties

(independence and known distributions). These properties allow to compute the rate function of

the LDP by the way of the blocks involved in the Jacobi representation. Further, the uniqueness

of a rate function leads to our two mains Theorems 2.3 and 2.5 that give relationships between

the reversed Kullback-Leibler information with respect to the equilibrium matrix measure and

non linear functional built on the blocks involved in the Jacobi matrix. These formulas are sum

rules (see [4], [3], [18], [19], [20] and references therein). Theorem 2.3 is proved in [3] by strong

analysis tools. We recover this result by using only probabilistic arguments. For p = 1, it has

been proved earlier in [13]. Up to our knowledge, our Theorem 2.5 is new and is the matrix

extension of the one we have obtained in [9] for p = 1.

Our paper is organized as follows. In Section 2, we first give definitions and tools to handle

both the block and the matrix measure frames. Then, we state our main results concerning the

sum rule for spectral matrix measures. Section 3 deals with the asymptotic properties of the

spectral random matrix measure. We state in Section 3.3 a general LDP for random spectral

matrix measure drawn by using a general potential. The most technical proofs are postponed to

Sections 4, 5 and 6.

2 Matrix orthogonal polynomials and block Jacobi oper-

ators

2.1 Construction

We will need to work with polynomials with coefficients in Mp,p. They will be orthogonal with

respect to some matrix measure on R. We recall some useful facts and refer to [4] for more on the

subject. Let us give some more notations. Let p ∈ N∗ and Σ ∈ Mp(R be a compactly supported

matrix measure. Further, let F and G be measurable matrix valued functions F,G : R → Mp,p.
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We define two p× p matrices by setting

〈〈F,G〉〉R =

∫

R

F (z)∗dΣ(z)G(z),

〈〈F,G〉〉L =

∫

R

G(z)dΣ(z)F (z)∗ .

A sequence of functions on R, (ϕj) with values in Hp is called right-orthonormal if

〈〈ϕi, ϕj〉〉R = δijIp .

The orthogonal polynomial recursion is built as follows. First, assume that Σ is non-trivial, that

is,

tr〈〈P, P 〉〉R > 0(2.1)

for any non zero matrix polynomial P . See Lemma 2.1 of [4] for equivalent characterizations of

non-triviality. We define the right monic matrix orthogonal polynomials PR
n by applying Gram-

Schmidt procedure to {Ip, xIp, x2Ip, . . . }. In other words, PR
n is the unique matrix polynomial

PR
n (x) = xnIp+ lower order terms such that 〈〈xkIp, PR

n 〉〉R = 0 for k = 0, . . . , n − 1. For non-

trivial matrix measures, this is possible for any n ≥ 0 and this sequence satisfies the recurrence

relation:

(2.2) xPR
n (x) = PR

n+1(x) + PR
n (x)u

R
n + PR

n−1v
R
n

If we set

γn := 〈〈PR
n , P

R
n 〉〉R

then γn is positive definite and we have

vRn = γ−1
n−1γn .

To get normalized orthogonal polynomials pRn we set

(2.3) p0 = Ip , pRn = PR
n κ

R
n

where the sequence of p× p matrix (κRn ) has to satisfy, for every n

(2.4) γn =
(
κRn
(
κRn
)∗)−1

.

This constraint opens several choices for κRn (see Section 2.1.5 of [4]). Let us leave the choice

open, setting

(2.5) κRn = γ−1/2
n σn

with σn unitary.
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Remark 2.1 We can define similarly the sequence of monic polynomials PL
n and the sequence of

left-orthonormal polynomials pLn in the same way. We have

PR
n = (PL

n )
∗

and

〈〈PL
n , P

L
n 〉〉L = γn

and the recurrence relation:

xPL
n (x) = PL

n+1(x) + uLnP
L
n (x) + vLnP

L
n−1(2.6)

with

vLn = γnγ
−1
n−1 .

The above condition (2.5) is replaced by pLn = τnγ
−1/2
n PL

n .

To formulate the recursion in terms of orthonormal polynomials, we use (2.3) and get

xpRn = pRn+1(κ
R
n+1)

−1κRn + pRn (κ
R
n )

−1uRnκ
R
n + pRn−1(κ

R
n−1)

−1vRn κ
R
n(2.7)

i.e.

xpRn = pRn+1A
∗
n+1 + pRnBn+1 + pRn−1An(2.8)

with

An = (κRn−1)
−1vRn κ

R
n = σ∗

n−1γ
1/2
n−1v

R
n γ

−1/2
n σn = σ∗

n−1γ
−1/2
n−1 γ

1/2
n σn(2.9)

Bn+1 = (κRn )
−1uRnκ

R
n = σ∗

nγ
1/2
n uRn γ

−1/2
n σn(2.10)

Notice that (2.9) yields

(2.11) AnA
∗
n = σ∗

n−1γ
−1/2
n−1 γnγ

−1/2
n−1 σn−1

In other terms the map f 7→ (x 7→ xf(x)) defined on the space of matrix polynomials is a right

homomorphism and is represented in the (right-module) basis {pR0 , pR1 , . . . } by the matrix

J =




B1 A1

A∗
1 B2

. . .
. . .

. . .


(2.12)
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with Bk Hermitian and Ak non-singular. Moreover, if σ0 = Ip, the measure Σ is again the spectral

matrix measure of the matrix J defined as in (1.1) (Theorem 2.11 of [4]). Let us remark that

although to each Σ corresponds a whole equivalence class of Jacobi coefficients given by the

different σn, there is exactly one representative such that all Ak are Hermitian positive definite

(Theorem 2.8 in [4]).

Starting with a finite dimensional Jacobi matrix Jn as in (1.3), the spectral matrix measure

of Jn is supported by at most n points and is in particular not non-trivial. However, we may

still define pR1 , . . . , p
R
n−1 by the recursion (2.8). As long as the matrices Ak are invertible, these

polynomials are orthonormal with respect to the spectral measure of Jn and (2.1) holds for all

matrix polynomials up to degree n− 1.

If Σ is a quasi scalar measure, that is if Σ = Ipσ with σ a scalar measure and if Π is a positive

matrix measure with Lebesgue decomposition

Π(dx) = h(x)σ(dx) + Πs(dx) ,

we define

(2.13) K(Σ|Π) := −
∫

log det h(x) σ(dx) .

Remark 2.2 It is possible to rewrite the above quantity in the flavour of Kullback-Leibler infor-

mation (or relative entropy) with the notation of [14] or [16], i.e.

K(Σ|Π) =
∫

log det
dΣ(x)

dΠ(x)
dσ(x) ,

if Σ is strongly absolutely continuous with respect to Π, and infinity otherwise. See Corollary 8

in [11].

2.2 Measures on [0,∞)

In [7], it is proved that if a non-trivial matrix measure Σ has a support included in [0,∞) then

there exists a sequence (ζn)n of non-singular elements of Mp,p such that

(2.14) uRn = ζ2n+1 + ζ2n , vRn = ζ2n−1ζ2n

with ζ0 = 0p,p and moreover,

(2.15) ζn = h−1
n−1hn, (n ≥ 1);
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with h0 = Ip and for n ≥ 1, hn is an Hermitian positive definite matrix. Note that this implies

γn = ζ1 . . . ζ2n = h2n. We then have the relations for the orthonormal polynomials

Bn+1 = σ∗
nγ

1/2
n (ζ2n+1 + ζ2n)γ

−1/2
n σn(2.16)

An = σ∗
n−1γ

1/2
n−1ζ2n−1ζ2nγ

−1/2
n σn .(2.17)

In the scalar case, this yields

(2.18) Bn+1 = ζ2n+1 + ζ2n, (An)
2 = ζ2n−1ζ2n .

In the matrix case, we may set

(2.19) Z2n+1 = σ∗
nγ

1/2
n ζ2n+1γ

−1/2
n σn , Z2n = σ∗

nγ
1/2
n ζ2nγ

−1/2
n σn.

To highlight a further decomposition, we set

Cn = σ∗
nh

1/2
2n h

−1/2
2n−1, Dn+1 = σ∗

nh
−1/2
2n h

1/2
2n+1.

With these definitions and (2.15) we see that

(2.20) Z2n+1 = Dn+1D
∗
n+1, Z2n = CnC

∗
n

are in fact Hermitian positive definite. For the recursion coefficients we get the following matrix

analogues of (2.18), B1 = D1D
∗
1,

(2.21) Bn+1 = Dn+1D
∗
n+1 + CnC

∗
n = Z2n+1 + Z2n, An = DnC

∗
n.

In other words, the Jacobi operator J can in fact be decomposed as J = XX∗, where X is the

bidiagonal matrix

(2.22) X =




D1 0

C1 D2
. . .

. . .
. . .


 .

2.3 Results part I: Sum rules

For α− < α+, let Sp = Sp(α−, α+) be the set of all bounded nonnegative measures Σ ∈ Mp(R)

with

(i) supp(Σ) = K ∪ {λ−i }N
−

i=1 ∪ {λ+i }N
+

i=1, where K ⊂ I = [α−, α+], N−, N+ ∈ N ∪ {∞} and

λ−1 < λ−2 < · · · < α− and λ+1 > λ+2 > · · · > α+.
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(ii) If N− (resp. N+) is infinite, then λ−j converges towards α− (resp. λ+j converges to α+).

Such a measure Σ can be written as

Σ = Σ|I +
N+∑

i=1

Γ+
i δλ+i

+
N−∑

i=1

Γ−
i δλ−i

,(2.23)

for some nonnegative Hermitian matrices Γ+
1 , · · · ,Γ+

N+,Γ
−
1 , · · · ,Γ−

N−. Further, we define Sp,1 =

Sp,1(α−, α+) := {Σ ∈ Sp(α−, α+)|Σ(R) = Ip}.

2.3.1 The Hermite case revisited

In the scalar frame (p = 1), the sum rule gives two different expressions for the divergence between

a probability measure and the semicircle distribution (see [13] and [20]). In the more general case

p ≥ 2, it gives two forms for the divergence to the operator version of the semicircle law

SC(dx) =

√
4− x2

2π
1[−2,2](x)dx

supported by [α−, α+] = [−2, 2]. We refer to [3] and [19] for this matrix sum rule. We denote by

ΣSC = SC ·Ip the matrix version of the semicircle law. The semi-infinite block Jacobi operator of

ΣSC has entries

BSC
k = 0p,p, ASC

k = Ip,

for all k ≥ 1. The spectral side of the sum rule involves a contribution of outlying eigenvalues,

for which we define

F+
H(x) :=





∫ x

2

√
t2 − 4 dt = x

2

√
x2 − 4− 2 log

(
x+

√
x2−4
2

)
if x ≥ 2

∞ otherwise.

and F−
H(x) = F+

H(−x). Let G be the very popular function (Cramér transform of the exponential

distribution)

G(x) = x− 1− log x .

We adopt the convention of the functional calculus, so that for X a p× p nonnegative Hermitian

matrix, we have

(2.24) trG(X) = trX − log detX − p .

The following remarkable equality holds. This result has been first proven by [3]. In Section 3.4,

we give a probabilistic proof. Indeed, we show that this sum rule is a consequence of two large

deviation results.
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Theorem 2.3 Let Σ ∈ Mp,1(R) be a spectral measure with Jacobi operator (2.12). If Σ ∈
Sp,1(−2, 2), then

K(ΣSC |Σ) +
N+∑

k=1

F+
H(λ

+
k ) +

N−∑

k=1

F−
H(λ

−
k ) =

∞∑

k=1

1
2
trB2

k + trG(AkA
∗
k),

where both sides may be infinite simultaneously. If Σ /∈ Sp,1(−2, 2), the right hand side equals

+∞.

We remark that since trG(σAA∗σ∗) = trG(AA∗) for any unitary σ, the value of the right hand

side in Theorem 2.3 is independent of the choice of unitary matrices σn.

Let us restate the sum rule as in the notation of [20]. For a spectral measure Σ, we define the

m-function

m(z) =

∫
1

x− z
dΣ(x), (z ∈ C \ R).

For z in the interior of the unit disk the function M(z) = −m(z + z−1) can be defined and

for almost all θ ∈ [0, 2π], the limit M(eiθ) = limr→1M(reiθ) exists and is neither vanishing nor

infinite. Finally, let

(2.25) Q(Σ) =
1

π

∫ 2π

0

log

(
sinp θ

det(ImM(eiθ))

)
sin2 θdθ .

Then the following statement is the combination of Theorem 4.6.1 and Theorem 4.6.3 of [20].

Theorem 2.4 Let An, Bn be the block entries of the block Jacobi operator J and let Σ denote the

spectral matrix measure of J . Then

∞∑

n=1

tr((AnA
∗
n)

1/2 − I)2 + trB2
n <∞

if and only if

(a) The essential support of J satisfies

σess(J) ⊂ [−2, 2] ,

(b) The eigenvalues {λj}∞j=1 /∈ σess(J∞) satisfy

∞∑

k=1

(|λk| − 2)3/2 <∞
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(c) The density f(x) of the absolute continuous part of Σ with respect to the Lebesgue measure

multiplied with the identity obeys
∫ 2

−2

√
4− x2 log det f(x)dx > −∞

In this case, we have

(2.26)
∞∑

n=1

(
1
2
tr(B2

n) + tr(G(AnA
∗
n))
)
= Q(Σ) +

∑

λ/∈σess(J∞)

F (λ).

Here, F is defined to be equal to F+
H on [2,∞) and equal to F−

H on (−∞, 2].

Notice that the integral Q(Σ) appearing in (2.26) can be interpreted as the relative entropy. For

a measure Σ supported on [−2, 2], the (inverse) Szegö mapping pushes forward Σ to a symmetric

measure ΣSz on the unit circle such that for all measureable and symmetric f ,
∫
f(θ)dΣSz(θ) =

∫
f
(
arccos(x

2
)
)
dΣ(x).

Let f(x) denote the density of Σ with respect to the matrix semicircle distribution ΣSC = SC ·Ip,
then a straightforward generalization of the arguments in Lemma 3.5.1 in the book of [20] to the

matrix case show

ImM(eiθ) = Imm(2 cos θ) = πf(2 cos θ)

for θ ∈ [0, π] and M(e−iθ) = −M(eiθ). Then, using the symmetry to write Q(Σ) as an integral

over [0, π] and setting x = 2 cos θ, we obtain

Q(Σ) =
2

π

∫ 2

−2

log

(
2−p(4− x2)−p/2

det πf(x)

)
1

4

√
4− x2 dx

=

∫ 2

−2

log det

(
1

2π

√
4− x2f(x)−1

)
1

2π

√
4− x2 dx

=

∫
log det

(
dΣSC
dΣ

)
d SC = K(ΣSC |Σ).

2.3.2 Our new sum rule: the Laguerre case

In the Laguerre case, the central measure is the matrix Marchenko-Pastur law with scalar version

MP(τ)(dx) =

√
(τ+ − x)(x− τ−)

2πτx
1(τ− ,τ+)(x)dx,
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where τ ∈ (0, 1], α± = τ± = (1 ± √
τ )2 and we set ΣMP(τ) = MP(τ) · Ip. For the new Laguerre

sum rule, we have to replace F±
H by

F+
L (x) =





∫ x

τ+

√
(t− τ−)(t− τ+)

tτ
dt if x ≥ τ+,

∞ otherwise.

and

F−
L (x) =





∫ τ−

x

√
(τ− − t)(τ+ − t)

tτ
dt if x ≤ τ−,

∞ otherwise.

One of our main results is Theorem 2.5. Up to our knowledge, this result is new. The proof is

again in Section 3.4.

Theorem 2.5 Assume the Jacobi matrix J is nonnegative definite and let Σ be the spectral matrix

measure associated with J . Then for any τ ∈ (0, 1], if Σ ∈ Sp,1(τ−, τ+),

K(ΣMP (τ) |Σ) +
N+∑

n=1

F+
L (λ

+
n ) +

N−∑

n=1

F−
L (λ

−
n ) =

∞∑

k=1

τ−1trG(ζ2k−1) + trG(τ−1ζ2k)

where both sides may be infinite simultaneously and ζk is defined as in (2.14). If Σ /∈ Sp,1(τ−, τ+),
the right hand side equals +∞.

Since the matrices ζk can be decomposed as in (2.15), they are in fact similar to a Hermitian

matrix

ζk = h
−1/2
k−1

[
h
−1/2
k−1 hkh

−1/2
k−1

]
h
1/2
k−1 ,

hence the sum on the right hand side in Theorem 2.5 is real valued.

Similar to the matrix gem , Theorem 2.4, we can formulate equivalent conditions on the matrices

ζk and the spectral measure, which characterize finiteness of the sum. The following corollary is

the matrix counterpart of Corollary 2.4 in [9]. It follows immediately from Theorem 2.5, since

F−
L (0) = ∞ and

F±
L (τ

± ± h) =
4

3τ 3/4(1 +±√
τ)2

h3/2 + o(h3/2) (h→ 0+)

and, for H similar to a Hermitian matrix,

trG(Ip +H) =
1

2
trH2 + o(||H||) (||H|| → 0).

Here, || · || is any matrix norm.
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Corollary 2.6 Assume the Jacobi matrix J is nonnegative definite and let Σ be the spectral

matrix measure of J . Then

∞∑

k=1

[tr(ζ2k−1 − Ip)
2 + tr(ζ2k − τIp)

2] <∞(2.27)

if and only if

1. Σ ∈ Sp,1(τ−, τ+)

2.
∑N+

i=1(λ
+
i − τ+)3/2 +

∑N−

i=1(τ
− − λ−i )

3/2 <∞ and if N− > 0, then λ−1 > 0.

3. the spectral matrix measure Σ of J with Lebesgue decomposition dΣ(x) = f(x)Ipdx+dΣs(x)

satisfies
∫ τ+

τ−

√
(τ+ − x)(x− τ−)

x
log det(f(x))dx > −∞.

3 Randomization and large deviations

3.1 Matrix random models

The results of the previous section rely on two classical distributions of random Hermitian ma-

trices: the Gaussian (or Hermite) and the Laguerre (or Wishart) ensemble. A random variable

X taking values in HN is distributed according to the Gaussian unitary ensemble GUEN , if all

real diagonal entries are standard normal distributed and the off-diagonal variables are complex

standard normal distributed and all entries on and above the diagonal are independent. Recall

that a complex random variable is said to be standard normal distributed if the real and imagi-

nary part are independent normal random variables with mean 0 and variance 1/2. The density

of the eigenvalues λ = (λ1, . . . , λN) of the Gaussian ensemble is (see for example [1])

gG(λ) = cG
∏

1≤i<j≤N
|λi − λj|2

N∏

i=1

e−λ
2
i /2.(3.1)

In analogy to the scalar χ2 distribution, the Laguerre ensemble is the distribution of the square of

Gaussian matrices: suppose G denotes a N×γ matrix with independent complex standard normal

entries, then GG∗ is distributed according to the Laguerre ensemble LUEN (γ) with parameter γ.

If γ ≥ N , the eigenvalues have the density (see for example [1])

gL(λ) = cγL
∏

1≤i<j≤N
|λi − λj |2

N∏

i=1

λγ−Ni e−λi1{λi>0}.(3.2)
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It is a well-known consequence of the invariance under unitary conjugation, that in the classical

ensembles (1.4), the array of random eigenvalues and the random eigenvector (unitary) matrix

are independent. Further, this latter matrix is Haar distributed ([5]). This implies the following

equality in distribution for the weights (see Proposition 3.1 in [11]).

Lemma 3.1 Let U be Haar distributed on the set of N × N unitary matrices and define uj =

(Ui,j)1≤i≤p ∈ Cp. Let further v1, . . . , vN be independent complex standard normal distributed

vectors in Cp. Then (u1u
∗
1, . . . , uNu

∗
N) has the same distribution as

(
H−1/2v1v

∗
1H

−1/2, . . . , H−1/2vNv
∗
NH

−1/2
)
,

where H =
∑n

k=1 vkv
∗
k.

In the following, we will denote the joint distribution of the matrix weights appearing in Lemma

3.1 by Dp,N . Notice that this distribution is a kind of matrix Dirichlet law. Our first large

deviation principle will hold for a general class of p× p matrix measures. We draw the random

eigenvalues λ1, . . . , λN with the absolute continuous distribution PVN where this law has Lebesgue

density

dPVN(λ)

dλ
=

1

ZN
V

∏

1≤i<j≤N
|λi − λj |2

N∏

i=1

e−NV (λi).(3.3)

We suppose that the potential V is continuous and real valued on the interval (b−, b+) (−∞ ≤
b− < b+ ≤ +∞), infinite outside of [b−, b+] and limx→b± V (x) = V (b±) with possible limit

V (b±) = +∞. Under the assumption

(A1) Confinement: lim inf
x→b±

V (x)

log |x| > 2 ,

the empirical distribution µ
(N)
u of eigenvalues λ1, . . . , λN has a limit µV in probability, which is

the unique minimizer of

µ 7→ E(µ) :=
∫
V (x)dµ(x)−

∫∫
log |x− y|dµ(x)dµ(y).(3.4)

µV has compact support (see [12] or [1]). Indeed, this is a consequence of the LDP for the

empirical spectral measure. We need two additional assumptions on µV :

(A2) One-cut regime: the support of µV is a single interval [α−, α+] ⊂ [b−, b+] ( α− < α+).

13



(A3) Control (of large deviations): the effective potential

JV (x) := V (x)− 2

∫
log |x− ξ| dµV (ξ)(3.5)

achieves its global minimum value on (b−, b+) \ (α−, α+) only on the boundary of this set.

In the Hermite case, we have V (x) = 1
2
x2 and the equilibrium measure µV is the semicircle law.

In the Laguerre case, we may set V (x) = τ−1x− (τ−1 − 1) log(x) for τ ∈ (0, 1] and V (x) = +∞
for negative x. In this case, µV is the Marchenko-Pastur law MP(τ). In both the Hermite and the

Laguerre case, the assumption (A1), (A2) and (A3) are satisfied. We need one more definition

related to outlying eigenvalues:

F+
V (x) =




JV (x)− infξ∈R JV (ξ) if α+ ≤ x ≤ b+,

∞ otherwise,
(3.6)

F−
V (x) =




JV(x)− infξ∈RJV (ξ) if b− ≤ x ≤ α−,

∞ otherwise.
(3.7)

One may check that in the Hermite case, F±
V = F±

H and in the Laguerre case, F±
V = F±

L , where

F±
H and F±

L have been defined in the previous section.

3.2 Large deviations: some useful lemmas

In order to be self-contained, let us recall the definition of large deviations:

Definition 3.2 Let E be a topological Hausdorff space and let I : E → [0,∞] be a lower semi-

continuous function. We say that a sequence (Pn)n of probability measures on (E,B(E)) satisfies
a large deviation principle (LDP) with rate function I and speed an if:

(i) For all closed sets F ⊂ E:

lim sup
n→∞

1

an
logPn(F ) ≤ − inf

x∈F
I(x)

(ii) For all open sets O ⊂ E:

lim inf
n→∞

1

an
logPn(O) ≥ − inf

x∈O
I(x)

The rate function I is good if its level sets {x ∈ E| I(x) ≤ a} are compact for all a ≥ 0. We

say that a sequence of E-valued random variables satisfies a LDP if their distributions satisfy a

LDP.
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We will frequently use the following principle (see e.g. [6], Chapter 4 p. 126).

Contraction principle. Suppose that (Pn)n satisfies an LDP on (E,B(E)) with good rate

function I and speed an. Let f be a continuous mapping from E to another topological Hausdorff

space F . Then Pn ◦ f−1 satisfies a LDP on (F,B(F )) with speed an and good rate function

I ′(y) = inf
{x∈E|f(x)=y}

I(x), (y ∈ F ).

To prove our main large deviation principle, we will use the Baldi Theorem recalled bellow (see

[2]). To apply it in our setting, we remark that the topological dual of Mp(T ) is the space Cp(T )
of bounded measurable functions f : T → Hp with the pairing

〈Σ, f〉 = tr

∫
fdΣ.

Theorem 3.3 Let F be a topological vector space with dual F ∗. Suppose the sequence of random

variables (Xn)n is exponentially tight in F and that the limit

Λ(Y ) := lim
n→∞

1

n
logE [exp {n〈Xn, Y 〉}] , Y ∈ F ∗

exists, is finite in a neighborhood of the origin and lower semicontinuous. If the set where the

Legendre transform Λ∗ of Λ is strictly convex is dense in {X : Λ∗(X) < ∞}, then (Xn) satisfies

the LDP with speed n and rate function Λ∗.

3.3 Results part II: Large deviations

3.3.1 Large deviation principles

Our first LDP holds for p× p matrix measures

Σ(N) =
N∑

k=1

Wkδλk ,

when the distribution of the support points is PVN and the distribution of weights is Dp,N as in the

case of classical ensembles. As explained in the introduction, this is precisely the distribution of

the spectral measure of an N ×N matrix XN , chosen according to the density (1.4). Recall that
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under assumption (A1), the empirical measure of the eigenvalues converges to an equilibrium

measure µV , supported by [α−, α+]. The rate function of our large deviation principle involved

the reference matrix measure

ΣV = Ip · µV .

We recall that F±
V has been defined in (3.6) and (3.7). The following theorem is the matrix

counterpart of Theorem 3.1 in [9]. Note that in the scalar case, we have an additional parameter

β > 0, corresponding to the inverse temperature of the log-gas. In the matrix case, we need to

fix β = 2 (for complex matrices) due to the nature of the matrix spaces.

Theorem 3.4 Assume that the potential V satisfies the assumptions (A1), (A2) and (A3). Then

the sequence of spectral measures Σ(N) under PVN ⊗Dp,N satisfies the LDP with speed N and rate

function

IV (Σ) = K(ΣV |Σ) +
N+∑

k=1

F+
V (λ

+
k ) +

N−∑

k=1

F−
V (λ

−
k )

if Σ ∈ Sp,1(α−, α+) and IV (Σ) = ∞ otherwise.

Remark 3.5 A natural generalization of Theorem 3.4 holds for potentials V = VN depending

on N , provided that VN converges to a deterministic potential V in an appropriate sense. For

example, it holds if we suppose that VN : R → (−∞,+∞] is a sequence of potentials converging

to V uniformly on the level sets {V ≤ M}, where V satisfies assumptions (A1), (A2) and (A3)

and such that VN(x) ≥ V (x).

In the special cases of Hermite and Laguerre ensemble we can prove further LDPs for the spectral

measure, independently of Theorem 3.4. They are in the subset Mp,1,c of compactly supported

normalized matrix measures. Since we need a specific block structure, we assume N = np.

Theorem 3.6 Let Σ(n) be the spectral measure of 1√
np
Xn. Assume that Xn is distributed accord-

ing to the Hermite ensemble GUEN (N = np). Then the sequence (Σ(n))n satisfies the LDP in

Mp,1,c(R) with speed pn and rate function

IH(Σ) =
∞∑

k=1

[
1
2
trB2

k + trG(AkA
∗
k)
]

where Bk, Ak are the recursion coefficients of Σ as in (2.8).

16



Theorem 3.7 Let Yn be distributed according to the Laguerre ensemble LUEN (pγn), with (N =

np), γn ≥ n an integer sequence such that n
γn

→ τ ∈ (0, 1] and let Σ(n) be the spectral measure of
1
pγn
Yn with a decomposition of recursion coefficients as in Section 2. Then the sequence (Σ(n))n

satisfies the LDP in Mp,1,c([0,∞)) with speed pn and rate function

IL(Σ) =
∞∑

k=1

[
τ−1G(ζ2k−1) +G(τ−1ζ2k)

]
,

with ζk as in (2.15). If Σ is a trivial measure, we have IL(Σ) = ∞.

In order to prove LDPs for the spectral measures in terms of the recursion coefficients we need the

following results for matrices of fixed size. The first and third are straightforward generalizations

of the scalar case, the second one can be found in [10], with small modifications to allow a general

sequence of parameters.

Lemma 3.8 (i) If X ∼ GUEp with p fixed, then the sequence ( 1√
n
X)n satisfies the LDP with

speed n and good rate function

I1(X) = 1
2
trX2.

(ii) Let Yn ∼ LUEp(γn) with a positive sequence (γn)n such that γn
n
→ γ > 0, then the sequence

( 1
n
Yn)n satisfies the LDP with speed n and good rate function

I2(Y ) = γ trG(γ−1Y )

if Y is Hermitian and nonnegative and I2(Y ) = ∞ otherwise.

(iii) Let Z ∼ LUEp(1) with p fixed, that is, Z = vv∗ when v is a vector of independent complex

standard normal random variables. Then the sequence ( 1
n
Z)n satisfies the LDP with speed

n and good rate function

I3(Z) = trZ

if Z is Hermitian and nonnegative and I3(Z) = ∞ otherwise.
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3.4 From large deviations to sum rules

Proof of Theorem 2.3:

Consider the matrix measure Σ(n) with N = np support points with density

1

ZN
V

∏

1≤i<j≤N
|λi − λj|2

N∏

i=1

e−Nλ
2
i /2

and weight distribution Dp,N independent of the support points. By Theorem 3.4, the sequence

(Σ(n))n satisfies the LDP with speed np and rate function IV , where µV is the semicircle law and

furthermore F±
V = F±

H . That is, the rate function is precisely the left hand side of the equation

in Theorem 2.3. On the other hand, Σ(n) is also the spectral measure of the random matrix
1√
pn
Xn, where Xn ∼ GUEpn. By Theorem 3.6, the sequence (Σ(n))n satisfies also the LDP in

the space of compactly supported measures with speed np and rate function IH , the right hand

side of the equation in Theorem 2.3. Since a large deviation rate function is unique, we must

have IV (Σ) = IH(Σ) for any compactly supported Σ ∈ Mp,1,c. If Σ is not compactly supported,

it suffices to remark that the recursion coefficients cannot satisfy supn (||An||+ ||Bn||) < ∞,

as otherwise J would be a bounded operator. But trB2 + trG(A) diverges as ||A|| → ∞ or

||B|| → ∞ and so the right hand side in Theorem 2.3 equals +∞. 2

Proof of Theorem 2.5:

Fix τ ∈ (0, 1] and let V (x) = τ−1x − (τ−1 − 1) log(x) for x ≥ 0 and V (x) = +∞ if x < 0.

From Theorem 3.4 we get that under the distribution PVN ⊗ Dp,N the sequence (Σ(n))n satisfies

the LDP with speed N = np and rate function IV . In this case, the equilibrium measure is

the Marchenko-Pastur law MP(τ) multiplied by Ip. Further, we have F±
V = F±

L . So that, IV is

nothing more than the left hand side of the sum rule in Theorem 2.5. We would like to combine

this result with the LDP in Theorem 3.7, but since this requires integer parameters, we need to

modify the potential slightly. Define γn = ⌈nτ−1⌉ and consider the eigenvalue distribution with

density

1

ZN
V

∏

1≤i<j≤N
|λi − λj |2

N∏

i=1

λpγn−pni e−pγnλi1[0,∞)(λi)(3.8)

This is the eigenvalue distribution of the matrix 1
pγn
Yn, when Yn ∼ LUEpn(pγn). By Theorem

3.7, the spectral measure of this matrix satisfies the LDP with speed pn and rate function IL
which is the right hand side of the sum rule in Theorem 2.5. We may as well write the eigenvalue
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density (3.8) as

1

ZN
V

∏

1≤i<j≤N
|λi − λj|2

N∏

i=1

e−pnVn(λi),(3.9)

where

Vn(x) =
⌈nτ−1⌉
n

x−
(⌈nτ−1⌉

n
− 1

)
log(x)(3.10)

for nonnegative x. Then Vn(x) ≥ V (x) for all x and on the sets {x| V (x) ≤ M}, (M > 0). The

potentials Vn converge uniformly to V . Note that the point 0 is included in the level sets of

V only if τ = 1. Therefore, by Remark 3.5, the spectral measure with support point density

(3.9) satisfies the same LDP as under the density PVpn and then with rate function IV . This

yields IV (Σ) = IH(Σ) for any compactly supported measure Σ. The extension to measures with

non-compact support follows as in the proof of Theorem 2.3. 2

4 Spectral LDP for a general potential

This section is devoted to the proof of Theorem 3.4. The proof follows the track of the one

developed for the scalar case in [9]. We will often refer to this paper for more details. The main

idea is to apply the projective method and study a family of matrix measures restricted to the

support I = [α−, α+] of the equilibrium measure and a fixed number of extremal eigenvalues. For

Σ ∈ Sp with

Σ = Σ|I +

N+∑

i=1

Γ+
i δλ+i +

N−∑

i=1

Γ−
i δλ−i(4.1)

we define the j-th projector πj by

πj(Σ) = Σ|I +

N+∧j∑

i=1

Γ+
i δλ+i

+

N−∧j∑

i=1

Γ−
i δλ−i

,

that is, all but the j-th largest and smallest eigenvalues outside of I = [α−, α+] are omitted. Note

that πj is not continuous in the weak topology. For this reason we need to change our topology

on Sp by identifying Σ as in (4.1) with the vector

(
Σ|I , (λ

+
i )i≥1, (λ

−
i )i≥1, (Γ

+
i )i≥1, (Γ

−
i )i≥1

)
(4.2)
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with λ+i = α+ and Γ+
i = 0 if i > N+ and λ−i = α− and Γ−

i = 0 if i > N−. Then we say that Σ(n)

converges to Σ if:

Σ
(n)
|I −−−→

n→∞
Σ|I weakly and for every i ≥ 1

(
λ+i (Σ

(n)), λ−i (Σ
(n)),Γ+

i (Σ
(n)),Γ−

i (Σ
(n))
)
−−−→
n→∞

(
λ+i (Σ), λ

−
i (Σ),Γ

+
i (Σ),Γ

−
i (Σ)

)
.

(4.3)

Analogously to Lemma 4.5 in [9], one can show that on the smaller set Sp,1 of normalized measures,

this topology is (strictly) stronger than the weak topology.

Let for j fixed and n > 2j

λ+(j) = (λ+1 , . . . , λ
+
j ) , λ

−(j) = (λ−1 , . . . , λ
−
j ) .

Then the following joint LDP holds for the largest and/or smallest eigenvalues, where we write

R
↑j (resp. R

↓j) for the subset of Rj of all vectors with non-decreasing (resp. non-increasing)

entries and, slightly abusing the notation, write α± for the vector (α±, . . . , α±) ∈ Rj .

Theorem 4.1 Let j be a fixed integer and the potential V such that (A1), (A2) and the control

condition (A3) are satisfied.

1. If b− < α− and α+ < b+, then the law of (λ+(j), λ−(j)) under PVN satisfies the LDP in R2j

with speed N and rate function

Iλ±(x+, x−) :=





∑j
k=1F+

V (x
+
k ) +

∑j
k=1F−

V (x
−
k ) if (x+1 , . . . , x

+
j ) ∈ R↓j and (x−1 , . . . , x

−
j ) ∈ R↑j

∞ otherwise.

2. If b− = α−, but α+ < b+, the law of λ+(j) satisfies the LDP with speed N and rate function

Iλ+(x+) = Iλ±(x+, α−) =





∑j
k=1F+

V (x
+
k ) if (x+1 , . . . , x

+
j ) ∈ R↓j

∞ otherwise.

3. If b− < α−, but α+ = b+, the law of λ−(j) satisfies the LDP with speed N and rate function

Iλ−(x−) = Iλ±(α+, x−) =





∑j
k=1F−

V (x
−
k ) if (x−1 , . . . , x

−
j ) ∈ R

↑j

∞ otherwise.
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4.1 LDP for the restricted measure and extremal eigenvalues

Suppose now that the distribution of Σ(N) is as in Theorem 3.4 and the assumptions (A1), (A2)

and (A3) are satisfied. By Lemma 3.1, we may decouple the weights and consider the (non-

normalized) measure

Σ̃(N) =
1

N

N∑

k=1

vkv
∗
kδλk ,(4.4)

where the entries of v1, . . . , vN ∈ Cp are independent complex standard normal distributed ran-

dom vectors and we denote the joint distribution of the vk’s by Gp,N . The original distribution

can then be recovered as the pushforward under

Σ̃ 7→ Σ̃(R)−1/2 · Σ̃ · Σ̃(R)−1/2.

Let I(j) := I \ {λ+1 , λ−1 , . . . , λ+j , λ−j } denote the interval I minus the j largest and smallest

eigenvalues. Analogously, let I+(j) := I \ {λ+1 , . . . , λ+j } and I−(j) := I \ {λ−1 , . . . , λ−j }. Then we

write Σ̃
(N)
I(j) for the restriction of Σ̃(N) to I(j). We use the analogous notation for the restrictions

to I+(j), I−(j) and I. The main result in this section is a joint LDP for the restricted measure

and the collection of extremal eigenvalues.

Theorem 4.2 Suppose that the law of eigenvalues and weights is given by PVN⊗Gp,N and consider

Σ̃(N) as a random element in Sp with topology (4.3).

1. If b− < α− < α+ < b+, then for any fixed j ∈ N, the sequence
(
Σ̃

(N)
I(j), λ

+(j), λ−(j)
)
satisfies

the joint LDP with speed N and rate function

I(Σ, x+, x−) = K(ΣV |Σ) + trΣ(R)− p+ Iλ±(x+, x−)

2. If b− = α−, but α+ < b+ (or b+ = α+, but α− > b−), then, with the same notation as in

Theorem 4.1,
(
Σ̃

(N)

I+(j), λ
+(j)

)
(or

(
Σ̃

(N)

I−(j), λ
−(j)

)
respectively,) satisfies the LDP with speed

N and rate function

I+(Σ, x+) = I(Σ, x+, α−) (or I−(Σ, x−) = I(Σ, α+, x−) respectively) .

Proof: We show here only the first part of the theorem, for the other cases just omit the largest

or smallest eigenvalues. To begin with, for M > max{|α+|, |α−|}, let λ+M(j) (resp.λ−M (j)) be the

collection of truncated eigenvalues

λ+M,i = min{λ+i ,M} (resp. λ−M,i = max{λ−i ,−M}) ,
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for i = 1, . . . , j. To further simplify the notations, set λ±M(j) := (λ+M,1, . . . , λ
+
M,j, λ

−
M,1, . . . , λ

−
M,j).

Let f be a continuous function from R to Hp such that ||f ||∞ < 1. The sequence (Σ̃
(N)
I(j), λ

±
M(j))

is exponentially tight, since, with the compact set

Kγ,M =
{
(Σ, λ) ∈ Mp(I)× R

2j | Σ(I) ≤ γ · Ip, λ ∈ [−M,M ]2j
}
,

we have

lim sup
N→∞

1

N
logP

(
(Σ̃

(N)
I(j), λ

±
M(j)) /∈ Kγ,M

)
≤ lim sup

N→∞

1

N
logP

(
1

N

N∑

k=1

vkv
∗
k > γIp

)
≤ −cγ,

where we used the fact that
∑N

k=1 vkv
∗
k follows the LUEp(N) distribution. For s± ∈ R2j , we

consider the joint moment generating function

GN (f, s±) = E

[
exp

{
N

(
tr

∫
fdΣ̃

(N)
I(j) + 〈s±, λ±M(j)〉

)}]
.

Since the weights vkv
∗
k of Σ̃

(N)
I(j) are independent, we may first integrate with respect to the vk’s,

so that

GN (f, s±) = E


exp

(
N〈s±, λ±M(j)〉

) ∏

i:λi∈I(j)
E [exp {tr(f(λi)vkv∗k)} |λ1, . . . , λn]


(4.5)

= E


exp

(
N〈s±, λ±M(j)〉

) ∏

i:λi∈I(j)
E [exp {v∗kf(λi)vk} |λ1, . . . , λn]


 .(4.6)

Now, it is clear that for v a standard normal complex vector in Cp and A ∈ Hp such that ||A|| < 1,

we have

(4.7) logE [exp (v∗Av)] = − log det(Ip − A) =: L(A),

so that (4.5) becomes

GN (f, s±) = E

[
exp

{
N
(
µ
(N)
u,I(j)(L ◦ f) + 〈s±, λ±M(j)〉

)}]
,

where µ
(N)
u,I(j) is the restriction of the (scalar) empirical eigenvalue distribution to I(j). It remains

to calculate the expectation with respect to PVN .

By Theorem 4.1, the extremal eigenvalues λ±(j) of the spectral measure satisfy the LDP with

speed N rate function Iλ±. By the contraction principle (see [6] p.126), the truncated eigenvalues

satisfy the LDP with rate function

IM,λ±(x
±) =




Iλ±(x+, x−) if x± = (x+, x−) ∈ [−M,M ]2j ,

∞ otherwise.
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Since the truncated eigenvalues are bounded, we can conclude from Varadhan’s Integral Lemma

([6] p. 137)

lim
N→∞

1

N
logE

[
exp

{
N〈s±, λ±M(j)〉

}]
= I∗

M,λ±(s
±),(4.8)

where

I∗
M,λ±(s

±) = sup
x±∈R2j

{
〈s±, x±〉 − IM,λ±(x

±)
}

is the convex dual of IM,λ±. Since µ
(N)
u satisfies a LDP with speed N2, but we consider only the

slower scale at speed N , we may replace it by the limit measure µV at a negligible cost. For the

exact estimates, we may follow along the lines of [9] to conclude

lim
N→∞

1

N
log GN(f, s±) = lim

N→∞

1

N
logE

[
exp

{
N
(
µV (L ◦ f) + 〈s±, λ±M(j)〉

)}]

= µV (L ◦ f) + I∗
M,λ±(s

±) =: G(f, s±).

The convex dual of G is given by

G∗(Σ, λ±) = sup
f∈Cp(I),s±∈R2j

(
tr

∫
fdΣ+ 〈λ±, s±〉 − G(f, s±)

)

= sup
f∈Cp(I)

(
tr

∫
fdΣ− µV (L ◦ f)

)
+ sup

s±∈R2j

(
〈λ±, s±〉 − I∗

M,λ±(s
±)
)

= Λ∗(Σ) + IM,λ±(λ
±),

where Λ∗ is the convex dual of µV (L ◦ ·). Theorem 5 of [17] identifies Λ∗ as

Λ∗(Σ) =

∫
L∗(h)dµV +

∫
r

(
dΣS

dθ

)
dθ,(4.9)

where:

• L∗ is the convex dual of L

• r its recession function

• the Lebesgue-decomposition of Σ with respect to µV is

dΣ(x) = h(x)dµV (x) + dΣS(x)

• θ is any scalar measure such that ΣS is absolutely continuous with respect to θ.
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We begin by calculating L∗ and r. By definition,

L∗(X) = sup
Y ∈Hp

{tr(XY )− L(Y )} .

The recession function is

r(X) = sup {tr(XW ) | ||W ||∞ < 1} .

The function L is convex (as in the scalar case, apply Hölder’s inequality in the definition (4.7))

and analytic. The supremum is then reached at a critical value. We denote by D[F (Y )] the

Fréchet derivative of a function F : Hp → R at Y and look for Y such that

(4.10) D[tr(XY )− L(Y )](Z) = 0

for every Z. It is well known that, as functions of Y for X fixed, D[tr(XY )](Z) = tr(XZ) and

D[log det Y ](Z) = tr(Y −1Z) so that (4.10) becomes, by the chain rule,

tr(XZ)− tr((Ip − Y )−1Z) = 0

for every Z i.e. X − (I − Y )−1 = 0 hence Y = Ip −X−1 and

(4.11) L∗(X) = tr (X − Ip) + log det(X−1) = trX − p+ log det(X−1) = trG(X) .

If X has a negative eigenvalue, then r(X) = ∞. For X nonnegative definite, the supremum is

attained for W = Ip, so that

(4.12) r(X) = trX

Gathering (4.11) and (4.12) and plugging into (4.9) we get

Λ∗(Σ) = tr

∫
hdµV −

∫
log det hdµV − p+ tr

∫
dΣS

= K(ΣV |Σ) + trΣ(I)− p.

It remains to show that G∗ is strictly convex on a set of points that is dense in the set of all points

where G∗ is finite, then Theorem 1.1 of [2] yields the LDP for
(
Σ̃

(N)
I(j), λ

±
M(j)

)
with rate function

G∗. We already know that IM,λ± is convex, so it suffices to check Λ∗ for convexity.

Λ∗ is strictly convex at Σ if there exists f ∈ Cp([α
−, α+]), called the exposing hyperplane, such

that

tr

∫
fdΣ− Λ∗(Σ) > tr

∫
fdζ − Λ∗(ζ)(4.13)
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for all ζ 6= Σ. Let Σ = hΣµV be absolutely continuous with respect to µV with positive definite

continuous density hΣ and choose

f = Ip − h−1
Σ .

Let ζ = hζµV + ζS the Lebesgue-decomposition of ζ . Recalling the representation (4.9) and

(4.11), inequality (4.13) is satisfied as soon as

∫
log det hΣ dµV − p >

∫
log det hζ dµV − tr

∫
h−1
Σ dζ(4.14)

Since tr
∫
h−1
Σ dζ ≥ tr

∫
h−1
Σ hζdµV , it is enough to prove

∫
log det hΣ dµV − p >

∫
log det hζ dµV − tr

∫
h−1
Σ hζdµV(4.15)

This inequality follows from

log detA− log detB > p− tr(A−1B)(4.16)

for Hermitian positive A 6= B. In order to prove (4.16), write

log detA− log detB =

p∑

i=1

log
(
λi(A)λi(B)−1

)
≥ p−

p∑

i=1

λi(A
−1)λi(B).(4.17)

with λi(A), λi(B) the eigenvalues of A,B written in any order. If we choose to order the eigen-

values of A−1 in decreasing order (i.e. those of A increasing) and those of B in increasing order,

it follows from the Hardy-Littlewood rearrangement inequality (see [15]) that

p∑

i=1

λi(A
−1)λi(B) ≤ tr(A−1B).

With this ordering of eigenvalues, (4.17) is strict unless A,B have the same eigenvalues. If all

eigenvalues of A and B coincide, then the left hand side of (4.16) is 0, while the right hand side

is p − trH with detH = 1. The minimum value of trH is p which is achieved only for H = Ip,

in which case A = B. We get that Λ∗ is strictly convex at all points Σ = hµV with h positive

definite and continuous.

It remains to show that the points at which the rate function is strictly convex are dense in

Mp([α
−, α+]). For a given Σ ∈ Mp([α

−, α+]), we divide [α−, α+] by dyadic points into intervals

Ik,n = [α−+(k−1)(α+−α−)/2n, α−+k(α+−α−)/2n] and put Ik,n = [α−+(k−1)(α+−α−)/2n+
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2−2n, α− + k(α+ −α−)/2n− 2−2n], i.e., Ik,n is constructed from Ik,n by cutting off subintervals of

length 2−2n. Define hn on Ik,n as

hn∣∣Ik,n ≡
(
(1− 2−2n)Σ(Ik,n) + 2−2n · I

)
ΣV (Ik,n)

−1

and let hn be the continuous function on [α−, α+] obtained by linear interpolation of the step

function hn. Then hn is positive definite and continuous on [α−, α+] and as in the scalar case,

hn · ΣV converges weakly to Σ. This concludes the proof of the LDP for
(
Σ̃

(N)
I(j), λ

±
M(j)

)
.

In order to extend the LDP to the untruncated eigenvalues, note that the LDP for (λ+(j), λ−(j))

implies the exponential tightness of the (unrestricted) extremal eigenvalues that is, for every

K > 0 there exists a M such that

lim sup
N→∞

1

N
logP

(
λ+1 > M or λ−1 < −M

)
≤ −K.

In particular,

lim
M→∞

lim sup
N→∞

1

N
logP

(
λ±M(j) 6= λ±(j)

)
= −∞,

so that as M → ∞, the truncated eigenvalues are exponentially good approximation of the unre-

stricted ones. Moreover, (Σ̃
(N)
I(j), λ

±
M(j)) are exponentially good approximations of (Σ̃

(N)
I(j), λ

±(j)).

By Theorem 4.2.16 in [6] (Σ̃
(N)
I(j), λ

±(j)) satisfies the LDP with speed n and rate function

I(Σ, x±) = K(ΣV |Σ) + trΣ(I)− p+ Iλ±(x±)

= K(ΣV |Σ) + trΣ(I)− p+

j∑

i=1

F+(x+i ) + F−(x−i ) ,

which ends the proof of Theorem 4.2. 2

4.2 LDP for the projective family

Theorem 4.3 For any fixed j, the sequence of projected spectral measures πj(Σ̃
(N)) as elements

of Sp with topology (4.3) satisfies the LDP with speed N and rate function

Ĩj(Σ̃) = K(ΣV | Σ̃) + tr Σ̃(I)− p+

N+∧j∑

i=1

(
F+
V (λ

+
i ) + tr Γ+

i

)
+

N−∧j∑

i=1

(
F−
V (λ

−
i ) + tr Γ−

i

)
.
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Proof: The proof is almost analogous to the proof of Theorem 4.3 in [9] and we omit the details

for the sake of brevity. It is a combination of the LDP in Theorem 4.2 and the LDP of the weights
1
N
Γk =

1
N
vkv

∗
k corresponding to the extreme eigenvalues. Indeed Γi ∼ LUEp(1), so by Proposition

3.8 (iii), each individual weight 1
N
Γk satisfies the LDP with speed N and rate function

I3(X) =




trX if X ≥ 0,

∞ otherwise.

The independence of the weights and an application of the contraction principle complete then

the proof. 2

In order to come back to a normalized matrix measure in Sp,1, we note that the LDP for πj(Σ̃
(N))

also implies the joint LDP for

(
πj(Σ̃

(N)), πj(Σ̃
(N))(R)

)
,

with the rate function

Ij(Σ̃, Z) = Ĩj(Σ̃)

if Σ̃(R) = Z and Ij(Σ̃, Z) = ∞ otherwise. Keeping the weights along the way, we may apply

the projective method (the Dawson-Gärtner theorem, p. 162 in the book of [6]) to the family of

projections (πj(Σ̃
(N)), πj(Σ̃

(N))(R))j and get a LDP for the pair (Σ̃(N), Σ̃(N)(R)) with rate function

I(Σ̃, Z) = sup
j

Ij(Σ̃, Z)

This rate function equals +∞ unless Σ̃(R) = Z and in this case is given by

I(Σ̃, Z) = K(ΣV | Σ̃) + trZ − p+
N+∑

i=1

F(λ+i ) +
N−∑

i=1

F(λ−i ).(4.18)

We remark that normalizing the matrix measure is not possible unless we keep track of the total

mass for any j, as the mapping Σ̃ 7→ Σ̃(R)−1/2Σ̃Σ̃(R)−1/2 is not continuous in the topology (4.3).

However, we may now apply the continuous mapping (Σ̃, Z) 7→ Z−1/2Σ̃Z−1/2 and obtain a LDP

for the sequence of measures Σ(N) in Sp,1. The rate function is

I(Σ) = inf
Σ̃=Z1/2ΣZ1/2, Z>0

Ĩ(Σ̃) = inf
Z>0

Ĩ(Z1/2ΣZ1/2).
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By (4.18), we need to minimize over positive definite Z ∈ Hp the function

−
∫

log det

(
d(Z1/2ΣZ1/2)

dµV

)
dµV + trZ − p

= −
∫

log det

(
Z1/2 dΣ

dµV
Z1/2

)
dµV + trZ − p

= −
∫

log det

(
dΣ

dµV

)
dµV − log detZ + trZ − p

= −
∫

log det

(
dΣ

dµV

)
dµV + I2(Z)

The term I2(Z) comes from Lemma 3.4 (ii) with γ = 1 and attains its minimal value 0 for

Z = Ip. 2

We have obtained the LDP claimed in Theorem 3.4 on the subset Sp,1 in the topology induced

by (4.3). On Sp,1 this is stronger than the weak topology and the rate function can be extended

to Mp,1 by setting I(Σ) = ∞ for Σ /∈ Sp,1. This yields Theorem 3.4.

4.3 Proof of Remark 3.5

Let A be a measurable subset of Mp,1 and set

AN =

{
(λ,W ) ∈ R

N ×H
N
p

∣∣∣∣∣

N∑

k=1

Wkδλk ∈ A

}
.

The LDP for Σ(N) with weight distribution P
VN
N will follow from the LDP for weight distribution

PVN once we show

lim sup
N→∞

1

N
log(PVNN ⊗ Dp,N)(AN ) ≤ lim sup

N→∞

1

N
log(PVN ⊗ Dp,N)(AN)(4.19)

and

lim inf
N→∞

1

N
log(PVNN ⊗ Dp,N)(AN) ≥ lim inf

N→∞

1

N
log(PVN ⊗ Dp,N)(AN).(4.20)

In fact, this does not require A to be closed or open, respectively. For this, let

ΓVN(AN ) =

∫∫

AN

∏

1≤i<j≤N
|λi − λj |2

N∏

i=1

e−NV (λi)dλdDp,N(W ).
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and define ΓVNN (AN ) analogously, with V replaced by VN . Since VN(x) ≥ V (x), we have

ΓVNN (AN) ≤ ΓVN(AN).(4.21)

To get a converse inequality, let KN,M be the set of (λ,W ) ∈ RN ×HN
p , where V (λi) ≤M for all

i. Then

ΓVNN (AN) ≥ ΓVNN (AN ∩KN,M) ≥
(

inf
x:V (x)≤M

eV (x)−VN (x)

)N
ΓVN(AN ∩KN,M).

Since by assumption eV (x)−VN (x) converges to 1 uniformly on {x| V (x) ≤M}, this implies

lim
N→∞

1

N
log

ΓVNN (AN)

ΓVN(AN )
≥ lim

N→∞

1

N
log

ΓVN(AN ∩KN,M)

ΓVN (AN)
.(4.22)

If we set now A to be the whole space Mp,1, then ΓVN (AN) = ZV
N and the right hand side of (4.22)

is given by

lim
N→∞

1

N
logPVN(∀ i : V (λi) ≤M).

By the LDP for the extreme eigenvalues, Theorem 4.1, this limit tends to 0 asM → ∞. Together

with (4.21), we have shown that for A = Mp,1

lim
N→∞

1

N
log

ΓVNN (AN )

ΓVN (AN)
= lim

N→∞

1

N
log

ZVN
N

ZV
N

= 0.

Since (PVNN ⊗ Dp,N)(AN) = (ZV
N )

−1ΓVN(AN ), the inequality (4.21) leads to the inequality (4.19)

and the arguments for (4.22) yield

lim inf
n→∞

1

N
log(PVNN ⊗ Dp,N)(AN) ≥ lim inf

N→∞

1

N
log(PVN ⊗ Dp,N)(AN ∩KN,M)

for any M ≥ 0. Letting M → ∞, this implies inequality (4.20), as by the LDP for the extreme

eigenvalues we have

lim
M→∞

lim sup
N→∞

1

N
log(PVN ⊗ Dp,N)(K

c
N,M) = −∞.

2

5 Hermite block case

The starting point for the proof of Theorem 3.6 is the following block-tridiagonal representation

of the Gaussian ensemble.
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Lemma 5.1 Let Dk ∼ GUEp and Ck be Hermitian such that C2
k ∼ LUEp(p(n − k)) for k =

1, . . . , n and let all these matrices be independent. Then the p× p matrix spectral measure of the

block-tridiagonal matrix

Gn =




D1 C1

C1 D2
. . .

. . .
. . . Cn−1

Cn−1 Dn




(5.1)

has the same distribution as the spectral measure of the Hermite ensemble GUEpn.

Proof: Starting from a matrix Xn distributed according to the Hermite ensemble GUEpn, we

can construct the tridiagonal matrix Gn as

Gn = TXnT
∗,

where T is unitary and leaves invariant the subspaces spanned by the first p unit vectors. Con-

sequently, the spectral measure of Xn is also the spectral measure of Gn. The transformation

T is a composition of unitaries T1, . . . , Tn−1 analogous to the ones used by [8]. To illustrate the

procedure, we construct the first transformation T1. By xi,j we denotes the p× p subblock of Xn

in position i, j, let x̄1 = (x1,2, . . . , x1,n)
∗ and X̄ = (xi,j)2≤i,j≤n. With this notation, Xn can be

structured as

Xn =

(
x1,1 x̄∗1

x̄1 X̄

)
.

Note that the Gaussian distribution implies that all (square) blocks are almost surely invertible.

Then, set

ξ = [(x∗2,1)
−1(x̄∗1x̄1)(x2,1)

−1]1/2x2,1 ∈ Mp,p

Γ = (ξ∗, 0p,p, . . . , 0p,p)
∗ ∈ M(n−1)p,p

and define for Z ∈ M(n−1)p,p the block-Householder reflection

H(Z) = I(n−1)p − 2Z(Z∗Z)−1Z∗.

If we set Z = Γ− x̄1 one may check that

Γ∗Γ = ξ∗ξ = x̄∗1x̄1, Γ∗x̄1 = ξ∗x2,1 = x∗2,1ξ = x̄∗1Γ, Z∗Z = −2Z∗x̄1
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and H(Z)x̄1 = Γ. We extend H(Z) to an operator Ĥ on Cnp leaving the first p unit vectors

invariant, which yields

ĤXnĤ
∗ =

(
Ip 0

0 H(Z)

)(
x1,1 x̄∗1

x̄1 X̄

)(
Ip 0

0 H(Z)∗

)
=

(
x1,1 Γ∗

Γ H(Z)X̄H(Z)∗

)
.

Finally, let W ∈ M(n−1)p,(n−1)p be the unitary block-diagonal matrix with the blocks

((ξ∗ξ)1/2ξ−1, Ip, . . . , Ip) on the diagonal and extend W to an operator Ŵ on Cnp as we did with

H(Z). Then T1 = Ŵ Ĥ is unitary, leaves the subspace spanned by the first p unit vectors invariant

and

T1XnT
∗
1 =

(
x1,1 Γ̃

Γ̃∗ WH(Z)X̄H(Z)∗W ∗

)
.

with

Γ̃ = ((x̄∗1x̄1)
1/2, 0p,p, . . . , 0p,p).

The block x̄∗1x̄1 is distributed according to LUEp(p(n−1)) and since the definition ofW and H(Z)

is independent of X̄ , the block WH(Z)X̄H(Z)∗W ∗ is again a matrix of the Gaussian ensemble

GUEp(n−1). The assertion follows then from an iteration of these reflections. 2

Proof of Theorem 3.6:

By Lemma 5.1, the spectral measure Σ(n) is also the spectral measure of the rescaled matrix
1√
np
Gn. If we consider each block entry of this matrix seperately, we are up to a linear change

of the speed in the setting of Lemma 3.8. Thus, for any fixed k, the block D
(n)
k := Dk/

√
np of

the matrix in (5.1) satisfies the LDP in Hp with speed pn and rate function I1 (see Lemma 3.8).

Similarly, if we let C
(n)
k = Ck/

√
np, then the squared block (C

(n)
k )2 satisfies the LDP with speed

pn and rate function I2 or equivalently, C
(n)
k in the block-tridiagonal matrix satisfies the LDP

with speed np and rate

I ′
2(Y ) = inf

C:C1/2=Y
I2(C) = I2(Y

2)

if Y is nonnegative definite and I ′
2(Y ) = ∞ otherwise. Since the block entries are independent, we

get a joint LDP for any fixed collection (D
(n)
1 , C

(n)
1 , . . . , D

(n)
k ) with rate given by the corresponding

sum of rate functions I1 and I ′
2. The Dawson-Gärtner Theorem (see [6]) yields a LDP in HN

p for

the infinite sequence (D
(n)
1 , C

(n)
1 , . . . ) with rate

ID,C(D1, C1, . . . ) =
∞∑

k=1

(
1

2
trD2

k + trG(C2
k)

)
,
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which is finite if and only if all matrices Ck are positive definite and the sum converges. In

particular, the set where ID,C <∞ is a subset of

Ξ =

{
(D1, C1, . . . ) ∈ H

N

p

∣∣∣∣ sup
k

||Dk||+ ||Ck|| <∞
}

and so the LDP holds in the subset Ξ. For sequences in Ξ, the Jacobi operator



D1 C1

C1 D2
. . .

. . .
. . .




is bounded and we can define the (compactly supported) spectral measure of this operator. Let

ψ : Ξ → Mp,1,c be the mapping assigning to (D1, C1, . . . ) this spectral measure. Then ψ is

continuous and by Lemma 5.1

ψ((D
(n)
1 , C

(n)
1 , . . . , D(n)

n , 0p,p, . . . )) = Σ(n).

The contraction principle yields the LDP for the sequence (Σ(n))n with rate function

IH(Σ) = inf
(D1,C1,... ): ψ((D1,C1,... ))=Σ

∞∑

k=1

[
1

2
trD2

k + trG(C2
k)] .

This function can only be finite if Σ is non-trivial. Indeed, we know from the remarks of Section

2.1, that in this case all the Ck are non-singular. As a matter of fact, there is a one-to-one corre-

spondence between non trivial measures and sequences (B1, A1, . . . ) of block Jacobi coefficients

with Ak positive definite, with (B1, A1, . . . ) being the unique representative in the equivalence

class of Jacobi parameters such that all Ak are Hermitian. We obtain

IH(Σ) =
∞∑

k=1

[
1

2
trB2

k + trG(AkA
∗
k)],

where Bk, Ak are the recursion coefficients of Σ. Note that by writing AkA
∗
k instead of A2

k, the

right hand side is defined also for non-Hermitian Ak and moreover, the value of the sum is

constant on the whole equivalence class of Jacobi coefficients of Σ. This concludes the proof. 2

6 Laguerre block case

Lemma 6.1 Let m ≥ n and for k = 1, . . . , n let Dk and Ck for k = 1, . . . , n be independent

random matrices in Hp such that

C2
k ∼ LUEp(p(n− k)) , D2

k ∼ LUEp(p(m− k + 1))

32



and define the block matrix

Zn =




D1 0

C1 D2
. . .

. . .
. . . 0

Cn−1 Dn



.

Then the p × p spectral matrix measure of Ln = ZnZ
∗
n has the same distribution as the spectral

matrix measure of a pn× pn matrix, distributed according to the LUEpn(pm) (m ≥ n).

Proof: We use the construction of the Laguerre ensemble Ln = WnW
∗
n , with Wn a pn × pm

matrix with independent complex Gaussian entries. Writing wi,j for the p-block ofWn in position

i, j, let R be a pm× pm unitary matrix constructed analogously to the matrix ŴĤ in the proof

of Lemma 5.1, such that

WnR =

(
w̃

W̃

)

with

w̃ = (w1,1, . . . , w1,m)R =



(

m∑

i=1

w∗
1,iw1,i

)1/2

, 0p,p, . . . , 0p,p


 .

The matrix R can be chosen independently of wi,j, i ≥ 2 such that the entries of W̃ are again

independent complex Gaussian, independent of w̃. Similarly, write zi,j for the p× p subblock of

WnR in position i, j and let L be a p(n− 1)× p(n− 1) unitary matrix such that

L(z∗2,1, . . . , z
∗
n,1)

∗ =



(

n∑

i=2

z∗1,iz1,i

)1/2

, 0p,p, . . . , 0p,p




∗

If L̃ = I ⊕ L is the extension of L to an operator on Cpn, leaving the subspace of the first p unit

vectors invariant, then

L̃WnR =




D1 0 . . . 0

C1

0 LW̃R
...



.
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The first blocks satisfy D2
1 ∼ LUEp(pm), C2

1 ∼ LUEp(p(n − 1)) and by the invariance of the

Gaussian distribution, the entries of LW̃R are again Gaussian distributed. Since we started with

independent entries, all blocks in L̃WnR are independent. The conjugation by L̃ leaves the first

p eigenvector rows invariant, so L̃LnL̃
∗ = L̃WnRR

∗W ∗
n L̃

∗ has the same spectral matrix measure

as Ln. This yields the first step in the reduction, the iterations are straightforward. 2

Proof of Theorem 3.7:

As in the proof of Theorem 3.6, we start by looking at the individual entries of the tridiagonal

representation of Lemma 6.1, now multiplies by 1
pγn

. For any k, the rescaled block 1
pγn
C2
k satisfies

by Lemma 3.8 the LDP with speed pγn and rate I2 with γ = τ . With the speed pn we would

like to consider, 1
pγn
C2
k satisfies then the LDP with rate trG(τ−1 ·) and, taking the square root,

C
(n)
k := 1√

pγn
Ck satisfies the LDP with speed pn and rate function

IC(C) = trG(τ−1C2)

for C positive definite and I ′
2(C) = ∞ otherwise. Similarily, if we let D

(n)
k := 1√

pγn
Dk, then

(D
(n)
k )2 satisfies the LDP with speed pγn and rate function I2 of Lemma 3.8 with γ = 1. If we

consider the speed pn and the square root D
(n)
k , this changes the rate to

ID(D) = τ−1trG(D2)

for D positive definite and ID(D) = ∞ otherwise. By the independence of the matrices Ck, Dk,

this yields the LDP for (D
(n)
1 , C

(n)
1 , D

(n)
2 , . . . ) in the sequence space of Hermitian nonnegative

definite matrices with speed pn and rate

(6.1) ID,C(D1, C1, . . . ) =

∞∑

k=1

τ−1trG(D2
k) + trG(τ−1C2

k).

As in the proof of Theorem 3.6, this rate can only be finite if supk ||Dk||+ ||Ck|| <∞ and we may

restrict the LDP to the subset Θ of such sequences of Hermitian nonnegative definite matrices. On

Θ define the function ϕ : Θ → Mp,1,c([0,∞)) mapping (D1, C1, . . . ) to the compactly supported

spectral measure of the matrix ZZ∗, where

Z =




D1 0p,p

C1 D2
. . .

. . .
. . .


 .
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Then ϕ is continuous and by Lemma 6.1, the measure

ϕ(D
(n)
1 , C

(n)
1 , . . . , D(n)

n , 0p,p, . . . ) = Σ(n)

is distributed as the spectral measure of 1
pγn
Yn, when Yn ∼ LUEN(pγn). By the contraction

principle, the sequence (Σ(n))n satisfies then the LDP with speed pn and rate function

IL(Σ) = inf
(D1,C1,... ): ϕ((D1,C1,... ))=Σ

∞∑

k=1

τ−1trG(D2
k) + trG(τ−1C2

k).

Next, we show that if Σ is a non-trivial matrix measure compactly supported on [0,∞), the

infimum is not taken over the empty set, that is, there exists a sequence (D1, C1, . . . ) ∈ Θ

mapped to Σ. While the discussion in Section 2.2 showed that every nontrivial measure with

compact support in [0,∞) is the spectral measure of a matrix XX∗ with X bidiagonal as in

(2.22), we have to show that the entries of X can be chosen to be Hermitian nonnegative.

We are still free to choose the unitary matrices σn (although we have to fix σ1 = Ip) in the

definition of orthonormal polynomials and we let U be the block-diagonal matrix with σ1, σ2, . . .

on the diagonal. Moreover, let P denote a block-diagonal matrix with unitary p × p matrices

τ1, τ2, . . . on the diagonal. Then our measure Σ is also the spectral matrix measure of the matrix

UXPP ∗X∗U∗ = (UXP )(UXP )∗. The matrix UXP has the form

UXP =




σ1D1τ1 0p,p

σ2C1τ1 σ2D2τ2 0p,p

σ3C2τ2 σ3D3τ3
. . .

. . .
. . .



.

For the first entry, σ1 = Ip and D1 is always Hermitian positive definite, so we may set τ1 =

Ip. Recall that for A a non-singular matrix, there exists a unique unitary σ such that Aσ is

Hermitian positive definite, and if Σ is non-trivial, all Dk, Ck are non-singular. Therefore, we

can recursively choose σk+1 such that σk+1Ckτk is Hermitian positive definite and then τk+1 such

that σk+1Dk+1τk+1 is positive definite. This yields a unique decomposition with positive definite

blocks.

To simplify the rate function and finish the proof, we can use the fact that tr(AB) = tr(BA) and

det(AB) = det(BA) to get

trG(D2
k) = trG(DkD

∗
k) = trG(Z2k−1) = trG(ζ2k−1)

with Z2k−1 as in (2.19) and (2.20), and

trG(τ−1C2
k) = tr (τ−1CkC

∗
k) = tr (τ−1Z2k) = tr (τ−1ζ2k).
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So the value of the rate function does not depend on the unitary matrices σn and τn, but only

on the matrices ζk, which in particular are uniquely determined by Σ. 2
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