
HAL Id: hal-01264131
https://hal.science/hal-01264131v2

Submitted on 19 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing with quasiseparable matrices
Clément Pernet

To cite this version:
Clément Pernet. Computing with quasiseparable matrices. International Symposium on
Symbolic and Algebraic Computation (ISSAC’16), Jul 2016, Waterloo, Canada. pp.389-396,
�10.1145/2930889.2930915�. �hal-01264131v2�

https://hal.science/hal-01264131v2
https://hal.archives-ouvertes.fr

Computing with Quasiseparable Matrices

Clément Pernet
Univ. Grenoble Alpes Laboratoire LIP Inria, Université de Lyon

46, Allée d’Italie, F69364 Lyon Cedex 07, France
Clement.Pernet@imag.fr

ABSTRACT
The class of quasiseparable matrices is defined by a pair
of bounds, called the quasiseparable orders, on the ranks
of the sub-matrices entirely located in their strictly lower
and upper triangular parts. These arise naturally in ap-
plications, as e.g. the inverse of band matrices, and are
widely used for they admit structured representations allow-
ing to compute with them in time linear in the dimension.
We show, in this paper, the connection between the notion
of quasiseparability and the rank profile matrix invariant,
presented in [Dumas & al. ISSAC’15]. This allows us to
propose an algorithm computing the quasiseparable orders
(rL, rU) in time O(n2sω−2) where s = max(rL, rU) and ω
the exponent of matrix multiplication. We then present two
new structured representations, a binary tree of PLUQ de-
compositions, and the Bruhat generator, using respectively
O(ns log n

s
) and O(ns) field elements instead of O(ns2) for

the classical generator and O(ns logn) for the hierarchically
semiseparable representations. We present algorithms com-
puting these representations in time O(n2sω−2). These rep-
resentations allow a matrix-vector product in time linear in
the size of their representation. Lastly we show how to mul-
tiply two such structured matrices in time O(n2sω−2).

1. INTRODUCTION
The inverse of a tridiagonal matrix, when it exists, is a

dense matrix with the property that all sub-matrices en-
tirely below or above its diagonal have rank at most one.
This property and many generalizations of it, defining the
semiseparable and quasiseparable matrices, have been ex-
tensively studied over the past 80 years. We refer to [16]
and [17] for a broad bibliographic overview on the topic.
In this paper, we will focus on the class of quasiseparable
matrices, introduced in [8]:

Definition 1. An n× n matrix M is (rL, rU)-quasisepa-
rable if its strictly lower and upper triangular parts satisfy

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC ’16, July 19 - 22, 2016, Waterloo, ON, Canada

ACM ISBN 978-1-4503-4380-0/16/07. . . $15.00
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DOI: http://dx.doi.org/10.1145/2930889.2930915

the following low rank structure: for all 1 ≤ k ≤ n− 1,

rank(Mk+1..n,1..k) ≤ rL, (1)

rank(M1..k,k+1..n) ≤ rU . (2)

The values rL and rU define the quasiseparable orders of M.

Quasiseparable matrices can be represented with fewer
than n2 coefficients, using a structured representation, called
a generator. The most commonly used generator [8, 16, 17,
9, 1] for a matrix M, consists of (n − 1) pairs of vectors
p(i), q(i) of size rL, (n− 1) pairs of vectors g(i), h(i) of size
rU , n − 1 matrices a(i) of dimension rL × rL, and n − 1
matrices b(i) of dimension rU × rU such that

Mi,j =

 p(i)T a>
ijq(j), 1 ≤ j < i ≤ n

d(i), 1 ≤ i = j ≤ n
g(i)T b<

ijh(j), 1 ≤ i < j ≤ n

where a>
ij = a(i − 1) . . . a(j + 1) for j > i + 1, aj+1,j = 1,

and b<
ij = b(i+ 1) . . . b(i− 1) for i > j + 1, bi,i+1 = 1. This

representation, of size O(n(r2L + r2U)) makes it possible to
apply a vector in O(n(r2L + r2U)) field operations, multiply
two quasiseparable matrices in time O(nmax(rL, rU)3) and
also compute the inverse in time O(nmax(rL, rU)3) [8].

The contribution of this paper, is to make the connec-
tion between the notion of quasiseparability and a matrix
invariant, the rank profile matrix, that we introduced in [6].
More precisely, we show that the PLUQ decompositions of
the lower and upper triangular parts of a quasiseparable ma-
trix, using a certain class of pivoting strategies, also have a
structure ensuring that their memory footprint and the time
complexity to compute them does not depend on the rank
of the matrix but on the quasiseparable order (which can be
arbitrarily lower). Note that we will assume throughout the
paper that the PLUQ decomposition algorithms mentioned
have the ability to reveal ranks. This is the case when com-
puting with exact arithmetic (e.g. finite fields or multipreci-
sion rationals), but not always with finite precision floating
point arithmetic. In the latter context, a special care need
to be taken for the pivoting of LU decompositions [10, 14],
and QR or SVD decompositions are often more commonly
used [2, 3]. This study is motivated by the design of new al-
gorithms on polynomial matrices where quasiseparable ma-
trices naturally occur, and more generally by the framework
of the LinBox library [15] for black-box exact linear algebra.

After defining and recalling the properties of the rank pro-
file matrix in Section 2, we propose in Section 3 an algo-
rithm computing the quasiseparable orders (rL, rU) in time
O(n2sω−2) where s = max(rL, rU) and ω the exponent of

mailto:Clement.Pernet@imag.fr
http://dx.doi.org/10.1145/2930889.2930915

matrix multiplication. We then present in Section 4 two
new structured representations, a binary tree of PLUQ de-
compositions, and the Bruhat generator, using respectively
O(ns log n

s
) and O(ns) field elements instead of O(ns2) for

the previously known generators. We present in Section 5
algorithms computing them in time O(n2sω−2). These rep-
resentations support a matrix-vector product in time linear
in the size of their representation. Lastly we show how to
multiply two such structured matrices in time O(n2sω−2).

Throughout the paper, Ai..j,k..l will denote the sub-matrix
of A of row indices between i and j and column indices
between k and l. The matrix of the canonical basis, with a
one at position (i, j) will be denoted by ∆(i,j).

2. PRELIMINARIES

2.1 Left triangular matrices
We will make intensive use of matrices with non-zero el-

ements only located above the main anti-diagonal. We will
refer to these matrices as left triangular, to avoid any con-
fusion with upper triangular matrices.

Definition 2. A left triangular matrix is any m×n ma-
trix A such that Ai,j = 0 for all i > n− j.

The left triangular part of a matrix A, denoted by Left(A)
will refer to the left triangular matrix extracted from it. We
will need the following property on the left triangular part
of the product of a matrix by a triangular matrix.

Lemma 1. Let A = BU be an m × n matrix where U is
n× n upper triangular. Then Left(A) = Left(Left(B)U).

Proof. Let Ā = Left(A), B̄ = Left(B). For j ≤ n− i, we

have Āi,j =
∑n

k=1 Bi,k ·Uk,j =
∑j

k=1 Bi,k ·Uk,j as U is upper

triangular. Now for k ≤ j ≤ n− i, Bi,k = B̄i,k, which proves
that the left triangular part of A is that of Left(B)U.

Applying Lemma 1 on AT yields Lemma 2

Lemma 2. Let A = LB be an m × n matrix where L is
m×m lower triangular. Then Left(A) = Left(LLeft(B)).

Lastly, we will extend the notion of quasiseparable or-
der to left triangular matrices, in the natural way: the left
quasiseparable order is the maximal rank of any leading
k × (n − k) sub-matrix. When no confusion may occur, we
will abuse the definition and simply call it the quasiseparable
order.

2.2 The rank profile matrix
We will use a matrix invariant, introduced in [6, Theo-

rem 1], that summarizes the information on the ranks of
any leading sub-matrices of a given input matrix.

Definition 3. [6, Theorem 1] The rank profile matrix of
an m×n matrix A of rank r is the unique m×n matrix RA,
with only r non-zero coefficients, all equal to one, located on
distinct rows and columns such that any leading sub-matrices
of RA has the same rank as the corresponding leading sub-
matrix in A.

This invariant can be computed in just one Gaussian elim-
ination of the matrix A, at the cost of O(mnrω−2) field oper-
ations [6], provided some conditions on the pivoting strategy

being used. It is obtained from the corresponding PLUQ de-
composition as the product

RA = P

[
Ir

0(m−r)×(n−r)

]
Q.

We also recall in Theorem 1 an important property of such
PLUQ decompositions revealing the rank profile matrix.

Theorem 1 ([7, Th. 24], [5, Th. 1]). Let A = PLUQ
be a PLUQ decomposition revealing the rank profile matrix
of A. Then, P

[
L 0m×(m−r)

]
PT is lower triangular and

QT

[
U

0(n−r)×n

]
Q is upper triangular.

Lemma 3. The rank profile matrix invariant is preserved
by multiplication

1. to the left with an invertible lower triangular matrix,

2. to the right with an invertible upper triangular matrix.

Proof. Let B = LA for an invertible lower triangular
matrix L. Then rank(B1..i,1..j) = rank(L1..i,1..iA1..i,1..j) =
rank(A1..i,1..j) for any i ≤ m, j ≤ n. Hence RB = RA.

3. COMPUTING THE QUASISEPARABLE
ORDERS

Let M be an n×n matrix of which one want to determine
the quasiseparable orders (rL, rU). Let L and U be respec-
tively the lower triangular part and the upper triangular
part of M.

Let Jn be the unit anti-diagonal matrix. Multiplying on
the left by Jn reverts the row order while multiplying on
the right by Jn reverts the column order. Hence both JnL
and UJn are left triangular matrices. Remark that the con-
ditions (1) and (2) state that all leading k × (n − k) sub-
matrices of JnL and UJn have rank no greater than rL and
rU respectively. We will then use the rank profile matrix of
these two left triangular matrices to find these parameters.

3.1 From a rank profile matrix
First, note that the rank profile matrix of a left triangular

matrix is not necessarily left triangular. For example, the

rank profile matrix of
[
1 1 0
1 0 0
0 0 0

]
is
[
1 0 0
0 1 0
0 0 0

]
. However, only the

left triangular part of the rank profile matrix is sufficient to
compute the left quasiseparable orders.

Suppose for the moment that the left-triangular part of
the rank profile matrix of a left triangular matrix is given
(returned by a function LT-RPM). It remains to enumer-
ate all leading k × (n − k) sub-matrices and find the one
with the largest number of non-zero elements. Algorithm 1
shows how to compute the largest rank of all leading sub-
matrices of such a matrix. Run on JnL and UJn, it returns
successively the quasiseparable orders rL and rU .

This algorithm runs in O(n) provided that the rank profile
matrix R is stored in a compact way, e.g. using a vector of
r pairs of pivot indices ([(i1, j1), . . . , (ir, jr)].

3.2 Computing the rank profile matrix of a
left triangular matrix

We now deal with the missing component: computing the
left triangular part of the rank profile matrix of a left trian-
gular matrix.

Algorithm 1 QS-order

Input: A, an n× n matrix
Output: max{rank(A1..k,1..n−k) : 1 ≤ k ≤ n− 1}

R← LT-RPM(A) . The left triangular part of the rank profile
matrix of A
rows ← (False,. . . ,False)
cols ← (False,. . . ,False)
for all (i, j) such that Ri,j = 1 do

rows[i] ← True
cols[j] ← True

end for
s, r ← 0
for i = 1 . . . n do

if rows[i] then r ← r + 1
if cols[n− i + 1] then r ← r − 1
s← max(s, r)

end for
return s

3.2.1 From a PLUQ decomposition
A first approach is to run any Gaussian elimination algo-

rithm that can reveal the rank profile matrix, as described
in [6]. In particular, the PLUQ decomposition algorithm
of [5] computes the rank profile matrix of A in O(n2rω−2)
where r = rank(A). However this estimate is pessimistic
as it does not take into account the left triangular shape of
the matrix. Moreover, this estimate does not depend on the
left quasiseparable order s but on the rank r, which may be
much higher.

Remark 1. The discrepancy between the rank r of a left
triangular matrix and its quasiseparable order arises from
the location of the pivots in its rank profile matrix. Piv-
ots located near the top left corner of the matrix are shared
by many leading sub-matrices, and are therefore likely con-
tribute to the quasiseparable order. On the other hand, pivots
near the anti-diagonal can be numerous, but do not add up
to a large quasiseparable order. As an illustration, consider
the two following extreme cases:

1. a matrix A with generic rank profile. Then the leading
r×r sub-matrix of A has rank r and the quasiseparable
order is s = r.

2. the matrix with n−1 ones right above the anti-diagonal.
It has rank r = n− 1 but quasiseparable order 1.

Remark 1 indicates that in the unlucky cases when r � s,
the computation should reduce to instances of smaller sizes,
hence a trade-off should exist between, on one hand, the
discrepency between r and s, and on the other hand, the
dimension n of the problems. All contributions presented in
the remaining of the paper are based on such trade-offs.

3.2.2 A dedicated algorithm
In order to reach a complexity depending on s and not r,

we adapt in Algorithm 2 the tile recursive algorithm of [5],
so that the left triangular structure of the input matrix is
preserved and can be used to reduce the amount of compu-
tation.

Algorithm 2 does not assume that the input matrix is
left triangular, as it will be called recursively with arbitrary
matrices, but guarantees to return the left triangular part
of the rank profile matrix. While the top left quadrant A1

Algorithm 2 LT-RPM: Left Triangular part of the Rank
Profile Matrix
Input: A: an n× n matrix
Output: R: the left triangular part of the RPM of A
1: if n = 1 then return [0]

2: Split A =

[
A1 A2

A3

]
where A3 is bn

2
c × bn

2
c

3: Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1

4: R1 ← P1

[
Ir1

0

]
Q1 where r1 = rank(A1).

5:
[

B1

B2

]
← P1

T A2

6:
[
C1 C2

]
← A3Q1

T

7: Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2

.

8: D← L1
−1B1

9: E← C1U1
−1

10: F← B2 −M1D
11: G← C2 − EV1

12: Here A =

 L1\U1 V1 D
M1 0 F
E G

.

13: H← P1

[
0r1×n

2

F

]
14: I←

[
0r1×n

2
G
]

Q1

15: R2 ← LT-RPM(H)
16: R3 ← LT-RPM(I)

17: return R←
[
R1 R2

R3

]

is eliminated using any PLUQ decomposition algorithm re-
vealing the rank profile matrix, the top right and bottom
left quadrants are handled recursively.

Theorem 2. Given an n×n input matrix A with left qua-
siseparable order s, Algorithm 2 computes the left triangular
part of the rank profile matrix of A in O(n2sω−2).

Proof. First remark that

P1

[
D
F

]
= P1

[
L1
−1

−M1L1
−1 In−r1

]
P1

T

︸ ︷︷ ︸
L

P1

[
B1

B2

]
= LA2.

Hence

L
[
A1 A2

]
= P1

[[
U1 V1

]
Q1 D

0 F

]
.

From Theorem 1, the matrix L is lower triangular and by
Lemma 3 the rank profile matrix of

[
A1 A2

]
equals that

of P1

[[
U1 V1

]
Q1 D

0 F

]
. Now as U1 is upper triangu-

lar and non-singular, this rank profile matrix is in turn

that of P1

[[
U1 V1

]
Q1 0

0 F

]
and its left triangular part

is
[
R1 R2

]
.

By a similar reasoning,
[
R1 R3

]T
is the left triangular

part of the rank profile matrix of
[
A1 A3

]T
, which shows

that the algorithm is correct.
Let s1 be the left quasiseparable order of H and s2 that

of I. The number of field operations to run Algorithm 2 is

T (n, s) = αrω−2
1 n2 + TLT-RPM(n/2, s1) + TLT-RPM(n/2, s2)

for a positive constant α. We will prove by induction that
T (n, s) ≤ 2αsω−2n2.

Again, since L is lower triangular, the rank profile matrix
of LA2 is that of A2 and the quasiseparable orders of the
two matrices are the same. Now H is the matrix LA2 with
some rows zeroed out, hence s1, the quasiseparable order
of H is no greater than that of A2 which is less or equal
to s. Hence max(r1, s1, s2) ≤ s and we obtain T (n, s) ≤
αsω−2n2 + 4αsω−2(n/2)2 = 2αsω−2n2.

4. MORE COMPACT GENERATORS
Taking advantage of their low rank property, quasisep-

arable matrices can be represented by a structured repre-
sentation allowing to compute efficiently with them, as for
example in the context of QR or QZ elimination [9, 1].

The most commonly used generator, as described in [8, 1]
and in the introduction, represents an (rL, rU)-quasiseparable
matrix of order n by O(n(r2L + r2U)) field coefficients1.

Alternatively, hierarchically semiseparable representations
(HSS) [18, 11] use numerical rank revealing factorizations of
the off-diagonal blocks in a divide and conquer approach,
reducing the size to O(max(rL, rU)n logn) [11].

A third approach, based on Givens or unitary weights [4],
performs another kind of elimination so as to compact the
low rank off-diagonal blocks of the input matrix.

We propose, in this section, two alternative generators,
based on an exact PLUQ decomposition revealing the rank
profile matrix. The first one matches the best space com-
plexity of the HSS representation, and improves the time
complexity to compute it by a reduction to fast matrix mul-
tiplication. The second one also improves on the space com-
plexity of HSS representation by removing the extra logn
factor and shares some similarities with the unitary weight
representations of [4].

First, remark that storing a PLUQ decomposition of rank
r and dimension n×n uses 2rn− r2 coefficients: each of the
L and U factor has dimension n × r or r × n; the negative
r2 term comes from the lower and upper triangular shapes
of L and U. Here again, the rank r can be larger than the
quasiseparable order s thus storing directly a PLUQ decom-
position is too expensive. But as in Remark 1, the setting
where r � s is precisely when the pivots are near the anti-
diagonal, and therefore the L and U factors have an addi-
tional structure, with numerous zeros. The two proposed
generators, rely on this fact.

4.1 A binary tree of PLUQ decompositions
Following the divide and conquer scheme of Algorithm 2,

we propose a first generator requiring

O(n(rL log
n

rL
+ rU log

n

rU
)) (3)

coefficients.

For a left triangular matrix A =

[
A1 A2

A3

]
, the sub-matrix

A1 is represented by its PLUQ decomposition (P1, L1,U1,Q1),
which requires 2r1

n
2
≤ sn field coefficients for L1 and U1 and

2n indices for P and Q. This scheme is then recursively ap-
plied for the representation of A2 and A3. These matrices
have quasiseparable order at most s, therefore the following

1Note that the statement of O(n(rL + rU)) for the same
generator in [9] is erroneous.

recurrence relation for the size of the representation holds:{
S(n, s) = sn+ 2S(n/2, s) for s < n/2

S(n, s) = n2

2
+ 2S(n/2, n/4) for s ≥ n/2

For s ≥ n/2, it solves in S(n, s) = n2. Then for s < n/2,
S(n, s) = sn + 2sn/2 + · · · + 2kS(n/2k, s), for k such that
n
2k
≤ s < n

2k−1 , which is k = dlog2
n
s
e. Hence S(n, s) =

sn log2
n
s

+ sn = O(sn log n
s

). The estimate (3) is obtained
by applying this generator to the upper and lower triangular
parts of the (rL, rU)-quasiseparable matrix.

This first generator does not take fully advantage of the
rank structure of the matrix: the representation of each anti-
diagonal block is independent from the pivots found in the
block A1. The second generator, that will be presented in
the next section adresses this issue, in order to remove the
logarithmic factors in the estimate (3).

4.2 The Bruhat generator
We propose an alternative generator inspired by the gen-

eralized Bruhat decomposition [13, 12, 7]. Contrarily to the
former one, it is not depending on a specific recursive cutting
of the matrix.

Given a left triangular matrix A of quasiseparable order s
and a PLUQ decomposition of it, revealing its rank profile
matrix E, the generator consists in the three matrices

L = Left(P
[
L 0

]
Q), (4)

E = Left(E), (5)

U = Left(P

[
U
0

]
Q). (6)

Lemma 4 shows that these three matrices suffice to recover
the initial left triangular matrix.

Lemma 4. A = Left(LETU)

Proof. A = P
[
L 0m×(n−r)

]
QQT

[
U

0(n−r)×n

]
Q. From

Theorem 1, the matrix QT

[
U
0

]
Q is upper triangular and the

matrix P
[
L 0

]
PT is lower triangular. Applying Lemma 1

yields A = Left(A) = Left(LQT

[
U
0

]
Q) = Left(LET P

[
U
0

]
Q),

where E = P
[

Ir
0

]
Q. Then, as LET is the matrix P

[
L 0

]
PT

with some coefficients zeroed out, it is lower triangular,
hence applying again Lemma 2 yields

A = Left(LETU). (7)

Consider any non-zero coefficient ej,i of ET that is not in
its the left triangular part, i.e. j > n − i. Its contribution
to the product LET , is only of the form Lk,jej,i. However
the leading coefficient in column j of P

[
L 0

]
Q is precisely

at position (i, j). Since i > n − j, this means that the j-th
column of L is all zero, and therefore ei,j has no contribution
to the product. Hence we finally have A = Left(LETU).

We now analyze the space required by this generator.

Lemma 5. Consider an n× n left triangular rank profile
matrix R with quasiseparable order s. Then a left triangular
matrix L all zero except at the positions of the pivots of R
and below these pivots, does not contain more than s(n− s)
non-zero coefficients.

Proof. Let p(k) = rank(R1..k,1..n−k). The value p(k)
indicates the number of non zero columns located in the
k × n − k leading sub-matrix of L. Consequently the sum∑n−1

k=1 p(k) is an upper bound on the number of non-zero co-
efficients in L. Since p(k) ≤ s, it is bounded by sn. More pre-
cisely, there is no more than k pivots in the first k columns
and the first k rows, hence p(k) ≤ k and p(n−k) ≤ k for k ≤
s. The bound becomes s(s+1)+(n−2s−1)s = s(n−s).

Corollary 1. The generator (L, E ,U) uses 2s(n−s) field
coefficients and O(n) additional indices.

Proof. The leading column elements of L are located at
the pivot positions of the left triangular rank profile matrix
E . Lemma 5 can therefore be applied to show that this
matrix occupies no more than s(n− s) non-zero coefficients.
The same argument applies to the matrix U .

Figure 1 illustrates this generator on a left triangular ma-
trix of quasiseparable order 5. As the supports of L and U

Figure 1: Support of the L (yellow), E (black) and U
(red) matrices of the Bruhat generator for a 80× 80
left triangular matrix of quasiseparable order 5.

are disjoint, the two matrices can be shown on the same left
triangular matrix. The pivots of E (black) are the leading
coefficients of every non-zero row of U and non-zero column
of L.

Corollary 2. Any (rL, rU)-quasiseparable matrix of di-
mension n × n can be represented by a generator using no
more than 2n(rL + rU) + n− 2(r2L − 2r2U) field elements.

4.3 The compact Bruhat generator
The sparse structure of the Bruhat generator makes it not

amenable to the use of fast matrix arithmetic. We therefore
propose here a slight variation of it, that we will use in
section 5 for fast complexity estimates. We will first describe
this compact representation for the L factor of the Bruhat
generator.

First, remark that there exists a permutation matrix Q
moving the non-zero columns of L to the first r positions,
sorted by increasing leading row index, i.e. such that LQ is
in column echelon form. The matrix LQ is now compacted,
but still has r = rank(A) columns, which may exceed s and

thus preventing to reach complexities in terms of n and s
only. We will again use the argument of Lemma 5 to produce
a more compact representation with only O(ns) non-zero
elements, stored in dense blocks. Algorithm 3 shows how
to build such a representation composed of a block diagonal
matrix and a block sub-diagonal matrix, where all blocks

have column dimension s:


D1
S2 D2

S3 D3

. . .
. . .
St Dt

 .
Algorithm 3 Compressing the Bruhat generator

Input: L: the first matrix of the Bruhat generator
Output: D, S,T,Q: the compression of L
1: Q ← a permutation s.t. LQ is in column echelon form
2: C← LQ

[
Ir
0

]
where r = rank(L)

3: Split C in column slices of width s.

4: . C =


C11
C21 C22

...
...

. . .
Ct1 Ct2 ... Ctt

 where Cii is ki × s.

5: D← Diag(C11, . . . ,Ctt)

6: C← C− D =


0

C21

...
. . .

. . .
Ct1 ... Ct,t−1 0


7: T← In
8: for i = 3 . . . t do

9: for each non zero column j of

[
Ci,i−2

...
Ct,i−2

]
do

10: Let k be a zero column of

[
Ci,i−1

...
Ct,i−1

]
11: Move col. j in

 Ci,i−2

...
Ct,i−2

 to col. k in

 Ci,i−1

...
Ct,i−1

.

12: T← (In + ∆(k,j) −∆(k,k))× T
13: end for
14: end for

15: S← C =


0

C21 0

. . .
. . .

Ct,t−1 0


16: Return (D, S,T,Q)

Lemma 6. Algorithm 3 computes a tuple (D, S,T,Q) where
Q is a permutation matrix putting L in column echelon form,

T ∈ {0, 1}r×r, D = Diag(D1, . . . ,Dt), S =

 0
S2 0

...
...
St


where each Di and Si is ki × s for ki ≥ s and

∑t
i=1 ki = n.

This tuple is the compact Bruhat generator for L and satis-
fies L =

[
D + ST 0n×(n−r)

]
QT .

Proof. First, note that for every i, the dimensions of
the blocks Si and Di are that of the block Cii. This block
contains s pivots, hence ki ≥ s. We then prove that there
always exists a zero column to pick at step 10. The loci of the
possible non-zero elements in L are column segments below
a pivot and above the anti-diagonal. From Lemma 5, these
segments have the property that each row of L is intersected
by no more than s of them. This property is preserved by
column permutation, and still holds on the matrix C. In
the first row of

[
Ci1 . . . Cii

]
, there is a pivot located in

the block Cii. Hence there is at most s − 1 such segments
intersecting

[
Ci1 . . . Ci,i−1

]
. These s−1 columns can all

be gathered in the block Ci,i−1 of column dimension s.

Figure 2: Support of the matrices LQ (left), PU (cen-
ter) and of the corresponding compact Bruhat gen-
erator (right and bottom) for the matrix of Figure 1.
In the compact Bruhat generator: D is in black and
S in magenta and yellow; those rows and columns
moved at step 11 of Algorithm 3 are in yellow.

There only remains to show that ST is the matrix C of
step 6. For every pair of indices (j, k) selected in loop 8,

right multiplication by (In +∆(k,j)−∆(k,k)) adds up column
k to column j and zeroes out column k. On matrix S, this
has the effect of reverting each operation done at step 11 in
the reverse order of the loop 8.

A compact representation of U is obtained in Lemma 7 by
running Algorithm 3 on UT and transposing its output.

Lemma 7. There exist a tuple (D,S,T,P) called the com-
pact Bruhat generator for U such that P is a permutation
matrix putting U in row echelon form, T ∈ {0, 1}r×r, D =

Diag(D1, . . . ,Dt), S =

[
0 S2

...
...

0 St

]
where each Di and Si is

s× ki for ki ≥ s and
∑t

i=1 ki = n and U = PT

[
D + TS

0(n−r)×n

]
.

According to (7), the reconstruction of the initial ma-
trix A, from the compact Bruhat generators, writes

A = (DL + SLTL)R(DU + TUSU) (8)

where R is the leading r × r sub-matrix of QT ETPT . As it
has full rank, it is a permutation matrix.

This factorization is a compact version of the generalized
Bruhat decomposition [13, 7]: the left factor is a column
echelon form, the right factor a row echelon form.

5. COST OF COMPUTING WITH THE NEW
GENERATORS

5.1 Computation of the generators

5.1.1 The binary tree generators
Let T1(n, s) denote the cost of the computation of the

binary tree generator for an n × n matrix of order of qua-
siseparability s. It satisfies the recurrence relation T1(n, s) =

Kωs
ω−2

(
n
2

)2
+ 2T1(n/2, s), which solves in

T (n, s) =
Kω

2
sω−2n2 with Kω =

2ω−2

(2ω − 2)(2ω−2 − 1)
Cω

where Cω is the leading constant of the complexity of matrix
multiplication [5].

5.1.2 The Bruhat generator
We propose in Algorithm 4 an evolution of Algorithm 2

to compute the factors of the Bruhat generator.

Algorithm 4 LT-Bruhat

Input: A: an n× n matrix
Output: (L, E,U): a Bruhat generator for the left triangular

part of A
1: if n = 1 then return ([0], [0], [0])

2: Split A =

[
A1 A2

A3

]
where A3 is bn

2
c × bn

2
c

3: Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1 . PLUQ(A1)

4: R1 ← P1

[
Ir1

0

]
Q1 where r1 = rank(A1).

5:
[

B1

B2

]
← P1

T A2 . PermR(A2,P1
T)

6:
[
C1 C2

]
← A3Q1

T . PermC(A3,Q1
T)

7: Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2

.

8: D← L1
−1B1 . TRSM(L1,B1)

9: E← C1U1
−1 . TRSM(C1,U1)

10: F← B2 −M1D . MM(B2,M1,D)
11: G← C2 − EV1 . MM(C2,E,V1)

12: Here A =

 L1\U1 V1 D
M1 0 F
E G

.

13: H← P1

[
0r1×n

2

F

]
14: I←

[
0r1×n

2
G
]

Q1

15: (L2, E2,U2)← LT-Bruhat(H)
16: (L3, E3,U3)← LT-Bruhat(I)

17: L ← Left

[P1

I n
2

] L1

M1 0
E 0

[Q1

I n
2

]+

[
0 L2
L3

]

18: U ←

P1

[
U1 V1

0 0

]
Q1 Left(P1

[
D
0

]
)

0 0

+

[
0 U2
U3

]
19: E ←

[
E1 E2
E3

]
20: return (L, E,U)

Theorem 3. For any n × n matrix A with a left tri-
angular part of quasiseparable order s, Algorithm 4 com-
putes the Bruhat generator of the left triangular part of A in
O(sω−2n2) field operations.

Proof. The correctness of E is proven in Theorem 2. We
will prove by induction the correctness of U , noting that the
correctness of L works similarly.

Let H = P2L2U2Q2 and I = P3L3U3Q3 be PLUQ decom-
positions of H and I revealing their rank profile matrices.
Assume that Algorithm LT-Bruhat is correct in the two re-
cursive calls 15 and 16, that is

U2 = Left(P2

[
U2

0

]
Q2), U3 = Left(P3

[
U3

0

]
Q3),

L2 = Left(P2

[
L2 0

]
Q2), L3 = Left(P3

[
L3 0

]
Q3).

At step 7, we have[
A1 A2

A3 ∗

]
=

[
P1

I n
2

] L1

M1 I n
2
−r1

E 0 I n
2

×
 U1 V1 D

0 F
G

[Q1

I n
2

]

As the first r1 rows of PT
1 H are zeros, there exists P̄2 a

permutation matrix and L̄2, a lower triangular matrix, such

that PT
1 P2L2 =

[
0r1×n

2

P̄2L̄2

]
. Similarly, there exsist Q̄3, a per-

mutation matrix and Ū3, an upper triangular matrix, such
that U3Q3QT

1 =
[
0 n

2
×r1 Ū3Q̄3

]
. Hence

[
A1 A2

A3 ∗

]
=

[
P1

P3

] L1

M1 P̄2L̄2

PT
3 E 0 L3

×
 U1 V1 DQT

2
0 U2

Ū3Q̄3

[Q1

Q2

]

Setting N1 = P̄T
2 M1 and W1 = V1Q̄T

3 , we have[
A1 A2

A3 ∗

]
=

P1

[
Ir1

P̄2

]
P3

 L1

N1 L̄2

E 0 L3

×
 U1 W1 DQT

2
0 U2

Ū3

[Ir1
Q̄3

]
Q1

Q2

 .

A PLUQ of
[

A1 A2
A3

]
revealing its rank profile matrix is then

obtained from this decomposition by a row block cylic-shift
on the second factor and a column block cyclic shift on the
third factor as in [5, Algorithm 1].

Finally,

P

[
U
0

]
Q =

[
P1

I n
2

]
U1 V1 D

0 P̄2U2Q2

P3Ū3Q̄3

0 0 0

[Q1

I n
2

]

=

P1

[
U1 V1

0 0

]
Q1 P1

[
D
0

]
0 0

+

 P2

[
U2

0

]
Q2

P3

[
U3

0

]
Q3

 .

Hence

Left(PUQ) =

P1

[
U1 V1

0 0

]
Q1 Left(P1

[
D
0

]
)

0 0

+

[
U2

U3

]
.

The complexity analysis is exactly that of Theorem 2.

The computation of a compact Bruhat generator is ob-
tained by combining Algorithm 4 with Algorithm 3.

5.2 Applying a vector
For the three generators proposed earlier, the application

of a vector to the corresponding left triangular matrix takes
the same amount of field operations as the number of co-
efficients used for its representation. This yields a cost of
O(n(rL log n

rL
+ rU log n

rU
)) field operations for multiplying

a vector to an (rL, rU)-quasiseparable matrix using the bi-
nary tree PLUQ generator and O(n(rL + rU)) using either
one of the Bruhat generator or its compact variant.

5.3 Multiplying two left-triangular matrices

5.3.1 The binary tree PLUQ generator
Let TRL(n, s) denote the cost of multiplying a dense s×n

matrix by a left triangular quasiseparable matrix of order s.
The natural divide and conquer algorithm yields the recur-
rence formula:

TRL(n, s) = 2TRL(n/2, s) +O(nsω−1) = O(nsω−1 log
n

s
).

Let TPL(n, s) denote the cost of multiplying a PLUQ de-
composition of dimension n and rank s ≤ n/2 with a left
triangular quasiseparable matrix of order s. The product
can be done in

TPL(n, s) = TRL(n, s) +O(n2sω−2) = O(n2sω−2).

Lastly, let TLL(n, s) denote the cost of multiplying two left-
triangular matrices of quasiseparability order s. Again the
natural recursive algorithm yields:

TLL(n, s) = 2TLL(n/2, s) + 2TPL(n/2, s) +O(n2sω−2)

= O(n2sω−2)

5.3.2 The Bruhat generator
Using the decomposition (8), the product of two left tri-

angular matrices writes A × B = CARAEA × CBRBEB where
CX = DLX + SLX TLX and EX = DUX + TUX SUX for X ∈ {A,B}.
We will compute it using the following parenthesizing:

A× B = CA(RA(EA × CB)RB)EB. (9)

The product EA × CB = (DUA + TUA SUA)(DLB + SLB TLB)
only consists in multiplying together block diagonal or sub-
diagonal matrices n × rB or rA × n. We will describe the
product of two block diagonal matrices (flat times tall); the
other cases with sub-diagonal matrices work similarly.

Each term to be multiplied is decomposed in a grid of
s × s tiles (except at the last row and column positions).
In this grid, the non-zero blocks are non longer in a block-
diagonal layout: in a flat matrix, the leading block of a
block row may lie at the same block column position as
the trailing block of its preceding block row, as shown in
Figure 3. However, since ki ≥ s for all i, no more than two

Figure 3: Aligning a block diagonal matrix (blue) on
an s×s grid. Each block row of the aligned structure
(red) may overlap with the previous and next block
rows on at most one s× s tile on each side.

consecutive block rows of a flat matrix lie in the same block
column. Consequently these terms can be decomposed as
a sum of two block diagonal matrices aligned on an s × s
grid. Multiplying two such matrices costs O(sω−1n) which
is consequently also the cost of computing the product EACB.
After left and right multiplication by the permutations RA

and RB, this rA×rB dense matrix is multiplied to the left by
CA. This costs O(nrBs

ω−2). Lastly, the right multiplication
by EB of the resulting n× rA matrix costs O(n2sω−2) which
dominates the overall cost.

5.4 Multiplying two quasiseparable matrices
Decomposing each multiplicand into its upper, lower and

diagonal terms, a product of two quasiseparable matrices
writes A × B = (LA + DA + UA)(LB + DB + UB). Beside the
scaling by diagonal matrices, all other operations involve a
product between any combination of lower an upper trian-
gular matrices, which in turn translates into products of left
triangular matrices and Jn as shows in Table 1. The com-

× Lower Upper

Lower Jn × Left× Jn × Left Jn × Left× Left× Jn
Upper Left× Jn × Jn × Left Left× Jn × Left× Jn

Table 1: Reducing products of lower and upper to
products of left triangular matrices.

plexity of section 5.3 directly applies for the computation of
Upper× Lower and Lower×Upper products. For the other
products, a Jn factor has to be added between the EA and
CB factors in the innermost product of (9). As reverting the
row order of CB does not impact the cost of computing this
product, the same complexity applies here too.

Theorem 4. Mutliplying two quasiseparable matrices of
order respectively (lA, uA) and (lB, uB) costs O(n2sω−2) field
operations where s = max(lA, uA, lB, uB), using either one of
the binary tree or the compact Bruhat generator.

6. PERSPECTIVES
The algorithms proposed for multiplying two quasisepara-

ble matrices output a dense n×n matrix in time O(n2sω−2)
for s = max(lA, uA, lB, uB). However, the product is also a
quasiseparable matrix, of order (lA + lB, uA + uB) [8, Theo-
rem 4.1], which can be represented by a Bruhat generator
with only O(n(lA + lB +uA +uB)) coefficients. A first natural
question is thus to find an algorithm computing this repre-
sentation from the generators of A and B in time O(nsω−1).

Second, a probabilistic algorithm [7, § 7] reduces the com-
plexity of computing the rank profile matrix to O (̃n2 + rω).
It is not clear whether it can be applied to compute a com-
pact Bruhat generator in time O (̃n2 + max(lA, uA)ω).

Note (added Sept. 16, 2016.)
Equation (9) for the multiplication of two Bruhat genera-
tors is missing the Left operators, and is therefore incorrect.
The target complexities can still be obtained by slight modi-
fication of the algorithm: computing the inner-most product
EA×CB as an unevaluated sum of blocks products. This will
be detailed in a follow-up paper.

Acknowledgment
We thank Paola Boito for introducing us to the field of qua-
siseparable matrices and two anonymous referees for point-
ing us to the HSS and the Givens weight representations. We
acknowledge the financial support from the HPAC project
(ANR 11 BS02 013) and from the OpenDreamKit Horizon
2020 European Research Infrastructures project (#676541).

7. REFERENCES
[1] P. Boito, Y. Eidelman, and L. Gemignani. Implicit QR

for companion-like pencils. Math. of Computation,
85(300):1753–1774, 2016.

[2] Tony F. Chan. Rank revealing QR factorizations.
Linear Algebra and its Applications, 88:67–82, April
1987.

[3] S. Chandrasekaran and I. Ipsen. On Rank-Revealing
Factorisations. SIAM Journal on Matrix Analysis and
Applications, 15(2):592–622, April 1994.

[4] S. Delvaux and M. Van Barel. A Givens-Weight
Representation for Rank Structured Matrices. SIAM
J. on Matrix Analysis and Applications,
29(4):1147–1170, November 2007.

[5] Jean-Guillaume Dumas, Clément Pernet, and Ziad
Sultan. Simultaneous computation of the row and
column rank profiles. In Manuel Kauers, editor, Proc.
ISSAC’13, pages 181–188. ACM Press, 2013.

[6] Jean-Guillaume Dumas, Clément Pernet, and Ziad
Sultan. Computing the rank profile matrix. In Proc.
ISSAC’15, pages 149–156, New York, NY, USA, 2015.
ACM.

[7] Jean-Guillaume Dumas, Clément Pernet, and Ziad
Sultan. Fast computation of the rank profile matrix
and the generalized bruhat decomposition. Technical
report, 2015. arXiv:1601.01798.

[8] Y. Eidelman and I. Gohberg. On a new class of
structured matrices. Integral Equations and Operator
Theory, 34(3):293–324, September 1999.

[9] Yuli Eidelman, Israel Gohberg, and Vadim Olshevsky.
The QR iteration method for hermitian quasiseparable
matrices of an arbitrary order. Linear Algebra and its
Applications, 404:305 – 324, 2005.

[10] Tsung-Min Hwang, Wen-Wei Lin, and Eugene K.
Yang. Rank revealing LU factorizations. Linear
Algebra and its Applications, 175:115–141, October
1992.

[11] K Lessel, M. Hartman, and Shivkumar
Chandrasekaran. A fast memory efficient construction
algorithm for hierarchically semi-separable
representations. Technical report, 2015. http://scg.ece.
ucsb.edu/publications/MemoryEfficientHSS.pdf.

[12] Gennadi Ivanovich Malaschonok. Fast generalized
Bruhat decomposition. In CASC’10, volume 6244 of
LNCS, pages 194–202. Springer-Verlag, Berlin,
Heidelberg, 2010.

[13] Wilfried Manthey and Uwe Helmke. Bruhat canonical
form for linear systems. Linear Algebra and its
Applications, 425(2–3):261 – 282, 2007. Special Issue
in honor of Paul Fuhrmann.

[14] C.-T. Pan. On the existence and computation of
rank-revealing LU factorizations. Linear Algebra and
its Applications, 316(1–3):199–222, September 2000.

//http://hpac.gforge.inria.fr/
http://opendreamkit.org/
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html
http://arxiv.org/abs/1601.01798
http://scg.ece.ucsb.edu/publications/MemoryEfficientHSS.pdf
http://scg.ece.ucsb.edu/publications/MemoryEfficientHSS.pdf

[15] The LinBox Group. LinBox: Linear algebra over
black-box matrices, v1.4.1 edition, 2016.
http://linalg.org/.

[16] R. Vandebril, M. Van Barel, G. Golub, and
N. Mastronardi. A bibliography on semiseparable
matrices. CALCOLO, 42(3):249–270, 2005.

[17] Raf Vandebril, Marc Van Barel, and Nicola
Mastronardi. Matrix computations and semiseparable
matrices: linear systems, volume 1. The Johns
Hopkins University Press, 2007.

[18] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu,
and Xiaoye S. Li. Fast algorithms for hierarchically
semiseparable matrices. Numerical Linear Algebra
with Applications, 17(6):953–976, December 2010.

http://linalg.org/

	Introduction
	Preliminaries
	Left triangular matrices
	The rank profile matrix

	Computing the quasiseparable orders
	From a rank profile matrix
	Computing the rank profile matrix of a left triangular matrix
	From a PLUQ decomposition
	A dedicated algorithm

	More compact generators
	A binary tree of PLUQ decompositions
	The Bruhat generator
	The compact Bruhat generator

	Cost of computing with the new generators
	Computation of the generators
	The binary tree generators
	The Bruhat generator

	Applying a vector
	Multiplying two left-triangular matrices
	The binary tree PLUQ generator
	The Bruhat generator

	Multiplying two quasiseparable matrices

	Perspectives
	References

