
HAL Id: hal-01264124
https://hal.science/hal-01264124v1

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive intrinsic video editing
Nicolas Bonneel, Kalyan Sunkavalli, James Tompkin, Deqing Sun, Sylvain

Paris, Hanspeter Pfister

To cite this version:
Nicolas Bonneel, Kalyan Sunkavalli, James Tompkin, Deqing Sun, Sylvain Paris, et al.. Inter-
active intrinsic video editing. ACM Transactions on Graphics, 2014, 33 (6), pp.197:1–197:10.
�10.1145/2661229.2661253�. �hal-01264124�

https://hal.science/hal-01264124v1
https://hal.archives-ouvertes.fr

Interactive Intrinsic Video Editing

Nicolas Bonneel1,2∗ Kalyan Sunkavalli3 James Tompkin2 Deqing Sun2 Sylvain Paris3 Hanspeter Pfister2
1CNRS-LIRIS 2Harvard School of Engineering and Applied Sciences 3Adobe Research

(a) Input video (b) Intrinsic decomposition (c) Editing the reflectance only

Figure 1: A video sequence (a) is interactively decomposed into temporally consistent components for reflectance (b, top) and illumination (b,
bottom). Now, editing the textures in the reflectance image does not affect the illumination (c): changes to the brick walls, the roof tiles, and the
pathway leading up to the building all maintain the complex illumination of the light through the trees. We encourage readers to zoom into this
figure to see the details in our results, and refer them to the accompanying video to see the temporally consistent nature of our decomposition.

Abstract

Separating a photograph into its reflectance and illumination intrinsic
images is a fundamentally ambiguous problem, and state-of-the-art
algorithms combine sophisticated reflectance and illumination priors
with user annotations to create plausible results. However, these
algorithms cannot be easily extended to videos for two reasons: first,
naı̈vely applying algorithms designed for single images to videos
produce results that are temporally incoherent; second, effectively
specifying user annotations for a video requires interactive feed-
back, and current approaches are orders of magnitudes too slow
to support this. We introduce a fast and temporally consistent al-
gorithm to decompose video sequences into their reflectance and
illumination components. Our algorithm uses a hybrid `2-`p for-
mulation that separates image gradients into smooth illumination
and sparse reflectance gradients using look-up tables. We use a
multi-scale parallelized solver to reconstruct the reflectance and
illumination from these gradients while enforcing spatial and tem-
poral reflectance constraints and user annotations. We demonstrate
that our algorithm automatically produces reasonable results, that
can be interactively refined by users, at rates that are two orders of
magnitude faster than existing tools, to produce high-quality decom-
positions for challenging real-world video sequences. We also show
how these decompositions can be used for a number of video editing
applications including recoloring, retexturing, illumination editing,
and lighting-aware compositing.

CR Categories: I.3.8 [Computer Graphics]: Applications

∗e-mail:nbonneel@seas.harvard.edu

I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Color,Shading

Keywords: intrinsic decomposition, reflectance, illumination,
video processing, recoloring, compositing

Links: DL PDF

1 Introduction

A number of image editing operations, including recoloring, re-
lighting, white balancing, and texture editing, require the materials
properties of the objects in the photograph, and the illumination in
the scene to be handled independently. This requires the separation
of an image into a product of reflectance and illumination layers: the
intrinsic decomposition problem. This is a particularly challenging
decomposition because the effects of reflectance and illumination
are combined into a single observation, which makes the inverse
problem of separating them severely ill-posed.

Nonetheless, significant progress has been made on this problem
recently, and usable decompositions of real-world scenes have been
obtained by incorporating additional data such as depth maps [Lee
et al. 2012; Barron and Malik 2013; Chen and Koltun 2013], multi-
ple images of the same scene [Weiss 2001; Laffont et al. 2012], or
sophisticated priors such as reflectance sparsity [Gehler et al. 2011]
and non-local texture cues [Shen et al. 2008; Garces et al. 2012;
Laffont et al. 2012; Zhao et al. 2012]. Incorporating these additional
terms typically result in sophisticated algorithms which take min-
utes to solve for a single image. Recent work has extended these
approaches to video [Ye et al. 2014], but the computation time for
short sequences of video is measured in hours.

In addition, these approaches may require scene-specific parameter
tuning, hence requiring multiple resolutions of the problem until
a satisfactory set of parameters is found. In the worst case, they
may simply fail to produce the correct result, because the intrinsic
decomposition problem is fundamentally ambiguous. Difficult cases
can only be resolved with user guidance [Bousseau et al. 2009; Shen
et al. 2011]. Herein lies a problem. The computation cost of state-
of-the-art intrinsic image algorithms is prohibitively high for videos,

http://doi.acm.org/10.1145/2661229.2661253
http://portal.acm.org/ft_gateway.cfm?id=2661253&type=pdf

and so artists suffer long turnaround times while iterating parameters
and editing. To achieve interactive editing, we need a significant
increase in speed from minutes per frame to seconds per frame.

We introduce a new algorithm designed for the fast intrinsic decom-
position of videos that enables interactive reflectance and illumina-
tion editing. The centerpiece of our approach is a hybrid `2 – `p
formulation that enforces a smooth prior on illumination gradients
and a sparse prior on reflectance gradients and can be solved ef-
ficiently using look-up tables. We reconstruct the reflectance and
illumination from these gradients by adding spatial and temporal
constraints; the former to disambiguate low-frequency variations in
the illumination, and the latter to enforce temporal coherence on the
reflectance. Users can resolve further ambiguities by scribbling on
the video to indicate regions of constant reflectance and illumina-
tion, and receive feedback immediately. The interactive speeds of
our solver are the result of two design decisions; first, by largely
working in the gradient domain, we ensure that most dependencies
are between local pixels, leading to more efficient memory accesses
and better optimizations [Ragan-Kelley et al. 2012], and second, we
design a multi-scale parallelized solver that converges quickly by
taking advantage of the inherent smoothness in the illumination.

We state our contributions explicitly:

1. We introduce a fast algorithm to separate image gradients into
smooth illumination and sparse reflectance gradients using a
hybrid `2–`p optimization that can be solved very efficiently
using precomputed look-up tables.

2. We present a technique to reconstruct the reflectance and illu-
mination from these gradients while enforcing spatial and tem-
poral smoothness using a fast multi-scale parallelized solver
that produces high-quality, temporally consistent, intrinsic
video decompositions.

3. We describe a set of scribbles that let users control the results
with interactive feedback, and a technique to propagate this
input in space and time to limit the amount of interaction that
users need to do.

4. We demonstrate complex video editing applications at interac-
tive rates, including recoloring, retexturing, lighting editing,
and shadow compositing.

Together, our contributions provide, for the first time, an interactive
system for intrinsic video decompositions, which vastly improves
turnaround times for complex video editing operations.

1.1 Related Work

Intrinsic images Barrow and Tenenbaum [1978] introduced the
notion of intrinsic images to separate the contributions of illumi-
nation and reflectance. Since then, many techniques have been
proposed to solve this problem. We refer to the survey of Grosse et
al. [2009] for a general overview of the topic.

Intrinsic image decompositions typically attempt to separate image
gradients into reflectance and illumination gradients. The classic
Retinex algorithm [Land et al. 1971] does this by simply threshold-
ing the image gradients. Subsequent work has expanded on this idea
by accounting for color variations [Grosse et al. 2009] and by learn-
ing a classifier to do the separation [Tappen et al. 2005]. All these
approaches only consider the observed intensities in a local neigh-
borhood. While that makes these techniques very fast, the quality of
the results is still limited. The quality of the decompositions can be
improved by imposing priors on non-local reflectance [Shen et al.
2008; Gehler et al. 2011; Shen et al. 2011; Zhao et al. 2012; Bell
et al. 2014], on gradient distributions [Li and Brown 2014; Shen and

Yeo 2011], on the number of reflectance colors [Shen and Yeo 2011],
or on the underlying scene geometry and illumination [Barron and
Malik 2012]. Alternatively, the conditioning of the problem can be
improved by leveraging multiple images captured under varying il-
lumination [Weiss 2001; Matsushita et al. 2004; Laffont et al. 2012]
or view directions [Laffont et al. 2013], or by making use of depth
information captured with RGBD cameras [Lee et al. 2012; Barron
and Malik 2013; Chen and Koltun 2013].

While these techniques produce high quality results, they do so at
a high computational cost, making them impractical for video se-
quences. In addition, most typical video sequences do not exhibit
illumination changes and one cannot assume a depth channel is
available in general. Bousseau et al. [2009] allow users to guide the
decomposition using scribbles (similar to work on interactive ma-
terial modeling [Dong et al. 2011]), which Carroll et al. [2011] use
to interactively separate diffuse colored interreflections. However,
because their underlying solver uses medium-size image stencils, it
takes more than 10 seconds to decompose a half-megapixel image
which is too slow for interactive video editing. In addition, most
of the techniques have been developed for single images (or static
scenes) and do not cope with temporal consistency when applied to
uncontrolled video sequences.

Illumination editing in videos Our approach relies on intrinsic
decompositions of videos similarly to Lee et al. [2012] but does not
require a depth channel. We instead rely on user guidance. Other
applications manipulate illumination in videos without actually de-
composing the data. For instance, Farbman and Lischinski [2011]
stabilize the white balance of consumer-grade sequences, and Bon-
neel et al. [2013] transfer the color grading of movies onto other
videos. These techniques are designed for specific applications. In
comparison, we seek a more versatile intrinsic decomposition that
enables several applications such as recoloring and lighting editing.

The work closest to ours is the concurrently proposed intrinsic video
algorithm of Ye et al. [2014]. While they rely on user input like
us, the annotations are specified only on the first frame and then
propagated to subsequent frames. The technique takes one minute
to process a half-megapixel frame, and so takes many hours for
short sequences. If there is an error in the decomposition, and
additional scribbles are needed, the turn-around time for an artist is
very long. In contrast, our technique processes images of the same
resolution in half a second. We decompose an optimization over
gradients using Lp norms to one approximated by look-up tables,
similar to Krishnan et al. [2009]. This enables truly interactive video
decomposition for the first time.

2 Efficient Intrinsic Decomposition

In this section, we describe our algorithm to efficiently decompose
an input video I into a illumination layer S and a reflectance layer
R. We assume that the illumination is monochromatic (i.e the illu-
mination in the scene has a constant color). The observed intensity
at pixel x is then given by:

I(x) = S(x) R(x), (1)

where I and R are RGB-vectors and S is a scalar.

The core of our algorithm is a hybrid `2–`p energy formulation in the
gradient domain that separates image gradients into reflectance and
illumination gradients by enforcing a sparsity prior on reflectance
values and a smoothness prior on illumination. We reconstruct the re-
flectance and illumination layers from these separated gradients. We
enforce that pixels with similar chrominance have similar reflectance
to disambiguate the decomposition non-locally. We achieve tempo-
ral consistency by enforcing a causal smoothness on the reflectance

along the time dimension. We also enable user control via a set of
scribbles that adds constraints to our reconstruction process. We
automatically propagate these constraints to reduce the amount of
user interaction required. Finally, we combine all these constraints
into a linear system that we solve using a multi-scale parallelized
solver. The rest of this section presents the details of each step.

2.1 Hybrid `2–`p Gradient Separation

For the sake of efficiency, we perform most of the computation on
single-channel luminance images. We define the image luminance
as the geometric mean of the individual RGB components, i.e.,
I = (Ir Ig Ib)

1/3, and reflectance luminance R, similarly, as the
geometric mean of the reflectance components. This gives us the
relation I(x) = R(x) S(x), which we solve for R and S. Finally,
the color reflectance R(x) can be estimated as I(x)/S(x).

We work in the log domain to transform the image formation into
a sum: log I(x) = logS(x) + logR(x). This has the added ad-
vantage that we do not have to constrain the solution to be strictly
non-negative (as reflectance and illumination should be). Then, we
formulate our approach in the gradient domain. For this, we intro-
duce lowercase variables to represent logarithmic gradients, e.g.,
i = ∇ log I . With this notation and the image formation model,
we can write: i(x) = s(x) + r(x) and express this constraint as a
least-squares energy term: ‖i(x)− s(x)− r(x)‖2.

This term alone is ambiguous since only i is known, and both s
and r are unknown. To address this issue, we add priors on s
and r. We assume that reflectance values are sparse [Omer and
Werman 2004; Hsu et al. 2008], i.e., that scenes are mostly made
up of objects of constant colors separated by hard boundaries. This
is typically modeled using a `p term on the gradients with p <
2, i.e., with our notation: ‖r(x)‖p. Low p values assume very
sparse reflectance gradients, while p = 2 would assume normally
distributed reflectance gradients over the image. We also assume
that illumination exhibits smoother variations due to illumination
on curved surfaces and soft shadows for instance [Land et al. 1971].
We model this prior with a `2 term on illumination gradients to favor
a denser distribution of gradient values, i.e.: ‖s(x)‖2. We put all the
terms together to form the energy E:

E(s, r) =
∑
x

‖i− s− r‖2 + λs‖s‖2 + λr‖r‖p (2)

where λs and λr control the influence of the priors on s and r (Fig-
ure 3) ; dependencies on pixel x have been omitted for conciseness.

Minimizing the energy Solving mixed-norm optimization prob-
lems as Equation 2 requires time-consuming combinatorial ap-
proaches in general. However, we can do significantly better in
our specific case. Inspired by Krishnan et al. [2009], we will show
that we can minimize Equation 2 using a simple look-up table.

Note that this formulation treats the horizontal and vertical compo-
nents of the gradients independently. The formulations we derive
below, can therefore be applied to each axis separately. First, we
derive an expression for s in terms of r by minimizing the energy
E(s, r). We do this by differentiating E(s, r) with respect to the
unknown s and setting the derivative to 0 giving us the relation:

s =
i− r
1 + λs

(3)

Substituting the expression for s from Equation 3 into Equation 2
and re-arranging the terms gives us:

E(r) =
∑
x

λs
1 + λs

‖i− r‖2 + λr‖r‖p (4)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

p=0.7
p=1
p=1.2
p=1.5
p=2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.3

−0.1

0.1

0.3

0.5
λr=0.1

λr=0.25

λr=0.5

λr=0.75

(a) Varying p (b) Varying λr
(λs = λr = 0.5) (p = 1.1 and λs = 0.5)

Figure 2: Behavior of the look-up table lutλs,λr,p(r̃k) (Eq. 6); r̃k
varies along the x-axis. The p variable controls the smoothness
of the separation – at values closer to 1 it starts approximating a
clipping function that removes smaller gradients (a). The weights
λs and λr pull the function in different directions, with a higher λr
making it more like a clipping function, and a larger value of λs
making the function smoother.

To minimize this expression, we use Iterative Re-weighted Least
Squares to replace the `p term [Björck 1996, § 4.5] with a weighted
`2 term. This amounts to solving a quadratic cost function to con-
struct a series of solutions, r̃k, that progressively gets closer to the
optimal solution r?. At each iteration, the estimate at k + 1 is
obtained by minimizing the following least-squares problem:∑

x

λs
1 + λs

‖i− r̃k+1‖2 + λrwk+1‖r̃k+1‖2 (5a)

with wk+1 =
p

2
|r̃k|p−2 (5b)

Differentiating this cost function and setting it to 0 gives us a closed
form expression for r̃k+1 as a function of r̃k:

r̃k+1 =
2λsi

2λs + λr(1 + λs)p|r̃k|p−2
(6)

Iterating this formula converges to a minimizer of the mixed-norm
energy (Eq. 4) and we use r̃K with a large enough K as an approx-
imation of the solution r?. That is, in practice, given i, λs, and
λr , we evaluate r̃K by iterating Equation 6 K times. We observed
that K = 100 was sufficient in all our experiments. Further, given
λs and λr , the output r value depends only on i. When λs and
λr are fixed, we use this property to precompute the look-up table
lutλs,λr (r̃k) for varying values of r̃k and store it in a look-up table
that can be accessed very efficiently at run time. We can also build a
higher-dimensional table to enable varying parameters.

Taking chrominance variations into account The energy func-
tion in Equation 2 encourages sparse but large reflectance gradients
and dense but smaller illumination gradients. This does not account
for illumination effects like shadows that can lead to large gradients.
However, shadows typically do not give rise to large variations in
chrominance values; these are more likely to be caused by changes
in reflectance [Grosse et al. 2009]. Similar to them, we threshold
illumination gradients based on chrominance gradients. Specifically,
we set the shading gradient to zero whenever the chrominance of the
image gradient is above a user-specified threshold T chr.

Discussion Figure 2 illustrates the form the function lutλs,λr (r̃k)
takes for different values of λs, λr , and p. For p ≈ 0.5, this function
approximates the thresholding function that the Retinex algorithm
uses to separate image gradients into reflectance and illumination
gradients. This suggests that our look-up table is a generalization of
the Retinex algorithm. However, unlike the Retinex algorithm, our

(a) Baseline decomposition (b) Increased `2 weight (c) Increased `p weight (d) Increased p

Figure 3: This figure demonstrates the effect of the different parameters in Equation 6 on the resulting reflectance (top) and illumination
(bottom). Increasing the `2 weight (b) leads to a blurry illumination, but the reflectance is not sparse, e.g., the smooth variations on the girl’s
face; increasing the `p weight (c) pushes stronger gradients to the illumination component, e.g., the illustration on her shirt. Changing the
norm of the reflectance term from a sparse p = 0.4 to a denser p = 1.2 makes the decomposition smoother albeit with less separated gradients
(d). This comparison is performed without the non-local term and color handling.

look-up table is a softer function that allows for non-zero reflectance
and illumination gradients at the same pixel. As shown in Figs. 7
and 4, this leads to higher quality results at depth discontinuities.

Our model does not strictly enforce the image formation model
and set s = i − r. If we did so, the energy becomes

∑
x λs‖i −

r‖2 + λr‖r‖p. While this formulation is simpler, this system is
stiffer because it must exactly adhere to the image formation model
and can lead to artifacts. Enforcing this as a soft constraint allows
our optimization to handle deviations resulting from more complex
image formation. We carefully compared the results produced by
the two approaches, and found that the main improvement comes
from Equation 3 that favors a smooth illumination where the ob-
served chromaticity is smooth, even though it may violate the image
formation model (e.g., see Figure 4).

2.2 Reconstructing the Layers

For given values of λr and λs, we precompute lutλr,λs(i). Then,
for each pixel, we estimate the horizontal and vertical gradients of r
by applying lutλr,λs twice, once for each axis. We use Equation 3
to recover s. Then, we solve for S′ that satisfies these gradients at
every pixel x and time t by minimizing the term:

Ep(S
′
t) =

∑
x

‖∇S′t(x)− st(x)‖2, (7)

and exponentiate it to get the illumination layer S = exp(S′).
Finally, we estimate the color reflectance layer R using the image
formation model (Eq. 1). This approach has two advantages. First,
reconstructing the single-channel S is more efficient than solving
for each color channel of the reflectance R. Second, minimizing
the `2-norm on the gradients of S as we do in Equation 7 produces
better results than doing so for reflectance because it introduces low-
frequency residuals when the gradient field is not integrable. Such
residuals are more likely to be innocuous in the illumination layer
that contains smooth variations, but would be more conspicuous in
the reflectance layer that is expected to be piecewise constant.

Spatial reflectance constraints While our hybrid `2 – `p formu-
lation leads to a simple and elegant method for separating image
gradients into reflectance and illumination gradients, reconstructing
the reflectance and illumination from them directly, i.e, by mini-
mizing Equation 7, can lead to results with low-frequency errors.

Previous work has addressed this by incorporating non-local re-
flectance constraints, typically by enforcing that pixels with similar
chrominances have similar reflectances [Shen et al. 2008; Zhao et al.
2012]. Introducing these non-local constraints leads to denser lin-
ear systems and significantly slows down the decomposition [Zhao
et al. 2012], resulting in a solution computed in 6 seconds to one
minute on our examples. To avoid this, we incorporate a few non-
local constraints that address the low-frequency errors while adding
negligible overhead to the linear system we solve.

We globally cluster the chrominance of every pixel in the video into
a set of C clusters using k-means. For every frame, we select a pixel
whose chrominance is closest to each cluster centroid – this pixel
is used as a representative for that cluster in that frame. For every
pixel in a frame, we enforce its reflectance to remain close to the
reflectances of theN nearest cluster representatives, with a weightw
dependent on its distance to the representative in chrominance space.
We then construct the following non-local regularization term:

Enl(S
′
t) =

∑
x

N∑
n=1

w(x, xn)‖logRt(x)− logRt(xn)‖2

=
∑
x

N∑
n=1

w(x, xn)‖S′t(x)− S′t(xn)

− log It(x) + log It(xn)‖2, (8)

where xn is the representative coordinate of the nth nearest cluster
in chrominance space. We adopt the definition of the chrominance as
Ck = log(Rk)−

∑
k log(Rk) for the three color channels [Grosse

et al. 2009]. In our implementation, C = 8 and N = 2, and
w(x, xn) = exp(−‖C(x)−C(xn)‖2/100). This adds only N =
2 non-zero terms to the linear system for every pixel. In addition,
the fact that all pixels in a frame are connected to the same set of
representative pixels makes it easy to cache their values, and speeds
up our solver.

Temporal constraints Applying the previous technique frame by
frame can lead to results with unpleasant flickering artifacts. How-
ever, the reflectance of a scene is typically temporally coherent and
we would like to enforce this in our optimization. One way to do
this would be to add a temporal smoothness term to our formulation
and solve for the decomposition on the entire space-time volume.

(a) Input frame (b) Retinex (c) Transfer function (d) Full transfer (e) Non-local term (f) User input
and scribbles without flexibility function added added

Figure 4: We evaluate the use of the different terms in our optimization. The hard thresholding of Retinex-based methods (b) and enforcing the
image formation model strictly (c) lead to aliasing artifacts at object boundaries which increases temporal inconsistencies (Fig. 6). Our `2 –
`p decomposition that allows deviations from the image formation model is smoother (d) especially at object boundaries. Adding the non-local
constraints reduces low frequency artifacts (e) but might have issues at pixels with ambiguities (like the black and white eyes). The user can
refine the result in these areas using a few strokes (e); constant reflectance scribbles are shown in red, constant illumination in blue.

However, the size of the problem makes the computation cost and
the memory requirements for the solver prohibitively large, preclud-
ing an interactive solution. In our work, we opt for an intermediate
approach that enforces temporal smoothness only between adjacent
frames. More specifically, while solving for the intrinsic decompo-
sition at a particular frame, we add a temporal regularization that
keeps the solution close to the result from the previous frame. This
has been shown to lead to globally consistent results for other video
processing applications [Paris 2008]. In addition, solving for the de-
composition in chronological order is a user-friendly option because
it ensures that frames that have already been annotated by the user
are not affected by subsequent strokes.

We name ut(xt) the forward optical flow, i.e., the pixel xt at frame
t moves to xt+1 = xt + ut(xt) at frame t + 1. To enforce the
temporal coherence of the reflectance component, we define a regu-
larization term that moves the solution of the current frame to the
flow-advected solution from the previous frame:

Et+1(S
′
t+1) =

∑
x

‖logRt+1(xt+1)− logRt(xt)‖2 (9)

=
∑
x

‖S′t+1(xt+1)− S′t(xt)− log It+1(xt+1)

+ log It(xt)‖2.

The resulting linear system has the the same size as for a single
frame but leads to globally coherent results. We encourage readers
to evaluate the temporal smoothness in the accompanying video.

Multi-scale solver We combine the standard gradient reconstruc-
tion energy with the non-local constraints and the temporal coher-
ence term to get the combined error term:

E(S′t) = Ep(S
′
t) + λnlEnl(S

′
t) + λtEt(S

′
t), (10)

where λnl and λt control the weights given to the non-local and
temporal constraints respectively. λt is modulated by per-pixel opti-
cal flow confidence, measured as the distance between the forward
and backward optical flows ut and ũt+1: λ′t = λt‖ũt+1(xt+1) +
ut(xt)‖. We solve for the illumination that minimizes this energy
at every time instant, starting with the first frame of the video and
moving onto each subsequent frame.

Minimizing the energy term in Equation 10 leads to a sparse linear
system in terms of the per-frame illumination S′t. While this linear
system has the size of the number of pixels in each frame, each row
of this linear system has only N + 4 off-diagonal non-zero entries
(corresponding to the gradient and non-local terms respectively);
temporal terms only affect the diagonal), and can be efficiently
solved using parallelized Jacobi iterations. However, Jacobi itera-
tions tend to resolve low frequencies very slowly, and we resolve
this by using a multi-scale solver. We build a pyramid representation
for each frame and construct the gradient, non-local, and tempo-
ral constraints at each level. The coordinates of the representative
pixels of non-local constraints are adjusted to adapt to the pyramid
resolution. We solve for the illumination at the coarsest level of the
pyramid using a direct solver, and then upsample this result to the
higher resolution and use it as the initialization to the Jacobi solver.
We progressively refine this solution at the higher resolutions using
the Jacobi solver, until we have computed the illumination at the full
resolution of the video. This multi-scale approach takes advantage of
the inherent smoothness of the illumination layer, and significantly
speeds up the convergence of the sparse solver without the need
for a full algebraic multigrid solver. We found that this approach
converges significantly faster than Successive Over Relaxation and
Conjugate Gradient methods, as well as direct LDLT solvers that
take approximately 10 seconds per frame.

3 User-guided Refinement

While our hybrid gradient separation algorithm in combination with
the non-local and temporal constraints produces reasonable results in
many cases, real-world videos exhibit many challenging ambiguities
that we address using user input. In order to support this, we provide
scribbles to users so that they can refine the results.

User strokes We provide users with scribble tools to specify
constraints that satisfy two requirements: they are easy for a user
to specify in a video frame, and they have a limited effect on the
computational complexity of the solver. To this end, we specify the
user constraints in the gradient domain, ultimately only altering the
right hand side of existing equations (Eq. 10).

We use two strokes, for constant reflectance and constant illumina-

[S
he

n
et

al
.2

01
1]

[Z
ha

o
et

al
.2

01
2]

O
ur

s

(a) Reflectance (b) Illumination

Figure 5: We compare our technique (third row) to the decomposi-
tions of Shen et al. [2011] (first row) and Zhao et al. [2012] (second
row). Shen et al. has brushes and takes 6 min. while Zhao et al.
is automatic and takes 6 s. Our method takes 0.5 s per frame, and
provides a more satisfactory decomposition for our applications.

tion, that specify that the gradient of the reflectance (and illumina-
tion, respectively) at those points is 0, i.e.: rt(x) = 0 and st(x) = 0.
These constraints are straightforward to apply to s and r, and do not
require us to perform the gradient separation again.

Propagating strokes To speed up user interaction, we propagate
user strokes both spatially and temporally to similar pixels using
coherency-sensitive hashing [Korman and Avidan 2011] (CSH). As
mentioned before, we only propagate user strokes forward in time.
This ensures that frames that have already been processed are not
affected by subsequent strokes (similar to other video processing
techniques [Bai et al. 2009]).

We use CSH because its data structure for an n-frame video sequence
can be constructed inO(n) time and matches retrieved inO(n) time.
We construct the feature vector for the matching by sampling 11×11
patches of RGB values and projecting them into a 16-dimensional
space that is derived from a Principal Component Analysis (PCA)
of these patches. To make the PCA tractable, we compute it from a
sub-sampling of all the patches in the video sequence.

Our user annotation interface consists of a brushing tool with a user-
specified radius. When the user paints a constraint, we use the patch
directly under the stroke as a query, and extend the constraint to k
matching pixels that lie within the radius. This radius allows users
to control how far strokes can be propagated, thereby adapting to the
specificities of the scene. To propagate the constraints temporally,
we advect the strokes to subsequent frames using the optical flow,
and discard the constraint once it is advected outside of the frame.
In practice, to keep computation tractable, a maximum of k = 3000
neighbors per frame are retrieved.

4 Results and Discussion

In this section, we evaluate our algorithm on both single images and
video sequences and compare with state-of-the-art techniques. The
quality of our results is better evaluated on the accompanying video.

0 20 40 60 80 100 120 140
0.008

0.012

0.016

0.02

0.024

Time (frame)

Av
er

ag
e

re
fle

ct
an

ce
 v

ar
ia

tio
n

Retinex
Retinex + temporal consistency
No temporal consistency
Ours

Figure 6: The average derivative of reflectance for pixels that
should have constant reflectance, showing the general stability of our
method against Retinex applied per frame. Removing our temporal
consistency also increases the average derivative.

In our prototype implementation, we let the user interactively adjust
the parameters p, λr , λs and T chr to obtain the desired reflectance
and illumination gradients (Eq. 6). These gradients are then used in
conjunction with the non-local terms and temporal regularization,
weighted by λt and λnl. Typical ranges for these parameters are
p ∈ [0.4, 0.5], λr ∈ [0, 0.5], λs ∈ [0, 10], λnl ∈ [0, 1], T chr ∈
[0, 0.2]. The constant reflectance and illumination strokes are used
to directly edit the reflectance and illumination gradients. The final
illumination layer is reconstructed by solving a linear system using a
fast parallelized CPU-based multiscale solver with Jacobi iterations.

To propagate the user strokes, we implemented the search using an
optimized version of the LSHKIT library [Dong 2014]. Both the
temporal advection of the user strokes and the temporal smoothing
term are driven by optical flow based on Liu et al. [2009]. We
precompute this optical flow as a preprocessing step which takes
0.25-0.50s to process a 0.5MP video frame. This allows us to give
the user interactive feedback while they annotate the video with the
constraints. Finally, we propagate the user constraints forward by
12 frames using background threads.

In Figure 4, we evaluate the different terms in our decomposition
algorithm. We observe that allowing deviations from the image
formation model (Eq. 3) reduces artifacts at object boundaries, non-
local terms remove low-frequency errors, temporal constraints lead
to time-coherent results, and user input can resolve other ambiguities.
Importantly, every video is different and might need slight variations
of these terms. By making the solver interactive, we allow users to
quickly adapt the result to their requirements.

Static images We compare the results of our technique to state-
of-the-art techniques for static images. In Fig. 5, we compare to
the work of Shen et al. [2011] and Zhao et al. [2012]. In the sup-
plemental material, we show our decomposition on benchmarking
examples from Grosse et al. [2009], as well as a comparison with
the method of Bousseau et al. [2009]. In all these cases, a few
strokes are sufficient to create results that are comparable to other
techniques, but at interactive speeds.

Videos First, we evaluate our technique on a realistically-rendered
animation of the San Miguel 3D scene (Figure 7), 100 frames at
1280×960, using Metropolis light transport with the PBRT render-
ing engine [Pharr and Humphreys 2010]. This sequence features
detailed geometry, spatially-varying reflectances, complex outdoor
illumination, and an intricate camera path; as such, it is a good
approximation of a real-world example, with the advantage of pro-

(a) Input video frame (b) Ground truth (c) [Zhao et al. 2012] (d) Our result
(no user strokes) (no user strokes)

Figure 7: We demonstrate our technique on one frame of a rendered video sequence (a) with ground truth reflectance and illumination (b).
Using the single image method of Zhao et al. [2012] on a per-frame basis produces a result that is spatially inaccurate and temporally
inconsistent (c). Their non-local constraints have considered the albedo of the tree, ground and tables to be the same. Even though it does not
account for the chromatic illumination, our algorithm is able to produce a good result on this challenging example even without any user
interaction (d). Please refer to the supplementary video to appreciate the temporal behavior of the results.

viding a ground-truth decomposition. As shown in Figure 7), our
technique produces a result that compares well with the ground
truth and is significantly better than the state-of-the-art single image
technique of Zhao et al. [2012].

Additionally, we compare our method with the concurrent work of
Ye et al. [2014] on a real-world video sequence in Figure 8 and an
animated video in Figure 9. Like us, they incorporate user input
to disambiguate challenging areas, but unlike us, this user input is
specified on the first frame and the solution is propagated to the
rest of the video. Also, their method runs in the order of hours,
precluding any interactive refinement. On the other hand, the user
can interactively refine the result using our technique. In addition,
users can quickly specify annotations in different frames and this is
useful for videos with significant camera and scene motion.

Stability Methods tailored for images are not designed for videos
and, when applied to each frame independently, often produce tem-
poral inconsistencies. Our technique produces temporally consistent
results that capture the reflectance-illumination separation well. To
demonstrate the stability of our method, we track 100k pixels which
should have constant reflectance and no motion across a video. Fig-
ure 6 shows the average derivative of these reflectance values. If our
temporal consistency is good, then this should be close to zero. This
demonstrates the advantage of our approach over the frame-by-frame
Retinex algorithm, and the advantage of our temporal consistency
term. Our approach is also more accurate than Retinex (Fig. 4).

Discussion While our CPU-based solver is quite fast, we believe
that the performance could be further improved by implementing
our algorithm on graphics hardware. For instance, Jacobi solvers
are well-suited to parallelization on the GPU, and our spatially
coherent and sparse non-local constraints will not have a significant
impact on porting the algorithm. Due to the nearest-neighbor search,
our algorithm could slow down if too many strokes are specified.
However, when we produced our results, we never reached the
point where this would become an issue. In practice, the examples

we show were edited with less than 20 minutes of user interaction
and sometimes, were produced with no interaction at all. Table 1
contains detailed statistics about our input videos, and computation
and interaction times that were required to produce our results.

Our tool assumes monochromatic lighting. This speeds up the al-
gorithm, and we found that it leads to accurate decompositions for
most videos where this assumption is close. However, in presence
of illumination with spatially varying colors, or strong colored inter-
reflections, this can lead to artifacts (e.g., see the shirt in Fig.10, and
the pink inter-reflections on the girl’s arms in Fig. 11).

Our `2 – `p model assumes that illumination is smoothly varying;
this assumption can be violated due to high-frequency lighting ef-
fects caused by hard cast shadows or high frequency geometry, and
our technique produces an overly smooth shading layer in these
cases. This can be observed in Fig. 8 (b) where high-frequency resid-
ual shadows can be seen in the reflectance, or in Fig. 5 where our
illumination is smoother than other methods. While our non-local
constraints help mitigate this issue to an extent (by forcing high-
frequency achromatic variations out of the reflectance and into the
illumination), more user interaction is often necessary in these cases.
Generally, the decomposition obtained using Ye et al.’s approach
[2014] with user interaction is more accurate when compared to our
method without any user interaction. However, this comes at the
expense of increased computation, which drastically slows down
iteration time for correcting artifacts versus our interactive method.

In our early experiments, we tested temporal propagation both for-
ward and backward in time. While we did not observe significant
gain in accuracy, more user interaction was required because one
needed to step forward and backward to check the results. In compar-
ison, propagating only forward in time yields a simpler workflow in
which one only needs to process the frames in chronological order.

(a) Input video / Ye et al. scribbles (b) Reflectance (c) Shading (d) Recoloring

Figure 8: Comparison of our approach (top) to Ye et al. [2014] (bottom). Both approaches require user input, with Ye et al.’s all coming on the
first frame (a). However, any mistakes cannot be quickly corrected, as their method requires four hours to compute the result. In comparison,
our approach takes two minutes to compute and gives immediate feedback to user scribbles. The benefits of this can be seen in the yellow logo
on the girl’s shirt. Due to the slow feedback, it appears incorrectly in the shading layer of Ye et al., but it does not appear in our interactively
refined shading decomposition (c). As a result, our recolored video does not have this artifact (d).

(a) Input video frame (b) Ye et al. [2014] (with user strokes) (c) Our result (without user strokes)

Figure 9: On this animated video sequence (a), our technique is able to, without any user strokes, produce a comparable result (c) to the
user-assisted result of Ye et al. [2014] (b).

5 Applications

We demonstrate our method on various applications benefiting from
an editable and temporally consistent intrinsic decomposition. Our
main use of the intrinsic decomposition is to independently alter the
illumination layer and the reflectance layer.

Reflectance editing Editing the reflectance of an object in a video
is easy when the color is uniform; in such cases, a simple chromi-
nance change suffices. However, this becomes laborious when the
reflectance has high-frequencies that also appear in the luminance.
One cannot simply paint over it since it would alter the illumina-
tion. However, with our decomposition, painting in the reflectance
layer performs the desired operation since illumination remains un-
changed. We demonstrate this in Figures 1 and 11 (top); in both
these cases the reflectance has high-frequency variations in both
luminance and chrominance. By using our decomposition, we are
able to paint over the original reflectance, while still preserving the
spatially-varying illumination in the presence of complex motion. In
all these examples, we paint the reflectance in a single frame, and
use optical-flow tracking to advect the paint strokes in time.

Illumination editing Turning hard shadows into soft shadows is
a challenging operation if one only has access to raw data since
blurring the shadows ends up blurring the textures in the scene too.
In comparison, with our decomposition, this task becomes straight-
forward since one needs to blur the illumination layer (Fig. 12).

Lighting-consistent video compositing Naively compositing
videos that contain shadows produces unsightly results in which the
shadows overlap instead of merging. Our decomposition enables

(a) Input frame (b) Albedo (c) Shading

Figure 10: Our method assumes monochromatic lighting. The
presence of chromatic lighting or strong interreflections that produce
colored shading violate our model, and can produce significant
artifacts that cannot be corrected, even with heavy user interactions.

the proper merging. Denoting S1 and S2 the shading layers of
the two videos to be composited, we compute min(S1, S2) as the
new shading layer within a segmentation of the foreground video
obtained with Video Snapcut for instance [Bai et al. 2009] (Fig. 13).

6 Conclusions

In this work, we have presented the first interactive intrinsic decom-
position algorithm for video sequences. Our technique is built on top
of a hybrid `2 – `p algorithm that efficiently computes reflectance
and shading gradients from a image. We present a fast solver that
combines these gradients with spatial and temporal constraints to
reconstruct temporally consistent shading and reflectance videos at
interactive rates. The interactive nature of our solver is a significant
contribution over previous work, making it possible for users to
navigate the parameter space of the algorithm and make annota-
tions while receiving immediate feedback. Our technique can be
used to efficiently derive high-quality intrinsic decompositions for a
wide variety of real-world video sequences. Most importantly, our
decomposition enables a number of video editing tools that are oth-

Sequence Figure # Frames Resolution Solver (per frame) # Strokes Interaction

House 1 91 1024×576 0.60 s 325 20 min
Kermit 4 (f) 291 320 ×568 0.18 s 101 6 min
San Miguel 7 (d) 100 1280×960 1.30 s 32 15 min
Kid 8 (top) 285 960 ×540 0.51 s 10 6 min
Chicken 9 (c) 148 640 ×360 0.24 s 0 0 min
Girl 11 98 640 ×360 0.24 s 276 15 min
SIGGRAPH Cart Video (3’24) 141 1024×576 0.59 s 0 0 min
Shadow art 12 134 1024×576 0.62 s 28 10 min
Compositing (background) 13 (a) 215 1024×576 0.60 s 330 20 min
Compositing (foreground) 13 (b) 107 1024×576 0.62 s 207 20 min

Table 1: Statistics for our input videos. We report approximate interaction times and the number of strokes for each complete video sequence.
Note that we focused on high quality decompositions and did not try to minimize the amount of time spent or the number of user strokes.

(a) Input video sequence (b) Intrinsic (c) Reflectance-edited video (d) Naive chrominance
decomposition editing

Figure 11: Our decomposition enables easy reflectance editing such as re-coloring the girl’s t-shirt. By separating the two components, we are
able to make these edits while retaining the original illumination in the video. A naive editing of the chrominance leaves luminance variations
due to the illustration on the shirt.

erwise difficult to implement; these include recoloring, retexturing,
illumination editing, and lighting-consistent video compositing.

Acknowledgements

We thank the SIGGRAPH reviewers for their feedback. This work
was partially supported by NSF grants CGV-1111415, IIS-1110955,
OIA-1125087, and LIMA - Région Rhône-Alpes. We thank the
authors of the video footage: McEnearney (Fig. 1), R. Cadieux
(Figs. 3, 5, and 11), G. M. Lea Llaguno (Fig. 7), Ye et al. [2014]
(Fig. 8), M. Assegaf (Fig. 9), B. Yoon (Fig. 12), The Scene Lab via
Dissolve Inc. (Fig. 13 (a)).

References

BAI, X., WANG, J., SIMONS, D., AND SAPIRO, G. 2009. Video
snapcut: Robust video object cutout using localized classifiers.
ACM Trans. on Graph. (SIGGRAPH) 28, 3.

BARRON, J. T., AND MALIK, J. 2012. Color constancy, intrinsic
images, and shape estimation. ECCV .

BARRON, J. T., AND MALIK, J. 2013. Intrinsic scene properties
from a single RGB-D image. In CVPR.

BARROW, H., AND TENENBAUM, J. 1978. Recovering intrinsic
scene characteristics from images. Computer Vision Systems.

BELL, S., BALA, K., AND SNAVELY, N. 2014. Intrinsic images in
the wild. ACM Trans. Graph. (SIGGRAPH) 33, 4.

BJÖRCK, A. 1996. Numerical Methods for Least Squares Problems.
SIAM.

BONNEEL, N., SUNKAVALLI, K., PARIS, S., AND PFISTER, H.
2013. Example-based video color grading. ACM Trans. Graph.
(SIGGRAPH) 32, 4.

BOUSSEAU, A., PARIS, S., AND DURAND, F. 2009. User-assisted
intrinsic images. ACM Trans. Graph. (SIGGRAPH) 28, 5.

CARROLL, R., RAMAMOORTHI, R., AND AGRAWALA, M. 2011.
Illumination decomposition for material recoloring with consis-
tent interreflections. ACM Trans. Graph. (SIGGRAPH) 30, 4.

CHEN, Q., AND KOLTUN, V. 2013. A simple model for intrinsic
image decomposition with depth cues. In ICCV.

DONG, Y., TONG, X., PELLACINI, F., AND GUO, B. 2011. App-
gen: Interactive material modeling from a single image. ACM
Trans. Graph. (SIGGRAPH Asia) 30, 6.

DONG, W., 2014. LSHKIT: A C++ locality sensitive hashing library.

FARBMAN, Z., AND LISCHINSKI, D. 2011. Tonal stabilization of
video. ACM Trans. Graph. (SIGGRAPH) 30, 4.

GARCES, E., MUNOZ, A., LOPEZ-MORENO, J., AND GUTIERREZ,
D. 2012. Intrinsic images by clustering. Computer Graphics
Forum (EGSR) 31, 4.

GEHLER, P., ROTHER, C., KIEFEL, M., ZHANG, L., AND
SCHLKOPF, B. 2011. Recovering intrinsic images with a global
sparsity prior on reflectance. In NIPS.

GROSSE, R., JOHNSON, M. K., ADELSON, E. H., AND FREEMAN,
W. T. 2009. Ground truth dataset and baseline evaluations for
intrinsic image algorithms. In ICCV, 2335–2342.

HSU, E., MERTENS, T., PARIS, S., AVIDAN, S., AND DURAND,
F. 2008. Light mixture estimation for spatially varying white
balance. ACM Trans. Graph. (SIGGRAPH).

https://vimeo.com/80282503
http://vimeo.com/5264787
http://www.pbrt.org/scenes.php
http://media.au.tsinghua.edu.cn/yegenzhi/IntrinsicVideo.htm
https://vimeo.com/48424309
https://vimeo.com/6666934
http://www.dissolve.com/products/042-17A089-071

(a) Input video sequence (b) Intrinsic (c) Shadow-edited video
decomposition

Figure 12: Intrinsic decompositions can be used to edit lighting in videos. In this example, we decompose the video into reflectance and
illumination components, blur the illumination component, and recombine the original reflectance and the blurred illumination to produce a
video sequence with soft shadows. This form of lighting manipulation cannot be done without our decomposition; directly filtering the input
video will blur even reflectance and object edges.

(a) Background video frame (b) Foreground video frame (c) Naive compositing (d) Our compositing

Figure 13: Our technique can be used for realistic video compositing. Here, we take two video sequences shot with different viewpoints (a, b)
and decompose them into their respective reflectance and shading components. Compositing the two components separately and combining
them allows us to create a video composite with realistic shadows and lighting (d). A naive compositing produces inconsistent shadows (c).

KORMAN, S., AND AVIDAN, S. 2011. Coherency sensitive hashing.
In ECCV.

KRISHNAN, D., AND FERGUS., R. 2009. Fast image deconvolution
using hyper-laplacian priors. In NIPS.

LAFFONT, P.-Y., BOUSSEAU, A., PARIS, S., DURAND, F., AND
DRETTAKIS, G. 2012. Coherent intrinsic images from photo
collections. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6.

LAFFONT, P.-Y., BOUSSEAU, A., AND DRETTAKIS, G. 2013. Rich
intrinsic image decomposition of outdoor scenes from multiple
views. IEEE Trans. Vis. Comput. Graph. 19, 2, 210 – 224.

LAND, E. H., JOHN, AND MCCANN, J. 1971. Lightness and retinex
theory. Journal of the Optical Society of America 61, 1–11.

LEE, K. J., ZHAO, Q., TONG, X., GONG, M., IZADI, S., LEE,
S. U., TAN, P., AND LIN, S. 2012. Estimation of intrinsic image
sequences from image+depth video. In ECCV.

LI, Y., AND BROWN, M. S. 2014. Single image layer separation
using relative smoothness. In CVPR.

LIU, C. 2009. Beyond pixels: exploring new representations and
applications for motion analysis. PhD thesis, MIT.

MATSUSHITA, Y., NISHINO, K., IKEUCHI, K., AND SAKAUCHI,
M. 2004. Illumination normalization with time-dependent intrin-
sic images for video surveillance. PAMI 26, 10.

OMER, I., AND WERMAN, M. 2004. Color lines: Image specific
color representation. In CVPR.

PARIS, S. 2008. Edge-preserving smoothing and mean-shift seg-
mentation of video streams. In ECCV.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering, Second Edition: From Theory To Implementation.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S. P., AND DURAND, F. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. (SIGGRAPH) 31, 4.

SHEN, L., AND YEO, C. 2011. Intrinsic images decomposition
using a local and global sparse representation of reflectance. In
CVPR.

SHEN, L., TAN, P., AND LIN, S. 2008. Intrinsic image decomposi-
tion with non-local texture cues. In CVPR.

SHEN, J., YANG, X., JIA, Y., AND LI, X. 2011. Intrinsic images
using optimization. In CVPR.

TAPPEN, M., FREEMAN, W., AND ADELSON, E. 2005. Recovering
intrinsic images from a single image. PAMI 27, 9, 1459–1472.

WEISS, Y. 2001. Deriving intrinsic images from image sequences.
In ICCV.

YE, G., GARCES, E., LIU, Y., DAI, Q., AND GUTIERREZ, D.
2014. Intrinsic Video and Applications. ACM Trans. Graph.
(SIGGRAPH) 33, 4.

ZHAO, Q., TAN, P., DAI, Q., SHEN, L., WU, E., AND LIN, S.
2012. A closed-form solution to retinex with nonlocal texture
constraints. PAMI 34, 7, 1437–1444.

