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Observer Design for a Ternary Distillation Column with Side Stream

Chouaib Afri, Madiha Nadri Wolf and Pascal Dufour

Abstract— This paper investigates the problem of observer
design to provide temperature and molar fraction spatial
profiles in a ternary distillation column with side stream.
Indeed, both temperature and molar fraction spatial profiles
are required to be used in advanced controller design. Such
an estimation problem is usually solved using an implicit
observer which requires an optimization algorithm when a
differential algebraic system is used. In this paper, we consider
a realistic nonlinear differential algebraic equation based model
validated experimentally. We propose an approach to design an
explicit observer that reconstructs all the state variables with
an asymptotic convergence. The observer is build as a coupling
of two nonlinear observers in full interconnection. Finally, the
performance of the proposed observer is illustrated using a
model of a ternary distillation column with side stream.

I. INTRODUCTION

The industry is still looking for better strategies for im-
proving purity control in distillation columns, while optimiz-
ing installation costs and energy. The constraints imposed
on such system are: the high cost of the measures and the
nonlinear coupling between physical quantities. The most
common controllers in the industrial world are PID, which
tuning may be based on a simple model to describe the
process. Their decentralized control loop feature results in
high energy consumption and poor control performances.
Hence, advanced controllers are needed, using a model
based state estimation. The model used here is based on
the total and partial material balances and the vapor liquid
equilibrium (VLE) [1]. In this work, we do not consider the
classical assumption of ideal mixture: the components to be
separated can have a completely different chemical structures
(such as oil and water) resulting in forces of attraction
or repulsion between adjacent molecules of different types.
This phenomenon is reflected by the activity coefficients
which are functions of the component concentrations of
the liquid mixture. A few works have considered the non-
ideal case [2]. Unlike to the classical models based on
LEWIS assumptions [3], which can be represented as an
ordinary differential equations (ODE) system, the model
considered here is closer to the real behaviour and is a set
of nonlinear differential algebraic equations (DAE). Using
algebraic methods, observer design for linear DAE systems
has widely been investigated in the literature (see for instance
[4], [5], [6], [7] and the references herein). [8] extends the
Kalman filter for discrete time systems (the proposed Kalman
filter is also an implicit system). The observer synthesis for
nonlinear DAE systems is still an open problem. The most
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common approaches consist in characterizing this DAE class
which can be transformed by a diffeomorphism to an ODE
system and for which an observer can be designed [9], [10],
[11]. The observer for the original system is an implicit
system obtained by using the pullback map.

Beside these geometric approaches, other approaches gave
implicit observers whose practical implementation usually
requires the use of optimization techniques to solve at
each time t the algebraic constraints associated to the state
manifold together with an ODE numerical method (see for
instance [12], [13], [14] and [15]). Such methods have been
shown to lack robustness when solving large scale complex
systems or systems with fast dynamics. Another interesting
approach is presented in [16]. In their work, the authors used
the algebraic constraints as additional output and gave an
explicit observer of higher dimension.

This work aims to design an explicit state observer based
on a realistic experimentally validated nonlinear DAE model.
The outline of the paper is as follows. In section 2, we
summarize the model development for a ternary distillation
column with side stream. In section 3, we synthesize an
explicit observer for a class of nonlinear DAE systems which
contains most models of distillation columns. Finally, the
usefulness of this approach is illustrated using only four
molar fraction measurements to estimate both temperature
and molar fractions spatial profiles.

II. STATE MODEL OF A TERNARY DISTILLATION COLUMN
WITH SIDE STREAM

The considered process is a ternary distillation column
with side stream (figure 1) separating a liquid ternary mixture
of BTX (Benzene, Toluene and o-Xylene, considered as the
component 1, 2 and 3 respectively) [17]. The column consists
of (n-2) theoretical trays, a boiler (tray n)and a condenser
(tray 1). Using the material balance, we get the DAE (1),
where, j = 1,2,3 is the component index, i = 1, ...,n is the
tray index, Ni is the molar retention in the tray i, x j,i the
liquid phase molar fraction of component j in the tray i, y j,i
is the vapour phase molar fraction of component j in the tray
i, Ti is the stage temperature in the tray i, Z j,l is the feed flow
molar fraction of component j in the tray l, F is the molar
feed rate in the tray l, S is the molar flow rate extracted
from tray s, L is the molar flow rate of reflux and Vf is the
molar vapour flow rate. Fractions of the third component is
calculated from the equation of matter conservation (2).



Fig. 1. Scheme of a distillation column with side stream.



total condenser, i = 1 : N1
dx j,1

dt =Vf (y j,2− x j,1)
upper rectifying section, i = 2, ...,s :
Ni

dx j,i
dt = L(x j,i−1− x j,i)+Vf (y j,i+1− y j,i)

lower rectifying section, i = s+1, ..., l−1 :
Ni

dx j,i
dt = (L−S)(x j,i−1− x j,i)+Vf (y j,i+1− y j,i)

feed tray, i = l : Nl
dx j,l

dt = (L−S)(x j,l−1− x j,l)
+F(Z j,l− x j,l)+Vf (y j,l+1− y j,l)
stripping section, i = l +1, ...,n−1 :
Ni

dx j,i
dt = (F +L−S)(x j,i−1− x j,i)+Vf (y j,i+1− y j, i)

boiler, i = n :
Nn

dx j,n
dt = (F +L−S)(x j,n−1− x j,n)+Vf (x j,n− y j,n)

thermodynamic constraints, i = 1, ..,n :
(∑c

j=1 y j,i)−1 = 0
(1)

3

∑
j=1

x j,i−1 = 0, ∀i ∈ [1,n]. (2)

From now, based on (2), we set that x3,i is a function of x1,i
and x2,i. From the VLE and the Antoine equation [17], [1]
we get:

rectifying section: 1≤ i < l

y j,i =
γ j,i(x1,i,x2,i,Ti)

PT el
i

((x j,i− (1− el
i)(x j,i−1))10

a j−
b j

Ti+c j )

stripping section: l ≤ i≤ n−1

y j,i = (1− ev
i )y j,i+1 +

ev
i γ j,i(x1,i,x2,i,Ti)

PT
(x j,i10

a j−
b j

Ti+c j )

boiler: y j,n =
1

PT
(x j,n10

a j−
b j

Tn+c j γ j,n(x1,i,x2,i,Tn))
(3)

where, γ j,i is the activity coefficient that represents the non
ideality of mixture, el

i , ev
i are respectively the rectifying and

stripping efficiencies [1], and PT the internal pressure. The
γ j,i’s and Antoine parameters (a j, b j and c j) are obtained

from binary mixtures experimental data of the three compo-
nents BTX [17]. This choice is the best in terms of accuracy
compared to the ternary experimental data [2]. The difference
between the classical models [3] and this one is that the
mixture here is not ideal. Consequently, γ j,i is a function of
liquid molar fractions x j,i and temperature Ti . We divide the
process to a rectifying section and a stripping section, with
exponents 1 and 2 respectively, and introduce the following
notations : 

x1
i = x1,i; 1≤ i≤ l−1

x2
i = x1,n−i+1; 1≤ i≤ n− l−1

x̄1
i = x2,i; 1≤ i≤ l−1

x̄2
i = x2,n−i+1; 1≤ i≤ n− l−1

z1
i = Ti; 1≤ i≤ l−1

z2
i = Tn−i+1; 1≤ i≤ n− l−1

uT = (L,Vf ,F,S,Z1,l ,Z2,l)
T

y1 = (x1
1, x2

1)
T = (x1,1,x1,n)

T

y2 = (x̄1
1, x̄2

1)
T = (x2,1,x2,n)

T

(4)

where y1 contains the top and bottom measures of light
component (Benzene), y2 contains the top and bottom mea-
sures of intermediate component (Toluene). F, S, Z1,l and Z2,l
are the unknown input disturbances, Vf , L are manipulated
inputs of the input vector u. x and x̄ are the state variables.
Using (4), the system (1)-(3) belongs to the following fully
interconnected systems [20]:

(Σ)


ẋ(t) = f (x(t), x̄(t),z(t),u(t))
ϕ(x(t),x(t),z(t)) = 0
y1(t) = h(x) = [x1

1(t),x
2
1(t)]

T
(5)

(Σ)


˙̄x(t) = f̄ (x(t), x̄(t),z(t),u(t))
ϕ(x(t),x(t),z(t)) = 0
y2(t) = h̄(x̄) = [x̄1

1(t), x̄
2
1(t)]

T
(6)

where,

x=(x1
1, ..,x

1
l−1,x

2
1, ..,x

2
n−l+1)

T ; x̄=(x̄1
1, .., x̄

1
l−1, x̄

2
1, .., x̄

2
n−l+1)

T

f =
[

f 1(x̄,x,z,u)
f 2(x, x̄,z,u)

]
; f̄ =

[
f̄ 1(x̄,x,z,u)
f̄ 2(x, x̄,z,u)

]
;ϕ=

[
ϕ1(x1, x̄1,z1)
ϕ2(x2, x̄2,z2)

]
f , f̄ and ϕ are C 1 functions with respect to their arguments
and satisfy the following triangular structure:

C1) f i=



f i
1(x

i
1,x

i
2, x̄

i,zi
2,u)

:
f i
k(x

i
k−1,x

i
k,x

i
k+1, x̄

i,zi
k,z

i
k+1,u)

:
f i
ni−1(x

i
ni−2,x

i
ni−1,x

i
ni
, x̄i,zi

ni−1
,zi

ni
,u)

f i
ni
(x, x̄,z,u)



C2) f̄ i=



f̄ i
1(x̄

i
1, x̄

i
2,x

i,zi
2,u)

:
f̄ i
k(x̄

i
k−1, x̄

i
k, x̄

i
k+1,x

i,zi
k,z

i
k+1,u)

:
f̄ i
ni−1(x̄

i
ni−2, x̄

i
ni−1, x̄

i
ni
, x̄i,zi

ni−1
,zi

ni
,u)

f̄ i
ni
(x̄,x,z,u)



C3) ϕ i =


ϕ i

1(x
i
1, x̄

i
1,z

i
1)

:
ϕ i

k(x
i
k−1,x

i
k,x

i
k+1, x̄

i
k−1, x̄

i
k, x̄

i
k+1,z

i
k)

:
ϕ i

1(x
i
ni
, x̄i

ni
,zi

ni
)





where n1 = l−1, and n2 = n− l +1.

III. EXPLICIT OBSERVER DESIGN FOR THE FULLY
INTERCONNECTED IMPLICIT SYSTEMS

The system under consideration (Σ,Σ) belongs to the class
of implicit systems written in the following compact format:

ẋ(t) = f (x(t),x(t),z(t),u(t)) x ∈ Rn, u ∈U
ẋ(t) = f̄ (x(t),x(t),z(t),u(t)) x ∈ Rn

ϕ(x(t),x(t),z(t)) = 0 z ∈ Rd

y(t) = [h(x(t)) h̄(x̄(t))]T y ∈ Rp,

(7)

where U is a bounded open subset of Rm, (x(t), x̄(t),z(t)) ∈
Rn×Rn×Rd is the state vecteur, f , f̄ , h and h̄ are assumed
to be sufficiently smooth with respect to their arguments. Let
M denotes the constraints set,

M =
{
(x, x̄,z) ∈ Rn×Rn×Rd , s.t. ϕ(x, x̄,z) = 0

}
(8)

In [18] the authors consider a class of implicit systems of
the form (5) and gave an high gain explicit observer. Based
on this result, we will show that the following system (9) is
an asymptotic observer for system (7).



˙̂x(t) = f̂ (x̂(t), ˆ̄x(t), ẑ(t),g(t),h(x̂(t)),u(t))
˙̄̂x(t) = ˆ̄f (x̂(t), ˆ̄x(t), ẑ(t), ḡ(t), h̄( ˆ̄x(t)),u(t))
˙̂z(t) =−

(
∂ϕ

∂ z |(x̂,ẑ, ˆ̄x)
)−1

×
([

∂ϕ

∂x |(x̂,ẑ) ,
∂ϕ

∂ x̄ |( ˆ̄x,ẑ)

][
˙̂x , ˙̄̂x

]T
+Λϕ(x̂, ˆ̄x, ẑ)

)
ġ(t) = G(g(t),y1(t),u(t))
˙̄g(t) = G(ḡ(t),y2(t),u(t)),

(9)
where, Λ is a d×d symmetric positive definite matrix (SPD),
g and ḡ in Rn×p are the observer gain functions defined in the
next sections. The following assumptions are considered.

Assumption A 1): There exists ε0 > 0 such that
∂ϕ

∂ z
has

a full rank on the tubular neighborhood Ω0 = {(x, x̄,z) ∈
Rn+n+d ;‖ϕ(x, x̄,z)‖ < ε0}, and there exists a function σ of
class K∞ such that:

i) The following map:
Φ : Ω0 −→ Rn+n× J

(x, x̄,z) −→ (x, x̄,ϕ(x, x̄,z)) (10)

is a diffeomorphism, where J is an open subset of Rd .
ii) ∀(x, x̄,z) ∈Ω0, ‖ϕ(x, x̄,z)‖ ≥ σ(‖z− z∗‖)

z∗, is the solution of ϕ(x, x̄,z) = 0.

The next hypothesis guaranties the existence of an implicit
observer:
Assumption A 2):

1) There exists U ⊂ L∞(R+,U), such that for every u ∈
U ; for every (g(0)),(ḡ(0))∈O, the trajectory g(.) and
ḡ(.) are bounded.

2) There exist positive definite functions V (t,e), V (t, ē),
W (e) and W (ē) defined on R+×Rn such that for every
u ∈U , we have:

i) ∀(x, x̄,z) ∈M ; ∀(x̂, ˆ̄x, ẑ) ∈M ; ∀t ≥ 0; we have

∂V
∂ t

(t,e)+
∂V
∂e

(t,e)
(

f̂ (e+ x, ˆ̄x,z∗,g,h(x̂),u)

− f (x, ˆ̄x,z,u)
)
≤−W (e)

(11)
∂V
∂ t

(t, ē)+
∂V
∂ ē

(t, ē)
(

f̂ (x̂, ē+ x̄,z∗, ḡ, h̄( ˆ̄x),u)

− f (x̂, x̄,z,u))≤−W (ē)
(12)

where e = x̂− x and ē = ̂̄x− x̄.
ii) There exist constants a ≥ 0, α > 0 and ᾱ > 0;

such that ∀e, ē; ∀t ≥ 0∥∥∥∥∂V
∂e

(t,e)
∥∥∥∥+∥∥∥∥∂V

∂ ē
(t, ē)

∥∥∥∥≤ αW (e)+ ᾱW (ē)

‖e‖+‖ē‖ ≥ a.

iii) ∃α1 > 0, α2 > 0; ∀(x, x̄) ∈ Rn ×Rn; ∀(e, ē) ∈
Rn×Rn; ∀t ≥ 0,
‖ ∂V

∂e ( f (x, x̄+ ē,z,u)− f (x, x̄,z,u)) ‖

≤ α1
√

W (e)
√

W (ē),

‖ ∂V
∂ ē ( f̄ (x+ e, x̄,z,u)− f̄ (x, x̄,z,u)) ‖

≤ α2
√

W (e)
√

W (ē),
0 < α1 +α2 ≤ 2.

Finally, we consider the Lipschitz condition:
Assumption A 3): There exists a class K∞ functions λ1(.)

and λ2(.) such that, ∀(x̂,̂̄x, ẑ,z∗(x̂,̂̄x)) ∈Ω0; ∀g, we have:

‖ f̂ (x̂,̂̄x, ẑ,g,h(x̂),u)− f̂ (x̂,̂̄x,z∗,g,h(x̂),u)‖ ≤ λ1(‖ẑ− z∗‖)
‖ ˆ̄f (x̂,̂̄x, ẑ, ḡ, h̄( ˆ̄x),u)− ˆ̄f (x̂,̂̄x,z∗, ḡ, h̄( ˆ̄x),u)‖ ≤ λ2(‖ẑ− z∗‖)

Now consider Λ defined as above, and let εΛ > 0 be such
that ΩΛ = {(x, x̄,z) ∈Rn×Rn×Rd ; ϕ(x, x̄,z)T Λϕ(x, x̄,z)<
εΛ} ⊂Ω0. Noticing that ΩΛ = Ω0 if Λ = I and εΛ = ε0.
Using these notations, we can state our main result as follow.

Theorem 1: Under assumptions A 1), A 2) and A 3) ,
system (9) forms an asymptotic explicit observer for system
(7).

Proof: Let(x(t), x̄(t),z(t)) and (x̂(t), ˆ̄x(t), ẑ(t)) be the
trajectories of systems (7) and (9) respectively. From (9) we
can get:

d‖ϕ(x̂(t), ˆ̄x(t), ẑ(t))‖2

dt
=−2(ϕ(x̂, ˆ̄x, ẑ))T

Λ(ϕ(x̂, ˆ̄x, ẑ)) (13)

From assumption A 1), Φ is a diffeomorphism from Ω0 into
Rn+n× J, so there exists a unique solution z∗(t), such that
ϕ(x̂(t), ˆ̄x(t),z∗(t)) = 0. Let e(t) = x̂(t)− x(t), ē(t) = ˆ̄x(t)−
x̄(t) be the estimation errors of the observer. So from (7)
and (9) we can get:

ė(t)+ ˙̄e(t) = f̂ (x̂, ˆ̄x,z∗,g,h(x̂),u)− f (x, ˆ̄x,z,u)
+ ˆ̄f (x̂, ˆ̄x,z∗, ḡ,h( ˆ̄x),u)− f̄ (x̂, x̄,z,u)
+ f (x, ˆ̄x,z,u)− f (x, x̄,z,u)
+ f̄ (x̂, x̄,z,u)− f̄ (x, x̄,z,u)
+ f̂ (x̂, ˆ̄x, ẑ,g,h(x̂),u)− f̂ (x̂, ˆ̄x,z∗,g,h(x̂),u)
+ ˆ̄f (x̂, ˆ̄x, ẑ, ḡ, h̄( ˆ̄x),u)− ˆ̄f (x̂, ˆ̄x,z∗, ḡ, h̄( ˆ̄x),u).

(14)



Considering V (t,e), V (t, ē), W (t,e) and W (t, ē) given in
assumption A 2)−2) and using A 2)−2)− i), we get:

dV (t,e, ē)
dt

=
dV (t,e)

dt
+

dV (t, ē)
dt

≤−W (e)−W (ē)

+‖∂V (t,e)
∂e

( f (x, ˆ̄x,z,u)− f (x, x̄,z,u))‖

+‖∂V (t, ē)
∂ ē

( f̄ (x̂, x̄,z,u)− f̄ (x, x̄,z,u))‖

+‖∂V (t,e)
∂e

‖‖ f̂ (x̂, ˆ̄x, ẑ,g,h(x̂),u)− f̂ (x̂, ˆ̄x,z∗,g,h(x̂),u)‖

+‖∂V (t, ē)
∂ ē

‖‖ ˆ̄f (x̂, ˆ̄x, ẑ, ḡ, h̄( ˆ̄x),u)− ˆ̄f (x̂, ˆ̄x,z∗, ḡ, h̄( ˆ̄x),u)‖.
(15)

And from assumption A 2)−2)− iii), we get:
dV (t,e, ē)

dt
≤−W (e)−W (ē)

+α1
√

W (e)
√

W (e)+α2
√

W (e)
√

W (e)

+‖∂V (t,e)
∂e

‖‖ f̂ (x̂, ˆ̄x, ẑ,g,h(x̂),u)− f̂ (x̂, ˆ̄x,z∗,g,h(x̂),u)‖

+‖∂V (t, ē)
∂ ē

‖‖ ˆ̄f (x̂, ˆ̄x, ẑ, ḡ, h̄( ˆ̄x),u)− ˆ̄f (x̂, ˆ̄x,z∗, ḡ, h̄( ˆ̄x),u)‖.
(16)

From assumption A 3), we deduce that:
dV (t,e, ē)

dt
≤−1

2
(1− α1 +α2

2
)(
√

W (e)+
√

W (ē))2

+((‖∂V (t,e)
∂e

‖λ1)+(‖∂V (t, ē)
∂ ē

‖λ2))‖ẑ− z∗‖.
(17)

And finally, from assumption A 1)− ii), we get:
dV (t,e, ē)

dt
≤−1

2
(1− α1 +α2

2
)(
√

W (e)+
√

W (ē))2

+((‖∂V1(t,e)
∂e

‖λ1)+(‖∂V2(t, ē)
∂ ē

‖λ2))σ
−1‖ϕ(x̂, ˆ̄x, ẑ)‖.

(18)
From (13), we have lim

t→∞
‖ϕ(x̂(t), ˆ̄x(t), ẑ)‖ = 0 and using

assumption A 2)− ii) in (18) we deduce that lim
t→∞
|e(t)|+

|ē(t)|= 0.
From assumption A 1) − ii), (‖ẑ − z‖) ≤ σ−1‖ϕ(x̂, ˆ̄x, ẑ)‖
where z is the solution of: ϕ(x, x̄,z) = 0, using (13) we obtain
lim
t→∞
‖ẑ(t)− z(t)‖= 0.

IV. EXPLICIT OBSERVER FOR IMPLICIT SYSTEMS WITH
TRIANGULAR STRUCTURE

The first step in the design of the observer (9) is the
synthesis of the gain functions g and ḡ. Many normal
forms which characterized some subclasses of multi-output
uniformly observable systems together with their associated
observer syntheses have been proposed in the literature, see
for instance: [11], [3], and [19]. Now, let us come back to
the structures (5) and (6). Referring to (C1, C2), we remark
that the functions f and f̄ have triangular structures with
respect to (h(x),x) and (h̄(x̄), x̄). In this case, a constant
gain g = Kθ (i.e. G(g,u)=0) respectively ḡ = Kθ , can be
designed as stated in [3]. As can be seen, system (5) and
system (6) have the same structure. Therefore, the same
observer structure will be used. Now, by considering the
triangular structure of (5) given by C1), C2) and C3) and
assuming that the map (x, x̄,z) → (x, x̄,ϕ(x, x̄,z)) satisfies

the assumption A 1), we deduce that for i = 1,2 and
1 ≤ k ≤ ni; there exist smooth functions γ i

k (their analytic
expressions are generally unknown) such that the solution z
of ϕ(x, x̄,z) = 0 is given by:

zi
1 = γ i

1(x
i
1, x̄

i
1,x

i
2, x̄

i
2)

zi
k = γ i

k(x
i
k−1, x̄

i
k−1,x

i
k, x̄

i
k,x

i
k+1, x̄

i
k+1) 1 < k < ni

zi
ni

= γ i
ni
(x, x̄).

In the sequel, we use the same notation as above. We set
F i

k(x, x̄,u) = f i
k(x, x̄,γ

i
k(x, x̄),u), and F i = [F i

1, . . . ,F
i
ni
]T , F =

[F1T
F2T

]T , then system (5) can be rewritten:{
ẋ(t) = F(x(t), x̄(t),u(t))
y1(t) = Cx(t). (19)

Moreover F(x, x̄,u) is a C 1 function of triangular form
and satisfy the following hypothesis.

H1) For every (x, x̄,u), ρ1 ≤
∂F i

j

∂xi
j+1

(x, x̄,u) ≤ ρ2, for some

constants ρ1 > 0, ρ2 > 0.
H2) F is a global Lipschitz function w.r.t. x,
∃c > 0; ∀u ∈U ; ∀x,x′, ‖F(x, x̄,u)−F(x′, x̄,u)‖ ≤ c‖x− x′‖.

In [3] the authors gave a constant gain observer for systems
of the form (19) with x̄ as a known variable. Based in this
result, a constant high gain observer can be constructed for
system (19) as follows:{ ˙̂x1(t) = F1(x̂(t), x̄,u(t))− r1∆

θ δ1 S−1
1 CT

1 (C1x̂1− x1
1)

˙̂x2(t) = F2(x̂(t), x̄,u(t))− r2∆
θ δ2 S−1

2 CT
2 (C2x̂2− x2

1),
(20)

where rk ≥ 1 (k = 1,2) is a positive constant tuning
parameter of the observer, Ck = [1, . . . ,0] is a vector of

dimension nk; δ1 > 0, δ2 > 0 satisfy:
2l−3

2n−2l +3
δ1 < δ2 <

2l−1
2n−2l +3

δ1, θ > 0 and ∆
θ δi is a (nk×nk) diagonal matrix:

∆
θ

δk = diag(θ δk ,θ 2δk , . . . ,θ niδi), and finally Sk is an nk×nk
constant SPD matrix of the form:

Sk =



s11 s12 0 0

s12 s22
. . .

...

0
. . . . . . 0

...
. . . sk−1k

0 . . . 0 sk−1k skk.


(21)

To assure the exponential convergence of the above ob-
server, the matrix Sk is chosen to satisfy the following
condition (detail of the proof see [3]):

∀t ≥ 0, AT
k (t)Sk +SkAk(t)−ρCT

k Ck ≤−νIk, (22)

where Ak(i, j)= ak
i (t) for j = i+1 and Ak(i, j)= 0 for j 6= i+

1 such that ρ1 ≤ ai(t)≤ ρ2, and ρ1,ρ2 are positive constants.
Now, let Ω0 be a tubular neighborhood of M given by the
assumption A 1). In order to show that system (23) forms an
observer for system (5,6), the following assumption is used:
H3): f and f̄ is a global Lipschitz functions on Ω0, namely:
∃(c′, c̄′)> 0; ∀u ∈U ; ∀(x, x̄,z),(x′, x̄′,z′) ∈Ω0,
‖ f (x, x̄,z,u)− f (x′, x̄′,z′,u)‖ ≤ c′‖(x, x̄,z)− (x′, x̄′,z′)‖.



‖ f̄ (x, x̄,z,u)− f̄ (x′, x̄′,z′,u)‖ ≤ c̄′‖(x, x̄,z)− (x′, x̄′,z′)‖.
Now, we can state the main result of this section:

Proposition 1: Under assumption A2) and hypotheses
H1), H3), the following system:

˙̂x = f (x̂, ˆ̄x, ẑ,u)+Kθ (ŷ1− y1)

˙̄̂x = f̄ (x̂, ˆ̄x, ẑ,u)+Kθ (ŷ2− y2)

˙̂z(t) =−
(

∂ϕ

∂ z |(x̂,ẑ, ˆ̄x)
)−1

×
([

∂ϕ

∂x |(x̂,ẑ) ,
∂ϕ

∂ x̄ |( ˆ̄x,ẑ)

][
˙̂x , ˙̄̂x

]T
+Λϕ(x̂, ˆ̄x, ẑ)

)
,

(23)
where Kθ = diag(−r1∆

θ δ1 S−1
1 CT

1 , − r2∆
θ δ2 S−1

2 CT
2 )

Kθ = diag(−r̄1∆̄
θ δ1 S̄−1

1 C̄T
1 , − r̄2∆̄

θ δ2 S̄−1
2 C̄T

2 ),

forms an explicit observer for system (7).

The proof of this proposition is accomplished by
applying Theorem 1 of the above section, where
f̂ (x̂, ˆ̄x, ẑ,h(x̂),g,u) = f (x̂, ˆ̄x, ẑ,u) + Kθ (ŷ1 − y1) and
ˆ̄f (x̂, ˆ̄x, ẑ, h̄( ˆ̄x), ḡ,u) = f̄ (x̂, ˆ̄x, ẑ,u)+Kθ (ŷ2− y2).

To do, it suffices to show that assumptions A2) and A3)
hold. Setting V (t,e)= eT ∆θ S∆θ e and V (t, ē)= ēT ∆θ S∆θ ē, so
V and V are positive definite quadratic functions and do not
depends on t. Thus condition of assumption A 2)−2)− ii)
is satisfied. Let us now check the condition A 1)− 1)− i):
By construction, we know that if (x, x̄,z)∈M , (x̂, ˆ̄x, ẑ)∈M ,
then: f (x, x̄,z,u) = F(x, x̄,u), f̄ (x, x̄,z,u) = F̄(x, x̄,u) and
f̂ (x̂, x̄, ẑ,g,h(x̂),u) = F(x̂, x̄,u)+Kθ (h(x̂)− y1),
ˆ̄f (x, ˆ̄x, ẑ, ḡ, h̄( ˆ̄x),u) = F̄(x, ˆ̄x,u)+Kθ (h̄( ˆ̄x)− y2).

Now since H1), H2) are satisfied for F(x, x̄,u), F̄(x, x̄,u),
inequalities (11) and (12) holds. Consequently, A 2)−2)−
i) is satisfied. Assumption A3)) is a direct consequence of
hypothesis H3) and the fact that the gain of the observer
is constant and the output is a linear map. In the end it
remains to verify the assumption A 2)− 2)− iii) which is
the full interconnection condition [20], it is also a direct
consequence of hypothesis H3).

V. SIMULATION RESULTS

A. Experimental validation of the model 1

In this section we will analyse the validity of the control-
oriented DAE model (1) developed above. It is solved
using the Runge-Kutta method combined with the Newton-
Raphson optimization algorithm.
As first step of the model validation is the study of the model
behaviour when the column is assumed to be stabilized
around its steady state. To do so, we consider an experimental
configuration of the steady state shown in table 1. The
simulation results of this test are given in Figure 2 which
shows the evolution over time of the liquid molar fractions
of benzene in the condenser, the boiler and the trays 3 and
9. We note the existence of a negligible transient compared
to the initial values, which prove the good accuracy of the
model.

1Authors acknowledge the company Processium for the experimental
data.

Tray index: total n = 18,
side stream and feed trays s = 6, l = 9
Liquid molar retention in con-
denser

N1 = 20 mol

Liquid molar retention in boiler N18 = 20 mol
Liquid molar retention in each
tray

Ni = 8 mol

Liquid and vapour Murphree effi-
ciency

el = 1 , ev = 1

Internal pressure PT = 760 mmHg
Feed flow rate F = 1.67 mol/min
Benzene composition in feed rate ZBen,l = 0.6
Toluene composition in feed rate ZTol,l = 0.3
Feed temperature Tl = 379,32 K
Side stream liquid flow rate S = 0.167 mol/min
Steady state vapour flow rate Vf = 7.0086 mol/min
Steady state liquid flow rate L = 6.0017 mol/min
Steady state quality of Benzene in
top product

x1,1 = 0.95

Steady state quality of Benzene in
bottom product

x1,18 = 8.87×10−5

Steady state quality of Toluene in
top product

x2,1 = 0.05

Steady state quality of Toluene in
bottom product

x2,18 = 0.67

TABLE I
OPERATING POINT AND INITIAL STEADY STATE.

Fig. 2. Response of the dynamic model starting from the experimen-
tal steady state, in 4 locations: liquid molar fractions of benzene.

A second step of the model validation is done using exper-
imental data. Figure 3 shows the simulated and experimental
steady state profiles of molar fractions of the ternary mixture
BTX according to the number of trays. We can note a good
agreement.

B. Observer simulation

To simulate the response of the observer and compare it
with the response of the implicit system, we kept the same
configuration of the operating point and initial conditions
given in the previous part. For the observer we initialized
the estimated states to arbitrary values different from those
of model. The values of the observer parameters r and θ are
set to 1 and 2.8 respectively. The output measurements y1(t)
and y2(t) feature a zero mean Gaussian noise of 5%. The
performances of the observer are illustrated in the figures
4 and 5: in spite of the errors in the initial condition,



Fig. 3. Final molar fraction profiles: simulation and experimental.

Fig. 4. Four true and estimated benzene molar fractions, in the
presence of 5% noise and initial errors in the estimations, θ = 2.8.

noise measurements and the disturbances, the estimated state
converge to their dynamic target values, for both the molar
fraction and the temperature profiles.

VI. CONCLUSION

In this work we first developed and validated experimen-
tally a mathematical model (a set of differential algebraic
equations) that describes the dynamic of the temperature
and component molar fraction profiles of a ternary mixture
in a distillation column. The obtained model is an implicit
systems fully interconnected based on the triangular structure
of the model, an explicit high gain observer is given using
bottom and top molar fractions measurement. The observer
implementation is simple and requires small computational
effort. Furthermore, simulation results demonstrate the good
performances achieved by this observer in coping with model
nonlinearities and output noise.
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