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ABSTRACT

The automated man-made object detection and building ex-
traction from single satellite images is, still, one of the most
challenging task for various urban planning and monitoring
engineering applications. To this end, in this paper we pro-
pose an automated building detection framework from very
high resolution remote sensing data based on deep convolu-
tional neural networks. The core of the developed method is
based on a supervised classification procedure employing a
very large training dataset. An MRF model is then responsi-
ble for obtaining the optimal labels regarding the detection of
scene buildings. The experimental results and the performed
quantitative validation indicate the quite promising potentials
of the developed approach.

Index Terms— building detection, deep convolutional
networks, AlexNet, very high resolution images

1. INTRODUCTION

Building detection from satellite remote sensing data has been
one of the most challenging tasks with important research and
development efforts during the last decades. Recent quantita-
tive results from the ISPRS (WGIII/4) benchmark on urban
object detection and 3D building reconstruction [1] indicated
that, in 2D, buildings can be recognized and separated from
the other terrain objects, however, there is room for improve-
ment towards the detection of small building structures and
the precise delineation of building boundaries. Depending on
the type and resolution of the remote sensing data a lot of dif-
ferent approaches have been proposed in the literature both
pixel- and object-based ones [2–5].

Very high resolution (VHR) satellite data are absolutely
required for tackling the specific problem, while any spec-
tral information more than the standard RGB enhance signif-
icantly the discrimination capabilities between the different
man-made objects, soil, etc. Moreover, elevation data like Li-
dar, DSMs, etc can significantly ameliorate the detection pro-

Fig. 1. Automated building detection from very high resolu-
tion multispectral data. The developed algorithm managed to
detect efficiently scene’s buildings. The ground truth data are
shown with a green color, while the detected buildings with
red.

cedure, however, they are not yet regarded as a cost-effective
solution for large scale mapping and change detection appli-
cations [2, 6].

Regarding the classification and the detection procedure,
the way one constructs the feature vector which contains the
different characteristics of every class is of major importance
and in particular, determines the accuracy of the final result.
Generally speaking, in most approaches and research efforts
the feature vector can consist of a combination of spectral
bands, morphological filters [7], texture [8] and point descrip-
tors [9], gradient orientation [10], etc. Recently, Convolution
Neural Networks (CNN) have been largely employed in ob-
ject detection [11] and classification [12] setting the state-of-
the-art in many computer vision and machine learning appli-
cations.

In particular, a large deep convolutional neural network,
trained in the ImageNet dataset, has been created and applied
in various classification problems [13] with quite promising
results. The network contains eight learned layers from which
five convolutional and three fully connected, 60 million pa-
rameters and 650000 neurons. In order to reduce overfitting
a regularization method, namely dropout, has been applied in
the fully connected layers.
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Inspired from [13], in this paper we propose a supervised
building detection procedure based on the AlexNet network,
while integrating certain spectral information by employing
multispectral band combinations into the training procedure.
The building detection was addressed through a binary clas-
sification procedure based on SVM classifier [14]. During
the last processing step, the classification result was refined
by solving an MRF problem using powerful linear program-
ming. The experimental results and the performed quantita-
tive validation indicate the quite promising potentials of the
developed approach Figure 1.

2. METHODOLOGY

The developed methodology is highly based on a comprehen-
sive training procedure. The training model has been con-
tracted in order to solve a binary problem i.e., building or
not-building. Based on ground truth data, the training dataset
contains patches centred on buildings and randomly created
patches for the not-building classes. Each of these patches is
inserted into the AlexNet network and the features of the FC7
layer are extracted and used as the feature vector (feature di-
mensionality 4096) for training an SVM classifier. Spectral
information has been integrated into AlexNet since it has been
trained using standard RGB images. To this end, we have cre-
ated for every patch (both building and not-building classes)
two different band combinations using the red, green, blue
and near infrared spectral bands. The dimensionality of the
feature vector was therefore n x (2*4096) where n is the num-
ber of patches and 4096 is the feature dimensionality of the
FC7 layer.

Regarding the learning procedure, a patch of 28x28 pix-
els (which corresponds approximately to the average size of
building patches) is created every 3 pixels in the image. Then
the feature vector, using the same procedure as in the training,
is generated. For the classification, the same SVM model has
been employed for all the test images. The resulting classifi-
cation map delivers for each pixel a calculated score for each
class. During the last processing step, building are extracted
through the application of an MRF-based model. The goal is
to minimize an energy function which is capable to segment
the image into building and not-building classes based on the
classification scoring.

Let us firstly consider an undirected graph G = (N,E)
with nodes N = (1, 2, . . . , i, . . . , N) and edges E (i, j).
Each node of the graph corresponds to a pixel in the image
and each pixel is connected to the four neighbours pixels. The
label space for the specific problem will be: l ∈ {0, 1} where
0 is the label for the not-building class and 1 the label for the
building. The energy that we will try to minimize using the
G can be formulated as:

Eseg = w1 ·
∑
i

Vi(li) + w2 ·
∑
i

∑
j

Vi,j(li, lj) (1)

The first term (Vi) corresponds to the unary term and contains
the scores of the classifier for each node. The second term
(Vi,j) corresponds to the pairwise term that penalizes neigh-
bouring nodes labelled differently.

The unary term for each node and for all the labels is for-
mulated as bellow:

Vi(l) = li · e−Pb(i) − (1− li) · e−Pnb(i) (2)

Pb(i) is the score of the classifier for the building class and
Pnb(i) = 1− Pb(i) is the score for the not-building class.

The pairwise term which penalizes neighbouring nodes
with different segmentation labels is formulated as follow:

Vi,j(l) = α · ||li − lj || (3)

The penalty (α) is a constant value and it is responsible for
the smoothness in the final result. For the optimization we use
FastPD framework [15] which is based on the dual theorem
of linear programming.

3. EXPERIMENTAL RESULTS AND EVALUATION

The proposed building detection framework was applied to
various VHR multispectral satellite data. In particular, differ-
ent VHR images like QuickBird (with 4 spectral bands) and
WorldView-2 (with 8 spectral bands) have been used for the
validation procedure. All the satellite imagery was acquired
between the years of 2006 and 2011 and cover approximately
a 9 km2 region in the East Prefecture of Attica in Greece.
All data have been pre-processed with standard radiometric
correction algorithms, while pansharpening algorithms have
been applied to increase the spacial resolution (i.e., 0.6m for
the QuickBird and 0.5m for the WorldView-2 images).

Moreover, in order to create the training data, each im-
age has been divided into twelve subimages and half of them
have been randomly chosen for training and the other half for
validation. Overall 19000 patches containing buildings have
been used as training data and 3 times more randomly selected
patches for the not-building category. The ground truth which
contained the accurate location of the buildings has been man-
ually created and annotated after an intensive, attentive and
laborious photo-interpretation done by an expert.

The validation of the developed building detection frame-
work has been performed through the qualitative (Figure 2)
and quantitative (Table 1) comparison of the detection results
with the ground truth. The standard measures Completeness,
Correctness and Quality have been employed and calculated
at object level. To this end, based on the ground truth data, the
True Positives (TP), False Positives (FP) and False Negatives
(FN) were calculated for every case. In particular, TP repre-
sent the buildings that have been identified correctly, the FN
represent the buildings that have not been detected and the FP
correspond to false alarms i.e., objects that were detected but
are not actually buildings.



Case # 1

(a) A natural RGB composite

Case # 2

Case # 3

(b) The SVM classification output (c) Final result after the MRF optimization

Fig. 2. Building detection on very high resolution multispectral data. The ground truth data are shown with a green color, while
the detected buildings with a red one.

Compl =
TP

TP + FN
, Corr =

TP

TP + FP
,

Qual =
TP

TP + FP + FN

(4)

In Figure 2, results after the application of the developed
automated building detection framework from very high res-

olution multispectral data are shown. The developed algo-
rithm managed to detect efficiently scene’s buildings. In all
the cases Table 1, the detected Correctness (and Complete-
ness) rates are above 86% (78% respectively) while the av-
erage score reaches the 90% (80% respectively). Moreover,
the optimization MRF-based procedure ameliorates the final
detection results as it can significantly diminish the number



Images meth TP FN FP Compl.% Corr.% Qual.%

Case #1 class 381 102 61 79 77 70
mrf 388 83 34 82 86 76

Case #2 class 682 220 108 76 86 68
mrf 633 179 59 78 91 73

Case #3 class 278 77 60 78 82 67
mrf 297 80 27 79 92 74

All Cases (mrf) 1318 342 120 80 90 74

Table 1. Quantitative Evaluation Results. The calculated de-
tection Completeness and Correctness rates from three differ-
ent cases with and without the MRF refinement step.

of false positives objects. Finally, after a close look in Fig-
ure 2 one can observes that the number of false alarms (FP) in
all cases is lower than the buildings that the algorithms didn’t
detect, which has been verified also by the quantitative vali-
dation Table 1.

4. CONCLUSIONS

In this paper, building detection has been addressed through a
binary classification task based on deep learning features. By
employing the powerful CNNs, the huge pretrainted AlexNet
network and by integrating additionally spectral information
during the training procedure, the calculated deep features
can account for the building to not-building object discrim-
ination. The quantitative validation indicated quite promising
results with significant high detection completeness and cor-
rectness rates. The integrated MRF optimization significantly
ameliorated the final building detection map. Future work in-
volves multi-class learning towards the classification of vari-
ous classes in both single and multi-temporal VHR datasets.
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