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Abstract

A two-layer long wave approximation of the homogeneous Euler equa-
tions for a free surface flow over a rigid bottom is derived. The upper layer
is turbulent and is described by depth averaged equations for the layer
thickness, the average fluid velocity inside the layer, and the fluid turbu-
lent energy. The lower layer is almost potential and can be described by
Serre–Su–Gardner–Green–Naghdi equations (second order shallow water
approximation with respect to the parameter H/L where H is a character-
istic water depth, and L is a characteristic wave length). The interaction
between the layers is due to the turbulent mixing. The dynamics of the
interface separating two layers is governed by the turbulent energy of the
upper layer. Stationary supercritical solutions to this model are first con-
structed, containing, in particular, a local subcritical zone at the forward
slope of the wave. Such a local subcritical zone corresponds to an intense
increasing of a turbulent layer thickness and can thus be associated with
the spilling breaker formation.

Non-stationary model was then numerically solved and compared with
experimental data for the following two problems. The first one is the
study of surface waves resulting from the interaction of a uniform free
surface fluid flow with an immobile wall (‘the water hammer problem with
a free surface’). These waves are sometimes called ‘Favre waves’ in homage
to Henry Favre and his contribution to the study of this phenomena.
When the Froude number is between 1 and approximately 1.3, the undular
bore appears. The turbulent energy of the flow is localized at the wave
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crests. The characteristics of the leading wave are in good agreement
with the experimental data by Favre (1935) and Treske (1994). When the
Froude number is between 1.3 and 1.4, the transition from the undular
bore to the breaking (monotone) bore occurs. In the breaking bore, the
turbulent energy is localized at the front of the bore.

The shoaling and the breaking of the solitary wave propagating in a
mild - slope (1/60) long channel (300 m) was then studied. Comparison
with the experimental data by Hsiao et.al. (2008) show a very good
agreement of the wave profile evolution.

1 Introduction

If a wave approaching the coast is long and the variation of the coastal slope
is gradual, spilling breakers usually appear. They are characterized by the
appearance of a finite turbulent fluid zone riding down the forward slope of
the wave (Longuet–Higgins & Turner, 1974, Duncan, 2001). At the toe of this
turbulent zone the wave slope changes sharply, resulting to the flow separation
and the vorticity creation. The breaking waves entrain the air into the water
by forming ‘whitecaps’ where an intensive dissipation occurs. Such a turbulent
zone has a strong influence on the wave evolution.

As it was mentioned in Duncan (2011), theoretical models of spilling break-
ers are rare. Indeed, beyond the multiphase aspects, the modelling depends
crucially on a precise description of the flow structure. In the case where the
flow potentiality is supposed, one actually uses an interesting approach based
on a coupling between the dispersive Green–Naghdi equations describing waves
far from the coast, and the hyperbolic Saint–Venant equations near the coast
(cf. Tissier et al. (2012)). The difficulty is to understand when we replace
one model by another one. A search of such a ‘switching criteria’ is not a well
defined problem even if several empirical criteria were proposed in the literature
(wave phase velocity becomes larger than the flow velocity, or the wave slope
attains a critical value, for example).

In this paper, we will focus only on the turbulence generation in break-
ing waves without taking into account the multiphase aspects. The difficulties
related to the multiphase description of the wave breaking were discussed in de-
tails in Brocchini & Peregrine (2001 a,b). The presence of the roller riding the
front face of the wave suggests that it is natural to consider vortex flows (shear
flows) for deriving an adequate mathematical model for the wave breaking. The
main issue of our work is a two-layer modelling, where the upper turbulent layer
is considered within the framework of shear shallow water flows (cf. Teshukov,
2007, Richard & Gavrilyuk, 2012, 2013, Castro & Lannes, 2014), while the lower
layer is potential and can be described by a Serre–Su–Gardner– Green–Naghdi
type model. The interaction between layers is taken into account through a
natural mixing process, where the mixing velocity is proportional to the inten-
sity of large eddies of the upper layer. Experimental data on the structure of
the turbulent flow field under breaking waves show that the frontiers between
the turbulent region caused by the wave breaking and the potential region are
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Figure 1: Two-layer flow over topography.

clearly visible (Nadaoka et al. 1989, Lin & Rockwell, 1994). This justifies a
two-layer scheme for the modelling of the breaking waves. The model gener-
alizes that derived in Liapidevskii & Chesnokov (2014) where the hydrostatic
approximation in both layers was used, and that in Richard & Gavrilyuk (2015)
where such a two-layer approach was used in the limit where the thickness of
the upper shear layer was vanishing.

In section 2 we derive depth-averaged equations. In section 3 stationary
solutions are studied. Favre waves and the shoaling and the breaking of the
solitary waves are studied in section 4. Technical details are presented in the
Appendixes.

2 Two-layer flow over a flat bottom

The simplest model for spilling breakers, without taking into account bubble
air trapping, should necessarily deal with a two-layer description of interacting
fluid layers: the upper turbulent layer and the lower almost potential layer (see
Figure 1). First, we will derive such a two-layer model for flows over a flat
bottom.

Consider the Euler equations for two-dimensional flows: in the horizontal
direction Ox the component of the velocity is u, and in the vertical direction
Oz the velocity component is w. With ρ being the fluid density, and p being
the fluid pressure, the Euler equations can be written as :

∂u

∂x
+
∂w

∂z
= 0, (1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
, (2)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −ρg − ∂p

∂z
. (3)
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Here g is the gravity acceleration in the vertical direction. The kinematic bound-
ary condition at z = 0 is :

w
∣∣
z=0

= 0. (4)

At the internal boundary z = h(t, x) separating the lower layer where the flow
is potential, and the upper turbulent layer, the kinematic condition is :

w
∣∣
z=h
− ∂h

∂t
− u
∣∣
z=h

∂h

∂x
= M. (5)

Here the right hand side M is responsible for the mixing between layers (a
formula for M will be proposed later). At the free boundary z = h(t, x)+η(t, x)
we suppose that

w
∣∣
z=h+η

− ∂

∂t
(h+ η)− u

∣∣
z=h+η

∂

∂x
(h+ η) = 0, p

∣∣
z=h+η

= 0. (6)

We introduce a classical scaling of the shallow water theory :

x→ Lx, z → Hz, t→ L√
gH

t, u→
√
gHu,

w → H

L

√
gHw, p→ ρgHp, h→ Hh.

Here H is the characteristic vertical scale, and L is the characteristic horizontal
scale. We suppose that the waves are long, so the dimensionless parameter
ε = H/L is small. The equations (1), (2), (3) are transformed into dimensionless
form where the corresponding dimensionless variables are denoted by the same
letters:

∂u

∂x
+
∂w

∂z
= 0, (7)

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −∂p

∂x
, (8)

ε2
(
∂w

∂t
+
∂uw

∂x
+
∂w2

∂z

)
= −

(
1 +

∂p

∂z

)
. (9)

Equations (7), (8), (9) admit the conservation of energy:

∂E

∂t
+

∂

∂x
(uE + pu) +

∂

∂z
(wE + pw) = 0 (10)

where

E =
u2

2
+ ε2

w2

2
+ z

is the dimensionless specific energy.
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2.1 Depth-averaged equations for the lower potential layer

Integrating the incompressibility, the horizontal momentum and the energy
equations with respect to z over the fluid depth and using the boundary con-
ditions (4), (5), we obtain the following exact integral relations for the lower
layer:

∂h

∂t
+

∂

∂x

(∫ h

0

u dz

)
= −M, (11)

∂

∂t

(∫ h

0

u dz

)
+

∂

∂x

(∫ h

0

u2 dz +

∫ h

0

p dz

)
= p
∣∣
z=h

hx −Mu
∣∣
z=h

, (12)

∂

∂t

(∫ h

0

(
u2

2
+ ε2

w2

2
+ z

)
dz

)
+

∂

∂x

(∫ h

0

u

(
u2

2
+ ε2

w2

2
+ z

)
dz +

∫ h

0

pu dz

)
= −p

∣∣
z=h

(ht +M)−M
(
u2

2
+ ε2

w2

2
+ h

)∣∣∣∣
z=h

. (13)

Introducing the average velocity in the lower layer

U =
1

h

∫ h

0

u dz

we can rewrite the conservation of the mass in the following form:

∂h

∂t
+

∂

∂x
(hU) = −M.

To obtain a closed system of governing equation, we need to know the pressure
distribution in the layer. Integrating the equation (1) from 0 to z, 0 < z < h(t, x)
we obtain

w(t, x, z) = −
∫ z

0

ux(t, x, s) ds.

In zero order with respect to ε, the vertical velocity is

w(t, x, z) ≈ −Uxz. (14)

A second order approximation for the pressure comes from (9) where we have
to replace w by (14):

∂p

∂z
≈ −1− ε2

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
≈ −1 + ε2z

(
Uxt + UUxx − U2

x

)
.

Integrating it from h to z (0 < z < h) we obtain

p ≈ p
∣∣
z=h
− (z − h) + ε2

(
Uxt + UUxx − U2

x

) z2 − h2
2

.

The integral of the pressure can thus be evaluated:∫ h

0

p dz ≈ p
∣∣
z=h

h+
h2

2
− ε2h

3

3

(
Uxt + UUxx − U2

x

)
.
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One can also prove that if the flow is weakly sheared, i.e. the dimensionless flow
vorticity ω = uz − ε2wx = O

(
εβ
)

with 1 < β ≤ 2 then∫ h

0

u2 dz = hU2 +O
(
ε2β
)

(15)

(see for the proof Barros et al. 2007 or Gavrilyuk et al. 2015). In particular, in
the potential case β = 2. Analogous estimation of integrals can be given for the
energy equation. Keeping only terms of order one and ε2, we obtain the final
system for a lower potential layer with mixing at the interface z = h(t, x) :

∂h

∂t
+

∂

∂x
(hU) = −M,

∂

∂t
(hU) +

∂

∂x

(
hU2 +

∫ h

0

p dz

)
= p
∣∣
z=h

hx −Mu
∣∣
z=h

,

∂

∂t

(
h

(
U2

2
+ ε2

U2
x

6
h2 +

h

2

))
+

∂

∂x

(
hU

(
U2

2
+ ε2

U2
x

6
h2 +

h

2

)
+ U

∫ h

0

p dz

)
= −p

∣∣
z=h

(ht +M)−M
(
u2

2
+ ε2

U2
xh

2

2
+ h

)∣∣∣∣
z=h

,

where ∫ h

0

p dz = p
∣∣
z=h

h+
h2

2
− ε2h

3

3

(
Uxt + UUxx − U2

x

)
.

The value of the velocity u
∣∣
z=h

is not yet determined. Let us remark that we
have formally three governing equations for only two unknowns h and U . The
compatibility condition between the energy equation and the momentum and
mass equation gives us only one possibility (see Appendix A for the proof):

u
∣∣
z=h

= U.

2.2 Depth-averaged equations for the upper turbulent layer

Consider the following hydrostatic equations in the upper layer having the same
density as the lower layer. In dimensionless variables the equations are

∂u

∂x
+
∂w

∂z
= 0,

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −∂p

∂x
, p(t, x, z) = h+ η − z.

The hydrostatic distribution of the pressure takes already into account the dy-
namic condition at the free surface. They admit the energy conservation law

∂

∂t

(
u2

2
+ z

)
+

∂

∂x

(
u

(
u2

2
+ z

)
+ pu

)
+

∂

∂z

(
w

(
u2

2
+ z

)
+ pw

)
= 0.
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The corresponding kinematic boundary conditions at the free surface and at the
internal surface are

∂

∂t
(h+ η) + u

∂

∂x
(h+ η)− w

∣∣∣
z=h+η

= 0,
∂h

∂t
+ u

∂h

∂x
− w

∣∣∣
z=h

= −M.

Averaging the incompressibility equation we obtain :

∂

∂t
η +

∂

∂x
(ηū) = M,

with

ū(t, x) =
1

η

h+η∫
h

u(t, x, s) ds.

Averaging of the horizontal momentum equation gives us

∂

∂t

( h+η∫
h

u dz

)
+

∂

∂x

( h+η∫
h

(u2 + p) dz

)
= M u

∣∣
z=h
− p
∣∣
z=h

hx,

or
∂

∂t
(ηū) +

∂

∂x

(
ηū2 + ηe+

η2

2

)
= M u

∣∣
z=h
− p
∣∣
z=h

hx,

with the specific turbulent energy e defined as

e =
1

η

h+η∫
h

(u− U)2 dz.

The averaged energy equation is

∂

∂t

( h+η∫
h

(u2
2

+ z
)
dz

)
+

∂

∂x

( h+η∫
h

(
u
(u2

2
+ z
)

+ pu

)
dz

)

= M

(
u2

2

∣∣∣
z=h

+ h

)
+ p
∣∣
z=h

(ht +M).

We suppose that the shear effects in the upper layer are now more important.
More exactly, let the dimensionless flow vorticity ω = uz − ε2wx ≈ uz = O(εβ)
with 0 < β < 1 (so, uz = O(εβ)). Then∫ h

0

(u− U)2 dz = O
(
ε2β
)
. (16)

This term is now more important than the dispersion which is of order ε2, and
should be kept in the momentum equation. The vorticity is ‘weak’ in the sense
that it is not of order one, but it could be ‘large’ at the same time (‘almost’
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of order one ) when β is small. Analogous estimation of integrals can be given
for the energy equation (see Teshukov, 2007; Richard & Gavrilyuk, 2012, 2013
for details). Keeping only terms of order one and ε2β , we obtain the energy
equation for the lower potential layer in the form:

∂

∂t

(
η

(
ū2

2
+
e

2
+
η + 2h

2

))
+

∂

∂x

(
ηū

(
ū2

2
+ e+

η + 2h

2

)
+
η2

2
ū

)

= M

(
u2

2

∣∣∣
z=h

+ h

)
+ p
∣∣
z=h

(ht +M).

Remark 1 The term M which is responsible for the mixing, should be
specified. In applications, we take it in the form

M = σ
√
e, σ = const, (17)

where σ is the shear coefficient (the ratio between the averaged over the fluid
depth shear stress and the turbulent kinetic energy):

− 1

h

∫ h+η

h

ũw̃dz = σe. (18)

Here ‘tilde’ means the velocity fluctuations. In a vertically sheared flow the sign
of σ coincides with the sign of the vertical mean velocity gradient. The value of
σ is about 0.15 ((35), (4)). The justification of (17) can be done in the following
way. We denote the classical Reynolds averaging of the dimensionless Euler
equations (with ε = 1) by angle brackets 〈...〉, with a classical representation for
any f in the form f = 〈f〉+ f̃ , where 〈f̃〉 = 0. The corresponding dimensionless
Reynolds equations are

〈u〉x + 〈w〉z = 0, 〈u〉t +
(
〈u〉2 + 〈ũ2〉+ 〈p〉

)
x

+ (〈u〉〈w〉+ 〈ũw̃〉)z = 0,

〈w〉t + (〈u〉〈w〉+ 〈ũw̃〉)x +
(
〈w〉2 + 〈w̃2〉+ 〈p〉

)
z

= −1,

〈E〉t +
(
〈u〉〈E〉+ 〈ũẼ〉+ 〈p〉〈u〉+ 〈p̃ũ〉

)
x

+
(
〈w〉〈E〉+ 〈w̃Ẽ〉+ 〈p〉〈w〉+ 〈p̃w̃〉

)
z

= −〈w〉. (19)

Here we denoted

E =
u2 + w2

2
, 〈E〉 =

〈u〉2 + 〈w〉2

2
+
e

2
, e = 〈ũ2〉+ 〈w̃2〉,

Ẽ = 〈u〉ũ+ 〈w〉w̃ +
ũ2 + w̃2

2
− e

2
.

Consider now particular solutions of (19) where all the variables depend only
on (t, z), and the vertical average velocity 〈w〉 is zero. Also, we will assume
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that the third order correlations and the correlation 〈p̃w̃〉 are negligible. Such a
solution is suitable for the description of the mixing layer. Equations (19) imply

〈u〉t + (〈ũw̃〉)z = 0,

(
〈u〉2

2
+
e

2

)
t

+
(
〈ũw̃〉〈u〉

)
z

= 0. (20)

System (20) simplifying (19) with the closure−〈ũw̃〉 = σe is hyperbolic, with the
characteristic slopes ±σ

√
2e. The mixing front between the turbulent layer and

the potential layer can be seen as a shock separating the two regions. Applying
the Rankine–Hugoniot relations coming from (20) we obtain

D[〈u〉] + σ [e] = 0, D

[
〈u〉2

2
+
e

2

]
+ σ[e〈u〉] = 0.

Here the square brackets mean the jump of variables. Let u−, e−, and u+, e+ =
0 be the values of unknowns in the turbulent and potential region, respectively,
with u− > u+. Then we have :

e− = (u− − u+)2, D = −σ (u− − u+)2

u− − u+
= −σ

√
e−.

This is exactly the empirical relation (17) defining M . The sign ‘minus’ corre-
sponds to the fact that η is growing at the same time as z is decreasing. Such a
shock is stable in the sense of Lax (the characteristics overlap at the shock). A
detailed discussion can also be found in Liapidevskii & Teshukov (2000) (18).

Remark 2 The turbulent energy dissipation toward smaller scales (smaller
then the scale of large vortexes defined by η ) should also be added. The most
simple empirical expression for the energy dissipation rate d can be taken in the
form ((35)):

d = σ
κ

2
e3/2 = M

κ

2
e. (21)

Here the coefficient κ/2 is of order one, the factor 1/2 is added for convenience.
The shear coefficient σ has an effect on the length of surface waves, while the
dissipation coefficient κ is responsible for the turbulent layer thickness develop-
ment.

Remark 3 The model derived is a ‘dispersive generalization’ a two-layer
hydrostatic model with shear (turbulence) effects in the upper layer proposed
in Liapidevskii & Chesnokov (2014)(20). The dispersive effects are more impor-
tant in the lower layer while the shear (turbulence) effects are more important
in the upper layer. The model is more general than that proposed in Richard
& Gavrilyuk (2015) (27) where a dispersive model for shear flows was derived.
In that paper, a small thickness upper shear layer was also introduced, but its
dynamical development was assumed to be negligible. The approach by An-
tuono & Brocchini (2013) (1) where Reynolds averaging and depth averaging
were combined for the derivation of an integro-differential system for wave prop-
agation has some similarity with our approach because it also enables a better
modelling of the turbulent energy evolution. A close model combining both
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shear and dispersive effects, but containing also third order correllations of the
velocity, was recently proposed by Castro and Lannes (2014)(7). It supposes a
regularity of the velocity field in the vertical direction, while in our model the
velocity field is singular (two layer system).

2.3 Final two-layer system

The final dimensionless system can be written as

∂η

∂t
+
∂ηū

∂x
= M, (22)

∂

∂t
(ηū) +

∂

∂x

(
ηū2 + ηe+

η2

2

)
= MU − ηhx, (23)

∂

∂t

(
η

(
ū2

2
+
e

2
+
η + 2h

2

))
+

∂

∂x

(
ηū

(
ū2

2
+
e

2
+
η + 2h

2

)
+

(
ηe+

η2

2

)
ū

)
(24)

= M

(
U2

2
+ h

)
+ η(ht +M)− d,

∂h

∂t
+

∂

∂x
(hU) = −M, (25)

∂

∂t
(hU) +

∂

∂x

(
hU2 +

∫ h

0

p dz

)
= ηhx −MU, (26)

∂

∂t

(
h

(
U2

2
+ε2

U2
x

6
h2+

h

2

))
+
∂

∂x

(
hU

(
U2

2
+ε2

U2
x

6
h2+

h

2

)
+U

∫ h

0

p dz

)
(27)

= −η(ht +M)−M
(
U2

2
+ ε2

U2
xh

2

2
+ h

)
,

with∫ h

0

p dz = ηh+
h2

2
− ε2h

3

3
(Uxt + UUxx − U2

x), M = σ
√
e, d = M

κ

2
e. (28)

The system (22)- (28) admits the total momentum conservation law:

∂

∂t
(ηū+ hU) +

∂

∂x

(
ηū2 + ηe+

η2

2
+ hU2 +

∫ h

0

p dz

)
= 0,

and the total energy balance equation :

∂

∂t

(
η

(
ū2

2
+
e

2
+
η + 2h

2

)
+ h

(
U2

2
+ ε2

U2
x

6
h2 +

h

2

))

+
∂

∂x

(
ηū

(
ū2

2
+
e

2
+
η + 2h

2

)
+

(
ηe+

η2

2

)
ū+hU

(
U2

2
+ε2

U2
x

6
h2+

h

2

)
+U

∫ h

0

p dz

)
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= −Mε2
U2
xh

2

2
− d.

Since M > 0 (the thickness of the upper layer is increasing because of the
developing the turbulent layer) and d > 0, the total energy is decreasing. The
energy equation for the lower layer (27) is not independent, it is a consequence
of (25) and (26).

2.4 An equivalent form of the momentum equation for the
lower layer

The flux in the momentum equation (26) for the lower layer contains the higher
order derivatives of the velocity U . It appears, that for numerical purposes the
following new variable

K = U − ε2

3h

(
h3Ux

)
x

is more convenient for the model formulation. The variable K is nothing but
the tangential velocity along the free surface (cf. Gavrilyuk & Teshukov, 2001,
Bardos & Lannes, 2012, Gavrilyuk, Kalisch & Khorsand, 2015). For this, we
replace the momentum equation by an equivalent equation (see Appendix B for
the proof) :

Kt +

(
KU + h+ η − U2

2
− ε2

2
U2
xh

2 − ε2hMUx

)
x

= M

(
K − U
h

+ ε2hxUx

)
.

In the case where the mixing is absent (M = 0), this equation is reduced to the
conservative one :

Kt +
(
KU + h+ η − U2

2
− ε2

2
U2
xh

2
)
x

= 0.

2.5 Production of the turbulent energy

An evolution equation for the turbulent energy e in the upper layer can also be
obtained. Consider the subsystem for the upper layer (22) – (24). Using the
equation of the mass (22) and the momentum (23) one can obtain from (24) :

η

2

D̄e

Dt
+ e

(
M − D̄η

Dt

)
= M

(
(U − ū)2

2
− e

2

)
− d, D̄

Dt
=

∂

∂t
+ ū

∂

∂x
.

It is equivalent to :

η

2

D̄e

Dt
− eD̄η

Dt
= M

(
(U − ū)2

2
− 3

2
e

)
− d.

It implies :
D̄

Dt

(
e

η2

)
=
M

η3

(
(U − ū)2 − (3 + κ)e

)
.

11



For numerics, a conservative equation for q will be used. Replacing e by q2 and
using the equation for η one can derive a conservative equation for q

∂q

∂t
+

∂

∂x
(qū) =

σ

2η

(
(U − ū)2 − (1 + κ)q2

)
.

2.6 Flow over topography

The derivation of the governing equations for the flow over topography is anal-
ogous. However, such a derivation can considerably be simplified under the
following assumption on the bottom variation. Let z = b(x) be the bottom
variation. Then the most simple approach is to add in the right-hand side of
the dimension momentum equation for the upper layer the term −gηbx, and in
the equation for K the term −gbx. It corresponds to the dimensionless scaling
b(x)→ b(εαx) with α > 0, allowing us to neglect the second derivatives and the
squared first derivatives of b. Only the first space derivative of b will be kept,
as it is the case of non-dispersive shallow water equations. Such an approach
was used, for example, in Serre (1953)(29) and Liapidevskii & Gavrilova (2008)
(19).

3 Stationary solutions for a flat bottom

The governing equations (22)- (28) are Galilean invariant. The study of the
travelling wave solution is thus equivalent to the study of the stationary so-
lutions. We denote by ‘prime’ the derivative with respect to x. Continuous
stationary solutions written in dimension form satisfy the equations:

(ηū)′ = σq,

(
ηū2 + ηq2 +

gη2

2

)′
= σqU − gηh′, (29)

ηūq′ − qūη′ =
σ

2

(
(U − ū)2 − (3 + κ)q2

)
,

(hU)′ = −σq,
(
hU2 + P

)′
= gηh′ − σqU,

with

P =
gh2

2
+ ghη − h3

3

(
UU ′′ − U ′2

)
.

The normal form of (29) is

h′ = −σq + hW

U
, (30)

η′ =
1

∆

(
σq

(
2ū− U +

1

ū

(
(U − ū)2 − (3 + κ)q2

))
+ gηh′

)
,

ū′ =
σq − ūη′

η
, U ′ = W, W ′ = Z,

12



Z ′ =
3

Uh2

(
UW + g(h′ + η′) +

h2

3
WZ − h(UZ −W 2)h′

)
,

q′ =
1

2ηū

(
σ
(

(U − ū)2 − (3 + κ)q2
)

+ 2qūη′
)
.

Here
∆ = ū2 − gη − 3q2. (31)

The ‘true’ normal form is obtained by replacing also the derivatives η′ and h′

by the corresponding algebraic relations. To avoid cumbersome expressions,
we will present only a reduced form (30). The variables describing the lower
dispersive layer (U and h) are always continuous in the flow. However, the
variables describing the upper turbulent layer may be discontinuous when the
supercritical-subcritical transition occurs. If the stationary solution is discontin-
uous, the following Rankine–Hugoniot relations for the upper layer are satisfied
:

[ηū] = 0,

[
ηū2 + ηe+

1

2
gη2
]

= 0,

[
ū2

2
+

3

2
e+ gη

]
= 0. (32)

Here the square brackets mean the jump of the corresponding quantities. Rela-
tions (32) are usual conservation of mass, momentum and energy in the upper
layer. Also, the momentum equation for the lower layer implies :[

gηh− h3

3
UU ′′

]
= 0. (33)

Here we used the continuity of h, U and U ′ at the shock. Formula (33) gives
us the jump of the second derivative U ′′ at the shock. The jump is not zero
because the jump of η is non-vanishing.

We are looking for stationary solutions of (30) having supercritical constant
potential flow as x→ −∞ :

(ū, U)→ (U0, U0), U0 > 0 (η, h)→ (0, H0), e→ 0, F = U0/
√
gH0 > 1.

(34)
The flow is potential at negative infinity, so the upper turbulent layer and the
corresponding turbulent energy are vanishing. To construct such a solution, it
is necessary first to understand the asymptotic behaviour of the supercritical
solution at negative infinity. Linearizing the equations for the total mass and
the equation for the momentum of the lower layer we obtain (the perturbations
are denoted by the same letters)

H0U
′ + U0(h′ + η′) = 0,

U0u
′ + g(h′ + η′)− H2

0

3
U0U

′′ = 0.

Eliminating h′ + η′ we get the equation for U(
1− 1

F 2

)
U ′ − H2

0

3
U ′′′ = 0.

13



It implies that as x→ −∞ the solution in the lower layer behaves asymptotically
as the solution of the Green–Naghdi equations:

U ≈ exp

(
λ
x

H0

)
, λ =

√
3

(
1− 1

F 2

)
.

Perturbations (nonlinear) for the upper layer variables satisfy the equations:

U0η
′ = σq, U0ū

′ − gH0

U0
U ′ = σ

q(U − ū)

η
, U0q

′ = σ
(U − ū)2 − (1 + κ)q2

2η
.

Looking for the solutions in the form

U = Û exp

(
λ
x

H0

)
, η = η̂ exp

(
λ
x

H0

)
, ū = ˆ̄u exp

(
λ
x

H0

)
, q = q̂ exp

(
λ
x

H0

)
we obtain the following expressions for unknown amplitudes :

ˆ̄u =
Û

2

(
1 +

1

F 2

)
, q̂ = − Û

2
√

3 + κ

(
1− 1

F 2

)
, η̂ =

σH0

λU0
q̂, ĥ = −H0

U0
Û − η̂.

(35)
The sign in the expression of q̂ is minus because Û < 0. Also, it is interesting
to note that in this case

Û − ˆ̄u =
Û

2

(
1− 1

F 2

)
< 0

because F 2 > 1. It means that at the beginning of mixing the velocity in the
upper layer is larger than the velocity in the lower layer. Asymptotic expressions
(35) were used when the conditions at the negative infinity are imposed in the
numerical treatment of the stationary system. We used MATHEMATICA 10.1
edition to solve the first order system (30).

3.1 The structure of stationary solutions

The mixing process is dissipative, so the stationary solution is rather an undular
bore, and not a sequence of solitary (or periodic) waves. The upper layer is
developing quite slowly if the flow is supercritical everywhere (the determinant
(31) is positive). A typical flow picture is shown in Figure 2.

There exists a critical Froude number F? such that the flow becomes critical
(the determinant (31) vanishes) at the top of the leading wave. This value can
easily be numerically determined. For example, F? ≈ 1.338 for κ = 0.

One can also find another critical value F?? for which the determinant van-
ishes at the top of the second wave. For example, F?? ≈ 1.283 for κ = 0.
A sequence of the corresponding critical values can thus be constructed. The
smaller the Froude number is (but always larger then one), the larger the do-
main, where the solution is supercritical, is. The critical Froude numbers in-
crease with increasing κ. For example, for κ = 3, one has F? ≈ 1.3832, and
F?? ≈ 1.3201.
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Figure 2: A typical supercritical stationary flow for the Froude number F = 1.2
is shown. The lower boundary separates potential and turbulent layers. The
mixing region of thickness η is gradually increasing. The parameters are as
follows: H0 = 0.1 m, U0 = 1.19 m/s, g = 9.81 m/s2, σ = 0.15, κ = 0.

When the supercritical–subcritical transition happens, i.e. the determinant
(31) changes the sign from positive to negative, the solution may contain a jump
of the variables of the upper turbulent layer. The thickness of the upper layer in
the subcritical local zone will rapidly increase in downflow because of the mixing
process. The pressure distribution is approaching to the hydrostatical because
the turbulent layer will expand. The transition can occur not necessarily at the
leading wave, but, for example, at the second wave.

Now we will show how to construct another solution containing a jump riding
down the forward slope of the leading wave even for F < F?. The construction
of such a solution can be done as follows. Take any Froude number F < F?.
We put the jump at a point x = x0 which should be properly chosen. For given
values η0 = η(x0), ū0 = ū(x0), q0 = q(x0) one can use the Rankine–Hugoniot
relations (32):

ηū = η0ū0 = Q, ηū2+ηq2+
g

2
η2 = η0ū

2
0+η0q

2
0+

g

2
η20 ,

ū2

2
+

3

2
q2+gη =

ū20
2

+
3

2
q20+gη0.

Eliminating the velocities, one can obtain a quadratic equation for the layer
thickness after the jump

g

2
η20η

2 − η
(
Q2 + 3η0

(
1

2
gη20 + η0q

2
0

))
+ 2η0Q

2 = 0.

The equation has two positive roots. Only one of them (the minimal one)
having the property η < 2η0 must be chosen (see the discussion in Richard
& Gavrilyuk, 2012). Since the value of η0 is almost negligible, the jump of η
is almost invisible. However, the corresponding turbulent energy considerably
increases. The flow in the turbulent region becomes subcritical. The thickness
of the turbulent layer is increasing, the flow in this layer decelerates and the
determinant (31) in the equation for η vanishes at some point x = x1. If at the
same point the numerator vanishes, the solution can be extended again to the
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Figure 3: A new supercritical–subcritical stationary solution for the Froude
number F = 1.2 is shown. The subcritical turbulent region rapidly increases
after the jump. The flow continuously passes to the supecritical regime. The
flow parameters are as follows: H0 = 0.1 m, U0 = 1.19 m/s, g = 9.81 m/s2, σ =
0.15, κ = 0. The supercritical–subcritical transition is at the point x0 ≈ −0.124,
the subcritical–supercritical transition is at the point x1 ≈ 0.025.

supercritical region for x > x1. The value of x = x0 can always be chosen, and
thus a new solution containing a local subcritical zone between x0 and x1 can
be constructed. Such a new solution is shown in Figure 3 for the Froude number
F = 1.2. The local zone where the solution is subcritical, can be associated to
the wave breaking.

These two solutions have completely different properties. The first one, with-
out the jump, has long modulations and quite narrow mixture region (Figure
2). The second one, with a jump, has shorter modulations at the same space
interval, smaller amplitude, and thicker mixture zone (see Figure 3). The same
boundary conditions at the negative infinity can thus produce completely dif-
ferent stationary solutions. Such a non-uniqueness of the stationary solutions is
often associated with the hysteresis phenomenon, where one or another solution
can appear through non-stationary scenarios.

The model also contains a criterion of wave breaking which is characterized
by the Froude number between 1.3 and 1.4 depending on the energy dissipation
parameter κ. An interesting feature of this model is a possibility of existence of
a local subcritical zone [x0, x1] which can be associated with the wave breaking.
The non-stationary wave breaking will be studied in the next sections.
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4 Applications to non-stationary problems

4.1 Numerical method

For numerical treatment the following dimension form of the governing equations
is used :

∂η

∂t
+

∂

∂x
(ηū) = σq,

∂

∂t
(h+ η) +

∂

∂x
(hU + ηū) = 0,

∂

∂t
(ηū) +

∂

∂x

((
ū2 + q2

)
η +

gη2

2

)
= σqU + α1,

∂q

∂t
+

∂

∂x
(qū) =

σ

2η

(
(U − ū)2 − (1 + κ)q2

)
,

∂K

∂t
+

∂

∂x

(
KU + g(h+ η)− U2

2
+ α2

)
= σq

(
K − U
h

+ α3

)
− gbx,

(36)

where

α1 = −gη(h+ b)x, α2 = −U
2
xh

2

2
− hσqUx, α3 = hxUx, (37)

and the velocity U is determined by the equation

K = U − 1

3h

(
h3Ux

)
x
. (38)

For a given K, (38) is an ordinary differential equation for U . The function
z = b(x) defines the bottom variation; σ and κ are constants. The preceding
system (36) can be written in conservative form :

∂u

∂t
+
∂f

∂x
= g, (39)

where

u =
(
η, h+ η, ηū, q, K

)T
,

f =

(
ηū, hU + ηū,

(
ū2 + q2

)
η +

gη2

2
, qū,KU + g(h+ η)− U2

2
+ α1

)T

,

g =

(
σq, 0, σqU + α1,

σ

2η

(
(U − ū)2 − (1 + κ)q2

)
, σq

(K − U
h

+ α3

)
− gbx

)T

.

Following Le Metayer et al. (2010) (17) we divide the numerical resolution of
system (36) into three successive steps:

1) the numerical approximations of the terms αi, i = 1, 2, 3, containing
spatial derivatives (see relations (37));

2) the time evolution of the conservative variables u using the method based
on modification of Godunov’s scheme;

3) the resolution of an ordinary differential equation (38) to obtain the values
of velocity U from variables h and K.
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To solve differential balance laws (39) numerically we implement here the
Nessyahu & Tadmor (1990)(24) second-order central scheme (see also Russo
(2005) (28)) :

u
n+1/2
j = unj − Λf ′j/2 + g(unj )∆t/2, (Λ = ∆t/∆x)

un+1
j+1/2 = (unj + unj+1)/2 + (u′j − u′j+1)/8− Λ

(
f(u

n+1/2
j+1 )− f(u

n+1/2
j )

)
+
(
g(unj + g(unj+1)

)
∆t/2.

(40)

Here unj = u(tn, xj), ∆x is the spatial grid spacing, and ∆t is the time-step
satisfying the Courant condition, defined by the velocity of characteristics of
the dispersionless part of the model. The computational domain on the x axis
is divided into N cells, the cell centres are denoted by xj . Values u′j/∆x and
f ′j/∆x are approximations of the first-order derivatives with respect to x, cal-

culated according to the ‘MinMod’ procedure. At t = 0 the initial data u0
j are

specified. The boundary conditions un1−k and unN+k (k = 1, 2) are also should be
prescribed. Since the state unj is known using formulae (40) one can obtain the

conservative variable u at time tn+1. Scheme (40) does not require exact or ap-
proximate solution of the Riemann problem that is very convenient in our case,
since system (36) includes five equations. It should be noted that other schemes
(in particular, on non-staggered grids) based on the local Lax–Friedrichs flux
are also appropriate here.

The numerical estimation of the first order derivatives of any function ϕ at
x = xj is given by the following relation(

∂ϕ

∂x

)
j

=
ϕj+1/2 − ϕj−1/2

∆x
, ϕj±1/2 =

ϕj±1 + ϕj
2

. (41)

This discretization is used to determine the terms αi in (37). As a result we
obtain the flux fnj at time tn.

The last ingredient concerns the determination of the velocity Uj at the next
time step when the vector of conservative variables un+1

j is known. Applying
finite difference discretization (41) one can rewrite equation (38) in the following
form

aj−1Uj−1 − cjUj + bjUj+1 = −fj , (j = 1, ..., N) (42)

where

ai = h3j−1/2, bj = h3j+1/2, cj = aj + bj + 3∆x2hj , fj = 3∆x2hjKj .

All the variables in the preceding relation are those at time tn+1. As a conse-
quence, the variables hj and Kj are known and come from the time evolution of
conservative variables with the help of the numerical scheme presented above.
The only unknowns are the terms Uj at each node. Relations represent a tridi-
agonal system of linear equations that can be solved by a direct (Gauss) method.
We apply here a simplified form of Gaussian elimination which is known as the
Thomas algorithm.

The next section is devoted to numerical results obtained with the present
method for different applications.
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Figure 4: Definition sketch for the Favre waves.

4.2 ‘Water hammer problem with a free surface’ (Favre
waves)

Pioneering experimental works concerning the development of undular bores
were performed by Favre (1935), who studied their formation in long open
channels due to a rapid opening or closing of a gate. Similar experiments
with a detailed investigation of the formation of surge waves in open channels
were performed by Treske (1994) (36) and by Soares-Frazão & Zech (2002)(30).
Analytical approach to the study of undular bores was developed in El et al.
(2005, 2006) within a framework of the Serre–Su–Gardner–Green–Naghdi equa-
tions (Serre, 1953, Su & Gardner, 1969, Green & Naghdi, 1976). This problem
was studied numerically in Soares-Frazão & Guinot (2008)(31) and in Tissier
et al. (2011)(34). Laboratory experiments ( Treske (1994)(36) and Chanson
(2009)(8)) showed that the wave Froude number F which is defined as

F =
U0 −D√
gH0

(43)

controls the bore shape. In supercritical regime (F > 1), undulations start
developing at the bore front in the near-critical state (F ≈ 1). However, when
the Froude number is approximately between 1.3 and 1.4, the transition from
the undular bore to the bore consisting of a steep front (breaking bore) occurs.
Figure 4 shows a definition sketch for the Favre waves in the undular regime.
Constants U0 and H0 are the upstream flow velocity and depth. In the following
D denotes the propagation speed of the wave front; am represents the jump
height; amax and amin are the maximum and minimum amplitude of the first
wave. Below we present some results related to the numerical modelling of Favre
waves on the base of equations (36)–(38) in the domain of the Froude number
between 1 and 1.3 corresponding to the domain of existence of the undular
bore. We also demonstrate transition from undular to purely breaking bores
with increasing of the Froude number, and, in particular, compare numerical
results for the first wave amplitude with experimental data (Treske (1994)(36)).

We perform calculations in dimensionless variables in the domain x ∈ [0, 100]
for N = 1000. We take here g = 1, σ = 0.15 and κ = 3. To start calculations
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we specify unknown variables u in the node points x = xj at t = 0 as follows
η = 0.01, h+ η = 1, ū = K = U0, and q = 0. On the left boundary we assume
that un1−k = un1 . These conditions allow us to calculate until the perturbations
reach the boundary of the computational domain. To satisfy impermeability
condition (ū = U = 0) on the right wall x = 100 we use the reflecting boundary
conditions: unN+k = unN−k except of variables ηū and K that are treated as
(ηū)nN+k = −(ηū)nN−k and Kn

N+k = −Kn
N−k.

It should be noted that instead of the upstream velocity U0 it is more con-
venient to prescribe the upstream Froude number F . A simple relation between
them can be obtained. Indeed, according to conservation of mass and momen-
tum we have the following relations (in dimension variables) :

(U0 −D)H0 = (U1 −D)H1,

(U0 −D)2H0 +
gH2

0

2
= (U1 −D)2H1 +

gH2
1

2
,

(44)

where U0 and U1 the upstream and downstream velocities, respectively, and
H0, H1 = H0 + am the corresponding water depths. In our case U1 = 0. The
Bélanger formula

H1

H0
=

√
1 + 8F 2 − 1

2
(45)

is the consequence of (43) and (44). Taking into account (45) one can express
U0 from (44) in term of the Froude number:

U0 = U1 +
√
gH0

(
F − 1 +

√
1 + 8F 2

4F

)
. (46)

Figure 5 shows the results of computations at dimensionless time instant t∗ =
90 for F = 1.28 (undular bore) and F = 1.40 (breaking bore) that correspond
to the following upstream velocities : U0 = 0.3511 and U0 = 0.4921. Thus,
the proposed model (36)–(38) allows one to describe both undular and breaking
bores without any ‘switching’ criteria. In both cases the surface turbulent layer
is formed and shear velocity q is generated. The thickness of the layer grows
with increasing of the jump amplitude am (or the Froude number F ). Also,
it is interesting to note that the region of high turbulence (lower curve in the
Figure corresponding to the scaled variable q∗ = q/U0) is situated at the crests
of the waves ( Figure 5a for undular bores), or immediately at the wave front
(Figure 5b for breaking bores). In the last case the dispersion effects are clearly
negligible and the hydrostatic approximation can be used. Such an intensive
region of the turbulence can be associated with the roller appearance.

Further we compare the amplitudes of undular bores obtained by model
(36)–(38) with experimental data of Treske (1994) (36) (p. 365, Fig. 21). In
this case we perform calculations in the domain x ∈ [0, 200] with N = 4000 for
different Froude numbers from the interval F ∈ [1.10, 1.30]. For larger Froude
numbers, the amplitude of the leading wave rapidly decreases and the transition
to the breaking bore occurs. As in the previous case we choose g = 1, H0 = 1,
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Figure 5: Favre waves: the free surface h+η, the thickness of the lower potential
layer h, and the scaled shear velocity q∗ = q/U0 at t∗ = 90, t∗ = t

√
g/H0 for

F = 1.28 (a) and F = 1.40 (b). The parameters are as follows: g = 1, σ = 0.15,
κ = 3.
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Figure 6: Amplitude of undulated bores for different Froude numbers.

σ = 0.15 and κ = 3. The maximum and minimum amplitude of the leading
wave are taken at t∗ = 190. Figure 6 shows that the results obtained by the
model (36)–(38) are in good agreement with experimental data.

4.3 The shoaling and the breaking of the solitary wave

Here we consider the evolution of breaking solitary waves on a mild sloping beach
and compare numerical results with experiments of Hsiao et al. (2008)(16). We
perform calculations of the model (36)–(38) in the interval x ∈ [0, 200]. The
bottom topography is specified as follows: b(x) = 0 for x ∈ [0, 50]; b(x) =
(x−50)/60 for x ∈ (50, 175); b(x) = 25/12 for x ∈ [175, 200]. To avoid modelling
of the wave propagation over dry bottom (run-up) we introduce a shelf zone near
the right boundary. On the both (left and right) walls we assume reflecting
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Figure 7: The evolution of solitary wave on a mild sloping beach: 1 — bottom
topography; 2, 3, and 4 — free surface at t∗ = 0, 50, and 75, correspondingly;
5 — the boundary of lower potential layer at t∗ = 75, where the dimensionless
time t∗ is given by t∗ = t

√
g/H0.

boundary conditions. Initial data represent a solitary wave having amplitude
a0 = 0.3344m which propagates with the velocity C0 =

√
g(a0 +H0), where

H0 = 2.2m is the undisturbed water depth, and g = 9.8m/s2. These data
correspond to trial 43 in experiments by Hsiao et al. (2008)(16). The initial
thickness of the upper turbulent layer η0 is equal to 0.01m. The parameter
values are as in the case of Favre waves : σ = 0.15, κ = 3. We take N = 2000
nodes for space resolution. Here we use dimensional variables.

Figure 7 shows the results of numerical calculations of the free surface at
different time moments. As we can see from Figure 7, when the wave breaks
the turbulent layer near free surface is formed (η is increasing).

The temporal evolution of the free surface displacements at different po-
sitions along the channel is shown in Figure 8. The numerical results were
compared with the experimental data corresponding to trial 43 of the experi-
ments by Hsiao et al. (2008)(16) ( see Fig. 4 (a) on page 979). An excellent
agreement with experimental data is observed everywhere except of region near
the right boundary corresponding to x = 172 (the last graphic in Figure 8).
This is due to the fact that we have introduced the shelf zone for x > 175m,
while experimentally the wave continues to move on a sloping beach.

5 Conclusion

We constructed depth averaged governing equations for a two-layer long wave
approximation of the homogeneous Euler equations with a free surface over a
rigid bottom. The upper layer is turbulent and is described by system (22)–(24).
The lower layer is almost potential and can be described by Serre– Su–Gardner–
Green–Naghdi equations (25)–(28). The interface separating the two layers is
considered as a discontinuity surface at which a turbulent mixing occurs. The
constructed model reveals the main mechanism of the spilling breaker develop-
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Figure 8: Time history of free surface displacement: solid curves — experimental
data Hsiao et al (16), dashed curves — numerical results.
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ment. For waves of moderate amplitude the upper thin layer is dynamically
passive and the flow is principally governed by the dispersive model. However,
for the waves of larger amplitude, the upper turbulent layer dynamics becomes
crucial. The larger the wave amplitude, the greater the difference in the average
flow velocities of layers is. It finally results in an intensive growing of the upper
turbulent layer (spilling breaker formation).

In particular, the model predicts quite well the transition from undular bores
to breaking bores. This point is very important. Indeed, the undular bore can
be described by the dispersive Serre–Su–Gardner–Green– Naghdi model where
a viscosity is added, but not the breaking bore. The breaking bore can be
described by a hyperbolic model of the Saint–Venant type (see also a recent
model proposed in Richard and Gavrilyuk (2012, 2013)), but not the undular
bore. A combination of these simple model ‘bricks’ (dispersive and hyperbolic
ones) allows us to obtain a natural transition between two types of bores. Also,
a classical problem of the shoaling and the breaking of the solitary wave on a
mild-slope beach is well predicted by the new model.

A future work will consist in the modelling of the air bubble entrainment by
the breaking waves and a natural multi-dimensional extension of the model.
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6 Appendix A

The system describing the lower layer is :

∂h

∂t
+

∂

∂x
(hU) = −M,

∂

∂t
(hU) +

∂

∂x

(
hU2 + P

)
= p
∣∣
z=h

hx −M u
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z=h
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(
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2
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U2
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2
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2
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U2
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2

2
+ h
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,
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∫ h

0

p dz = p
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z=h
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2
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3

3

(
Uxt + UUxx − U2
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)
.

The momentum equation is equivalent to

h
DU

Dt
+ Px = p

∣∣
z=h

hx −M
(
u
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z=h
− U

)
,

Developing the energy equation we have

h
D
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(
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U2
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Using the momentum equation we can simplify the energy equation
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1
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It implies

M
(
U − u
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= 0.
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u
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= U.
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7 Appendix B

We replace the momentum equation for the lower layer by an equivalent one :

h
DU

Dt
+ hhx + hηx − ε2

(
h3

3

(
Uxt + UUxx − U2

x

))
x

= 0.

It can be transformed to :
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2
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)
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It is equivalent to :
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It implies :
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Replacing ht by
ht = −(hU)x −M

we obtain :
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It yields :
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Or
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It can be simplified as :
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One can transform the flux to obtain :
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An equivalent form is :
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From the definition of K we have
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It allows us to eliminate Uxx as a function of K and Ux:
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The derivative Ux is continuous at the jump, so the right-hand side of the
equation for K is now well defined. An equivalent form is :
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