
HAL Id: hal-01264055
https://hal.science/hal-01264055

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sufficient conditions for the filtration of a stationary
processes to be standard
Gaël Ceillier, Christophe Leuridan

To cite this version:
Gaël Ceillier, Christophe Leuridan. Sufficient conditions for the filtration of a stationary processes to
be standard. Probability Theory and Related Fields, 2017, 167 (3-4), pp.979-999. �10.1007/s00440-
016-0696-2�. �hal-01264055�

https://hal.science/hal-01264055
https://hal.archives-ouvertes.fr


Sufficient conditions for the filtration of a
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Abstract

Let X be a stationary process with values in some σ-finite measured
state space (E, E , π), indexed by Z. Call FX its natural filtration. In [3],
sufficient conditions were given for FX to be standard when E is finite,
and the proof used a coupling of all probabilities on the finite set E.

In this paper, we construct a coupling of all laws having a density with
regard to π, which is much more involved. Then, we provide sufficient
conditions for FX to be standard, generalizing those in [3].

Mathematics Subject Classification : 60G10.
Keywords : global couplings, filtrations of stationary processes, standard
filtrations, generating parametrizations, influence of the distant past.

1 Introduction

1.1 Setting

In this paper we focus on the natural filtration of stationary processes indexed by
the integer line Z with values in any σ-finite measured space. By definition, the
natural filtration of a process X = (Xn)n∈Z is the nondecreasing sequence FX =
(FX

n )n∈Z defined by FX
n = σ(X⊳

n ), where X⊳
n = (Xk)k6n denotes the σ−field

generated by the “past of X at time n”. Furthermore, we set FX
∞ = σ(Xk; k ∈ Z)

and FX
−∞ =

⋂

k∈Z F
X
k . All the σ−fields that we consider here are assumed to be

complete.

Let X = (Xn)n∈Z be any process defined on some probability space. Under
loose separability conditions, and up to an enlargement of the probability space,
one may assume that X fulfills a recursion as follows: for every n ∈ Z, Xn+1 is a

1



function ofX⊳
n (the “past” ofX at time n) and of a “fresh” random variable Un+1,

which brings in some “new” randomness. When this property holds, namely if,
for every n ∈ Z, (i) Un+1 is independent of F

X,U
n , and (ii) Xn+1 is measurable with

respect to σ(Un+1)∨F
X
n , we say that the process U = (Un)n∈Z is a parametrization

of X (or of FX). In particular, the process U = (Un)n∈Z must be independent.
Although Schachermayer’s definition [9] of parametrizations imposes that the Un

are uniform on [0, 1], we do not keep that restriction.

Any process indexed by the integer line Z with values in some essentially separable
space possesses a parametrization (see a proof in [2], section 5.0.5).

Likewise, we say that a parametrization U is a generating parametrization of X ,
or that U generates X if, for every n ∈ Z, Xn is measurable with respect to FU

n .
This is equivalent to the condition that FX

n ⊂ FU
n for every n ∈ Z, a property

which, from now on, we write as FX ⊂ FU .

As a matter of fact, generating parametrizations provide a stronger property
which is immersion of filtrations. Recall that the filtration FX is immersed
in the filtration FU if FX ⊂ FU and if, for every n ∈ Z, FX

n+1 and FU
n are

independent conditionally on FX
n . Roughly speaking, this means that FU

n gives
no further information on Xn+1 than FX

n does. Equivalently, FX is immersed in
FU if every FX-martingale is an FU -martingale. The following easy fact holds
(see a proof in [2]).

Lemma 1.1 If U is a generating parametrization of X, then FX is immersed in
FU .

Another notable property of filtrations is standardness . Recall that FX is stan-
dard if, modulo an enlargement of the probability space, one can immerse FX

in a filtration generated by an i.i.d. process with values in a separable space.
Vershik introduced standardness in the context of ergodic theory. Examples of
non-standard filtrations include the filtrations of [T, T−1] transformations, intro-
duced in [7]. Split-word processes, inspired by Vershik’s (rn)-adic sequences of
decreasing partitions [11] and studied in [10] and [8], for instance, also provide
non-standard filtrations.

Obviously, lemma 1.1 above implies that if X has a generating parametrization
with values in some essentially separable space, then FX is standard. Whether
the converse holds is not known.

Necessary and sufficient conditions for standardness include Vershik’s self-joining
criterion and Tsirelson’s notion of I-cosiness. Both notions are discussed in [6]
and are based on conditions which are subtle and not easy to use nor to check in
specific cases.

Our goal in this paper is to provide sufficient conditions for the existence of
a generating parametrization of FX (and therefore of standardness) that are
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easier to use than the ones mentioned above. Each of our conditions involves a
quantification of the influence of the distant past of the process on its present.
We introduce them in the next section.

1.2 Measuring the influence of the distant past

From now on, X denotes a stationary process indexed by the integer line Z with
values in some measurable space (E, E). We fix a reference measure π on E which
is σ-finite. To introduce some quantities measuring the influence of the past of a
process on its present, we need some notations.

Notation 1 (1) Slabs: For any sequence (ξn)n∈Z in EZ, deterministic or random,
and any integers i 6 j, ξi:j is the (j − i+ 1)-uple (ξn)i6n6j in Ej−i+1.
(2) Shifts: If k − i = ℓ− j, ξi:k = ζj:ℓ means that ξi+n = ζj+n for every integer n
such that 0 6 n 6 k − i.
Infinite case: Let E⊳ denote the space of sequences (ξn)n6−1. For every i in Z,
a sequence (ξn)n6i is also considered as an element of E⊳ since, similarly to the
finite case, one identifies ξ⊳i = (ξn)n6i and ζ⊳j = (ζn)n6j if ξi+n = ζj+n for every
integer n 6 0.
(3) Concatenation: for all i > 0, j > 0, x = (xn)16n6i in Ei and y = (yn)16n6j

in Ej, xy denotes the concatenation of x and y, defined as

xy = (x1, . . . , , xi, y1, . . . , yj), xy ∈ Ei+j .

Infinite case: for all j > 0, y = (yn)16n6j in Ej and x = (xn)n6−1 in E⊳, xy
denotes the concatenation of x and y, defined as

xy = (. . . , x−2, x−1, y1, . . . , yj), xy ∈ E⊳.

Assumption 1 From now on, assume that one can choose a regular version of
the conditional law of X0 given X⊳

−1 in such a way that for every x ∈ E⊳, the
law L(X0|X

⊳
−1 = x) has a density f(·|x) with respect to the reference σ-finite

measure π on E. Then, for every n > 0 and for every x1:n ∈ En, the law
L(X0|X−n:−1 = x1:n) has a density f(·|x1:n) with respect to π.

When E is countable and π is the counting measure on E, the densities f(·|x)
coincide with the functions p(·|x) used in [3] and defined by

p(a|x) = P(X0 = a | X−n:−1 = x), for x ∈ En and a ∈ E,

and p(a|x) = P(X0 = a | X⊳
−1 = x), for x ∈ E⊳ and a ∈ E.

We now introduce three quantities γn, αn and δn measuring the pointwise influ-
ence at distance n.
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Definition 1 For every n > 0, let

γn = 1− inf

{

f(a|xz)

f(a|yz)
; a ∈ E, x ∈ E⊳, y ∈ E⊳, z ∈ En, f(a|yz) > 0

}

,

αn = 1− inf
z∈En

∫

E

inf {f(a|yz); y ∈ E⊳} dπ(a),

δn = sup
{

‖f(·|xz)− f(·|yz)‖ ; x ∈ E⊳, y ∈ E⊳, z ∈ En
}

,

where, for every densities f and g on E,

‖f − g‖ =
1

2

∫

E

|f(x)− g(x)|dπ(x) =

∫

E

[f(x)− g(x)]+ dπ(x).

Note that the values γn, αn and δn depend on the choice of the regular version
of the conditional law of X0 given X⊳

−1. Applying the theorems below requires
small influences, so one has to work with a “good” version of the conditional law.
Yet, replacing π by an equivalent measure do not modify the quantities γn, αn

and δn.

The sequences (γn)n>0, (αn)n>0 and (δn)n>0 are non-increasing, [0, 1]-valued, and
δn 6 min(γn, αn) for every n > 0 (see the proof in [3], section 5).

For every [0, 1]-valued sequence (εn)n>0, we consider the condition

+∞
∑

k=0

k
∏

n=0

(1− εn) = +∞. (H(ε))

For instance, H(γ) and H(2δ/(1 + δ)) are respectively

+∞
∑

k=0

k
∏

n=0

(1− γn) = +∞, and
+∞
∑

k=0

k
∏

n=0

1− δn
1 + δn

= +∞.

Observe that if two [0, 1]-valued sequences (εn)n>0 and (ζn)n>0 are such that
εn 6 ζn for every n > 0, then H(ζ) implies H(ε). Hence condition H(ε) asserts
that (εn)n>0 is small in a certain way.

1.3 Statement of the main results

The definition of (γn)n>0 and the assumption H(γ) are both in [1]. The main
result of [1] is that when E if of size 2, then H(γ) implies that FX admits
a generating parametrization. This result is restricted by the following three
conditions. First, the size of E must be 2. Second, one must control the ratios
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of probabilities which define γn. Third, H(γ) implies that γ0 < 1, therefore one
can show that H(γ) implies the existence of c > 0 such that f(a|x) > c for every
x in E⊳ and a in E.

Theorem 2 in [3] improves on this and gets rid of the first two restrictions. And
Theorem 1 below inproves on Theorem 2 in [3].

Theorem 1 (1) If E is finite and if H(2δ/(1 + δ)) holds, then FX admits a
generating parametrization.
(2) If the size of E is 2 and if H(δ) holds, then FX admits a generating parame-
trization.

Theorem 1 brings two improvements on the first result in [3]: the assumption
H(2δ) is replaced by H(2δ/(1 + δ)) and the extra hypothesis δ0 < 1/2 is not
required anymore.

Another measure of influence, based on the quantities αn, is introduced and used
in [5] (actually the notation there is an = 1−αn). The authors show that if H(α)
holds, there exists a perfect sampling algorithm for the process X , a result which
implies that FX admits a generating parametrization.

Our Theorem 1, the result in [1] and the exact sampling algorithm of [5] all require
an upper bound of some pointwise influence sequence. The second theorem in [3]
uses a less restrictive hypothesis based on some average influences ηn, defined
below.

Definition 2 For every n > 0, let ηn denote the average influence at distance n,
defined as

ηn = E
[

‖f(·|Y−n:−1)− f(·|X⊳
−n−1Y−n:−1)‖

]

,

where Y is an independent copy of X, and call H′(η) the condition

+∞
∑

k=0

ηk < +∞. (H′(η))

As before, the definition of ηn depends on the choice of the regular version of
the conditional law of X0 given X⊳

−1, but it does not depend on the choice of the
reference measure π. We recall the result from [3].

Theorem 2 (Theorem 3 of [3]) Assume that E is finite and that for every a
in E, p(a|X⊳

−1) > 0 almost surely (priming condition). Then, H′(η) implies that
FX admits a generating parametrization.
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Note that the sequence (ηn)n>0 is [0, 1]-valued. If ηn < 1 for every n 6 0, then
H′(η) implies H(η). Yet, since ηn 6 δn for every n > 0, the condition H′(η)
cannot be compared to the conditions H(δ) and H(2δ/(1 + δ)).

The main result of the present paper is the theorem below which extends theorem
3 of [3] to any σ-finite measured space (E, E , π).

Theorem 3 Let (E, E , π) be any σ-finite measured space. Assume that one has
chosen a regular version of the conditional law of X0 given X⊳

−1 in such a way
that for every x ∈ E⊳, the law L(X0|X

⊳
−1 = x) has a density f(·|x) with respect

to π and that for π-almost every a in E, f(a|X⊳
−1) > 0 almost surely (priming

condition). Then, H′(η) implies that FX admits a generating parametrization,
hence is standard.

In this paper, we call priming condition the condition “for π-almost every a in
E, f(a|X⊳

−1) > 0 almost surely”. This generalises the priming condition of [3].
Indeed, when E is finite and π is the counting measure on E, the priming condi-
tion is equivalent to the assumption that for every a in E, p(a|X⊳

−1) > 0 almost
surely, that is, the condition involved in theorem 2. An equivalent form, which is
actually the one used in the proof of theorem 2, is

inf
a∈E

p(a|X⊳
−1) > 0 almost surely.

But this condition cannot be satisfied anymore when E is infinite. Therefore,
the proof of theorem 3 requires new ideas to use the priming condition, see our
priming lemma in section 3 (lemma 3.1).

1.4 Global couplings

A key tool for the construction of our parametrization is a new global coupling.
This global coupling, which applies when E is infinite, is much more involved
than the coupling introduced in [3] when E is finite.

Recall that if p and q are two fixed probabilities on a countable space E, then
for every random variables Zp and Zq with laws p and q defined on the same
probability space,

P[Zp 6= Zq] > ‖p− q‖,

where ‖p− q‖ is the distance in total variation between p and q, defined as

‖p− q‖ =
1

2

∑

a∈E

|p(a)− q(a)| =
∑

a∈E

[p(a)− q(a)]+ .

Conversely, a standard construction in coupling theory provides some random
variables Zp and Zq with laws p and q such that P[Zp 6= Zq] = ‖p− q‖.

Couplings can be generalized to any set of laws, on a measurable space (E, E).
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Definition 3 Note P(E) the set of probabilities on the measurable space (E, E).
Let A be a subset of P(E). A global coupling for A is a random variable U with
values in some measurable space (F,F) and a function g from F ×A to E such
that for every p ∈ A, g(U, p) is a random variable of law p on E.

Good global couplings are such that for every p and q in A, the probability
P[g(U, p) 6= g(U, q)] is small when ‖p− q‖ is small.

When E = {0, 1}, a classical coupling used in [1] is given by g(U, p) = 1{U6p(1)},
where U is a uniform random variable on [0, 1]. This coupling satisfies the equality
P[g(U, p) 6= g(U, q)] = ‖p− q‖, for every p and q in P(E).

This coupling has been extended to any finite set in [3]. Furthermore, the con-
struction can still be extended to any countable set, as follows.

Proposition 1.2 Assume that E is countable. Let ε = (εa)a∈E be an i.i.d. family
of exponential random variables with parameter 1. Then, for any probability p on
E, there exists almost surely one and only one a ∈ E such that

εa
p(a)

= inf
b∈E

εb
p(b)

(⋆),

with the convention that εb/p(b) = +∞ if p(b) = 0.

• Define g(ε, p) (almost surely) as the only index a such that (⋆) holds. Then
the law of the random variable g(ε, p) is p.

• For every p, q in P(E),

P[g(ε, p) 6= g(ε, q)] 6 2
‖p− q‖

1 + ‖p− q‖
6 2 ‖p− q‖.

The bound 2‖p − q‖/(1 + ‖p − q‖) improves on the bound 2‖p − q‖ given in
proposition 2.6 of [3] and explains that the assumption H(2δ/(1+δ)) of theorem 1
is weaker than the assumptions H(2δ) and δ0 < 1/2 required in theorem 2 of [3],
although the same proof works. The proof of proposition 1.2 will be given in
section 5.

We now briefly introduce a new global coupling that works on any measured σ-
finite space (E, E , π). The construction and the properties of the coupling (g, U)
will be detailed in section 2.

Let Pπ(E) be the subset of P(E) of all probability laws p on E admitting a
density fp with respect to π. Let λ be the Lebesgue measure on R

+. Let U be a
Poisson point process on E × R

+ × R
+ of intensity π ⊗ λ⊗ λ.

In the following, any element (x, y, t) of U is seen as a point (x, y) in E × R
+

appearing at the time t. Since λ is diffuse, the third components of the elements
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of U are almost surely all distinct. For any density function f on (E, E , π), set
Df = {(x, y) ∈ E × R

+ : y 6 f(x)} and call tf the instant of appearance of a
point under the graph of f . Then, almost surely, tf is positive and finite and the
set U ∩ (Df × [0, tf ]) is almost surely reduced to a single point (xf , yf , tf). The
random variable xf has density f with respect to π.

Proposition 1.3 With the notations above, the formula g(U, p) = xfp defines a
global coupling for Pπ(E) such that for every p and q in Pπ(E),

P[g(U, p) 6= g(U, q)] 6
2‖p− q‖

1 + ‖p− q‖
6 2‖p− q‖.

The paper is organised as follows : In section 2, we detail the construction of
the global coupling just mentionned, we prove proposition 1.3 and we construct
a parametrization of the process (Xn)n∈Z. Section 3 is devoted to the proof of
a key intermediate result which we call priming lemma, which uses the priming
condition. In section 4, we complete the proof of theorem 3, showing that the
parametrization (Un)n∈Z constructed in section 2 generates the filtration FX .

2 Construction of a parametrization with a glo-

bal coupling

2.1 Construction of a global coupling

Let (E, E , π) be a σ−finite measured space. Let λ be the Lebesgue measure on
R

+. Set µ = π ⊗ λ on E × R
+. Denote by D the set of countable subsets of

E × R
+ × R

+.

Let U be a Poisson point process on E × R
+ × R

+ of intensity π ⊗ λ ⊗ λ. By
definition, U is a D-valued random variable such that for any pairwise disjoint
sets Bk in E , of finite measure for µ⊗λ = π⊗λ⊗λ, the cardinalities |U ∩Bk| are
independent Poisson random variables with respective parameters (µ⊗ λ)(Bk).

In the following, any element (x, y, t) of U is seen as a point (x, y) in E × R
+

appearing at time t. Since λ is diffuse, the third components of the elements of
U are almost surely all distinct.

Notation 2 For any measurable subset A of E × R
+, the time of appearance of

a point in A is

tA(U) = inf {t > 0 : U ∩ (A× [0, t]) 6= ∅} .
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Let us recall some classical and useful properties of Poisson point processes. If the
measure µ(A) is positive and finite, the random variable tA(U) has exponential
law of parameter µ(A). Moreover the set U ∩ (A × [0, tA(U)]) is almost surely
reduced to a single point (xA(U), yA(U), tA(U)). The couple (xA(U), yA(U)) thus
defined is a random variable of law µ(·|A) = µ(· ∩A)/µ(A) which is independent
from tA(U).

Moreover if the sets Bk are pairwise disjoint measurable subsets of E × R
+, the

random variables (xBk
(U), yBk

(U), tBk
(U)) are independent.

The coordinates xA(U), yA(U), tA(U) vary as a function of the variable U . This
notation will be used later on when we will consider several Poisson point pro-
cesses, but, by abuse of notation it will be abbreviated to xA, yA, tA when there
is no ambiguity on the Poisson point process.

Lemma 2.1 If the n sets Ak are measurable subsets of E×R
+, of finite positive

measures for µ, then almost surely

tA1 = ... = tAn
⇐⇒ tA1∩...∩An

= tA1∪...∪An
.

Proof The reverse implication follows from the inequalities

tA1∪...∪An
= min{tA1 , ..., tAn

} 6 max{tA1 , ..., tAn
} 6 tA1∩...∩An

.

The direct implication follows from the fact that, almost surely, the third com-
ponents of the elements of U are all distinct. Therefore if tA1 = ... = tAn

, then
the point (xAk

, yAk
, tAk

) does not depend on k, therefore (xAk
, yAk

) belongs to
A1 ∩ ... ∩An. This ends the proof. �

We now study the dependance of xA with respect to A.

Proposition 2.2 Let A and B be two measurable subsets of E×R
+ of measures

finite and positive, one has that

{xA = xB} ⊃ {tA = tB} almost surely

and

P[tA = tB] =
µ(A ∩ B)

µ(A ∪ B)
.

Proof Since the third components of the elements of U are almost surely all
distinct, one has

tA = tB ⇒ xA = xB almost surely.

By lemma 2.1, and the equality tA∪B = min{tA∩B, tA△B},

tA = tB ⇐⇒ tA∩B = tA∪B

⇐⇒ tA∩B 6 tA△B.
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Since tA∩B and tA△B are independent exponential random variables with param-
eters µ(A ∩ B) and µ(A△B), one gets

P[tA = tB] = µ(A ∩ B)/µ(A ∪B),

which completes the proof. �

Remark 1 Note that if π is diffuse, then {xA = xB} = {tA = tB} almost surely,
thus P[xA = xB] = µ(A ∩ B)/µ(A ∪ B).

Let us introduce some subsets to which we will apply proposition 2.2.

Notation 3 For any measurable map f : E → R
+, denote by Df the part of

E × R
+ located below the graph of f :

Df = {(x, y) ∈ E × R
+ : y 6 f(x)}.

Then,

µ(Df) =

∫

E

f(x) dπ(x).

If this measure is positive and finite, then we denote in abbreviated form :

(xf , yf , tf) = (xDf
, yDf

, tDf
).

Proposition 1.3 is a direct consequence of the next lemma.

Lemma 2.3 Let α > 0 and f be a probability density function on (E, π). Then

• the random variable xαf has density f with respect to π. Thus (U, x) is a
global coupling for the set of all laws on E with a density with respect to π

• for all probabilities f and g on E,

P[xf = xg] > P[tf = tg] =
1− ‖f − g‖

1 + ‖f − g‖
.

Proof The first result follows from the fact that the law of (xαf , yαf) is µ(·|Df).
The second result follows from proposition 2.2. �
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2.2 Parametrizing one random variable

Let X be a random variable with values in E with a density f with respect to π.
Let W be a Poisson point process on E ×R

+ ×R
+ of intensity π⊗ λ⊗ λ, and V

be a random variable uniform on [0, 1], such that X, V,W are independent. Let
us modify W in such a way that the first two components of the first point which
appears in Df are (X, V f(X)). We set

U =
[

W \
{(

xf(W ), yf(W ), tf(W )
)}

]

∪
{(

X, V f(X), tf(W )
)}

.

Proposition 2.4 The process U thus defined is a Poisson point process on E ×
R

+ × R
+ of intensity π ⊗ λ⊗ λ, such that xf (U) = X.

Proof One has directly xf (U) = X . Let us show that U is a Poisson point process.

Denote by Df the complementary of Df in E × R
+. Let us split W into two

independent Poisson point processes W1 and W2 by setting :

W1 = W ∩ (Df × R
+) and W2 = W ∩ (Df × R

+).

In a similar way, set

U1 = U ∩ (Df × R
+) and U2 = U ∩ (Df × R

+).

It suffices to show that L(U1, U2) = L(W1,W2). Note that U2 = W2 and U1 is a
function of X, V,W1, therefore U1 is independent from U2 and L(U2) = L(W2).
Thus what remains to be proved is that L(U1) = L(W1).

Let (wk, tk)k>1 be the sequence of the points of W1 in Df × R
+ ordered in such

a way that (tk)k>1 is an increasing sequence. Then

U1 =
⋃

k>1

{(uk, tk)}

with u1 = (X, V f(X)) and uk = wk for k > 2. The random variables (wk)k>1

form an i.i.d. sequence of law µ(·|Df), independent of ((tk)k>1, X, V ).

A direct computation shows that the random variable u1 = (X, V f(X)) has law
µ(·|Df). Moreover, u1 is independent of ((wk)k>2, (tk)k>1) by independence of
X, V and W . Therefore L(U1) = L(W1), which completes the proof. �

2.3 Construction of a parametrization

Assume that (Xn)n∈Z is a stationary process with values in E such that given
X⊳

−1, X0 admits conditional densities (f(·|x))x∈E⊳ with respect to π. One wants
to apply the previous construction at each time n ∈ Z.
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Recall that for every n ∈ Z
+ and x ∈ EZ

−

∗ the function f(·|x) is the density of
the law L(X0|X

⊳ = x) with respect to π.

Let (Wn)n∈Z be a sequence of independent Poisson point processes on E×R
+×R

+

of intensity π⊗ λ⊗ λ, and let (Vn)n∈Z be a sequence of independent and uniform
random variables on [0, 1], such that the sequences (Xn)n∈Z, (Vn)n∈Z, (Wn)n∈Z are
independent. Set

Un = Wn ∪ {(Xn, Vnfn−1(Xn), tfn−1(Wn))} \ {(xfn−1(Wn), yfn−1(Wn), tfn−1(Wn))},

where fn−1 = f(·|X⊳
n−1). Since X is stationary, fn−1 is the law of Xn given

the past X⊳
n−1. Proposition 2.4 implies that for every n ∈ Z, Un is a Poisson

point process independent from FX,V,W
n−1 . Moreover, Xn = xfn−1(Un) and Un is a

function of Wn, Vn and X⊳
n . Therefore we have the following result.

Proposition 2.5 The process (Un)n∈Z thus defined is an i.i.d. sequence of Pois-
son point processes on E×R

+×R
+ of intensity π⊗λ⊗λ, which is a parametriza-

tion of FX with the recursion formula Xn = xfn−1(Un).

3 Priming lemma

Fix an integer ℓ > 0. The following lemma provides a random variable Z1:ℓ and
an event Hℓ which both depend only on U1:ℓ = (U1, ..., Uℓ) such that when Hℓ

occurs, X1:ℓ = Z1:ℓ with probability close to 1.

Lemma 3.1 (Priming lemma) Assume that for π-almost every a in E, we
have f(a|X⊳

−1) > 0 almost surely. For every ε > 0 and ℓ > 0, there exists a
random variable Z1:ℓ = (Z1, ..., Zℓ) with values in Eℓ and an event Hℓ, which are
both functions of U1:ℓ = (U1, ..., Uℓ) only, such that

• P[Hℓ] > 0,

• L(Z1:ℓ) = L(X1:ℓ),

• Hℓ is independent of Z1:ℓ,

• P[X1:ℓ 6= Z1:ℓ | Hℓ] 6 ε.

Note that the hypothesis and the conclusions of lemma 3.1 are not modified if one
replace π by an equivalent measure. Thus in the proof, one may assume without
loss of generality that π is a probability measure.

The proof proceeds by induction. For ℓ = 0 the result is trivial with H0 = Ω and
Z0 equal to the empty word. The inductive step from ℓ to ℓ + 1 uses the next
two lemmas. These lemmas show that with a probability close to 1, most of the
graph of f(·|X⊳

ℓ ) is between m−1f(·|Z1:ℓ) and n for suitable constants m and n.
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Lemma 3.2 Let ℓ > 0 be an integer, H an event of positive probability, and Z be
a random variable with values in Eℓ. For every ε > 0, there exists a real number
m > 1 such that

E

[

∫

E

[

f(a|Z)−mf(a|X⊳
ℓ )

]

+
dπ(a)

∣

∣

∣
H
]

6 ε.

Proof. The priming condition and the stationarity of X ensure that, for π-almost
every a ∈ E, f(a|X⊳

ℓ ) > 0 almost surely, so

[

f(a|Z)−mf(a|X⊳
ℓ )

]

+
→ 0 a.s. as m → +∞.

Hence, by dominated convergence

E

[

∫

E

[

f(a|Z)−m f(a|X⊳
ℓ )

]

+
dπ(a)

]

→ 0 as m → +∞.

The same result holds with E[·|H ] instead of E since P[·|H ] 6 P[H ]−1
P[·], which

concludes the proof. �

Lemma 3.3 Let ℓ > 0 be an integer, m > 1 a real number, H an event of positive
probability and Z be a random variable with values in Eℓ. For every ε > 0, there
exists a real number n > 1 such that

E

[

∫

E

[

f(a|X⊳
ℓ )− n

]

+
dπ(a)

∣

∣

∣
H
]

6 ε.

For such a real number n, there exists a random variable M , with values in
[n, n+ 1], which is a function of Z only, such that

∫

E

sup(m−1f(x|Z),M) dπ(x) = n+ 1.

Since M > n, one has
[

f(a|X⊳
ℓ )−M

]

+
6

[

f(a|X⊳
ℓ )− n

]

+
, so

E

[

∫

E

[

f(a|X⊳
ℓ )−M

]

+
dπ(a)

∣

∣

∣
H
]

6 ε.

Proof. The same method as in the proof of lemma 3.2 provides a real number
n > 1 such that

E

[

∫

E

[

f(a|X⊳
ℓ )− n

]

+
dπ(a)

∣

∣

∣
H
]

6 ε.

Define a random application φ from R
+ to R

+ by

φ(s) =

∫

E

sup(m−1f(x|X⊳
ℓ ), s) dπ(x).

13



Since for every s ∈ R
+, s 6 sup(m−1f(x|X⊳

ℓ ), s) 6 m−1f(x|X⊳
ℓ ) + s, one has

s 6 φ(s) 6 m−1+ s 6 1+ s (recall that π is assumed to be a probability). Hence
φ(n) 6 n+ 1 6 φ(n+ 1). Then, since φ is continuous, the random variable

M = inf{s ∈ R
+ : φ(s) = n+ 1}

is well defined and satisfies the conclusion of the lemma. �

We can now prove the induction step of the proof of lemma 3.1.

Proof. Let ε > 0 and ℓ ∈ N. Assume that one has constructed Hℓ and Z1:ℓ, which
are both functions of U1:ℓ only, and such that

• P[Hℓ] > 0,

• L(Z1:ℓ) = L(X1:ℓ),

• Hℓ is independent of Z1:ℓ,

• P[Z1:ℓ 6= X1:ℓ | Hℓ] 6 ε/3.

Lemmas 3.2 and 3.3, applied to ℓ, H = Hℓ, Z = Z1:ℓ and ε/3 provide two real
numbers m > 1, n > 1 and a σ(Z1:ℓ)-measurable random variable M . Set

fℓ = f(·|X⊳
ℓ ), f ′

ℓ = f(·|Z1:ℓ), A = Dm−1f ′

ℓ
, B = DM , C = Dfℓ .

The random sets A and B are σ(Z1:ℓ)-measurable, therefore σ(U1:ℓ)-measurable,
whereas C is FX

ℓ -measurable. Moreover, by lemma 3.3,

µ(A ∪ B) =

∫

E

sup(m−1f(a|Z1:ℓ),M) dπ(a) = n+ 1,

whereas

µ(A) =

∫

E

m−1f(a|Z1:ℓ) dπ(a) = m−1.

Let
H ′ = {tA(Uℓ+1) 6 tB(Uℓ+1)} = {tA(Uℓ+1) 6 tB\A(Uℓ+1)},

Hℓ+1 = Hℓ ∩H ′, Zℓ+1 = xA(Uℓ+1),

and recall that Xℓ+1 = xfℓ(Uℓ+1) = xC(Uℓ+1) by proposition 2.5.

For every F ∈ E⊗ℓ and G ∈ E ,

P[Z1:ℓ+1 ∈ F ×G ; Hℓ+1 | FX,U
ℓ ] = 1F (Z1:ℓ) 1Hℓ

P[Zℓ+1 ∈ G ; H ′ | FX,U
ℓ ]. (1)

14



Conditionally on FX,U
ℓ , the random variables xA(Uℓ+1), tA(Uℓ+1) and tB\A(Uℓ+1)

are independent, with respective laws f ′
ℓ · π, exponential with parameter µ(A),

exponential with parameter µ(B \ A). Therefore,

P[Zℓ+1 ∈ G ; H ′ | FX,U
ℓ ] =

µ(A)

µ(A ∪ B)

∫

G

f ′
ℓ dπ =

1

m(n + 1)

∫

G

f ′
ℓ dπ. (2)

In particular, P[H ′|FX,U
ℓ ] = 1

m(n+1)
, so H ′ is independent of FX,U

ℓ ; this fact will
be used at the end of the proof.

Combining equalities 1 and 2, taking expectations and using the induction hy-
pothesis yield

P[Z1:ℓ+1 ∈ F ×G ; Hℓ+1] =
1

m(n + 1)
E

[

1F (Z1:ℓ) 1Hℓ

∫

G

f(·|Z1:ℓ) dπ
]

=
P(Hℓ)

m(n + 1)
E

[

1F (X1:ℓ)

∫

G

f(·|X1:ℓ) dπ
]

=
P(Hℓ)

m(n + 1)
P[X1:ℓ+1 ∈ F ×G].

This shows that Z1:ℓ+1 and Hℓ+1 are independent, that L(Z1:ℓ+1) = L(X1:ℓ+1)
and that P(Hℓ+1) = P(Hℓ)/(m(n+ 1)) > 0.

What remains to be proved is the upper bound of P[Zℓ+1 6= Xℓ+1 | Hℓ+1]. By
proposition 2.2 and lemma 2.1,

{

Xℓ+1 = Zℓ+1

}

∩H ′ ⊃
{

tC(Uℓ+1) = tA(Uℓ+1) = tA∪B(Uℓ+1)
}

=
{

tA∩C∩(A∪B)(Uℓ+1) = tA∪C∪(A∪B)(Uℓ+1)
}

=
{

tA∩C(Uℓ+1) = tA∪C∪B(Uℓ+1)
}

.

Since A, B and C are measurable for FX,U
ℓ and Uℓ+1 is independent from FX,U

ℓ ,
one has

P

[

Xℓ+1 = Zℓ+1;H
′
∣

∣

∣
FX,U

ℓ

]

>
µ(A ∩ C)

µ(A ∪ C ∪ B)
.

Moreover

µ(A ∩ C) =
1

m

∫

E

min
(

f(a|Z1:ℓ), mf(a|X⊳
ℓ )

)

dπ(a)

=
1

m

(

∫

E

f(a|Z1:ℓ)dπ(a)−

∫

E

[

f(a|Z1:ℓ)−mf(a|X⊳
ℓ )

]

+
dπ(a)

)

=
1

m

(

1−

∫

E

[

f(a|Z1:ℓ)−mf(a|X⊳
ℓ )

]

+
dπ(a)

)
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and

µ(A ∪ C ∪ B) =

∫

E

sup
(

m−1f(a|Z1:ℓ), f(a|X
⊳
ℓ ),M

)

dπ(a)

=

∫

E

sup(m−1f(a|Z1:ℓ),M)dπ(a)

+

∫

E

[

f(a|X⊳
ℓ )− sup(m−1f(a|Z1:ℓ),M)

]

+
dπ(a)

6 n + 1 +

∫

E

[

f(a|X⊳
ℓ )−M

]

+
dπ(a)

6 (n+ 1)
(

1 +

∫

E

[

f(a|X⊳
ℓ )−M

]

+
dπ(a)

)

,

so

µ(A ∪ C ∪B)−1 >
1

n+ 1

(

1−

∫

E

[

f(a|X⊳
ℓ )−M

]

+
dπ(a)

)

.

Thus

m(n + 1)P
[

Xℓ+1 = Zℓ+1;H
′
∣

∣ FX,U
ℓ

]

> m(n+ 1)
µ(A ∩ C)

µ(A ∪ C ∪B)

> 1−

∫

E

[

f(a|X⊳
ℓ )−M

]

+
dπ(a)

−

∫

E

[

f(a|Z1:ℓ)−mf(a|X⊳
ℓ )

]

+
dπ(a).

Since Hℓ ∈ FX,U
ℓ , one has

m(n + 1)P[Xℓ+1 = Zℓ+1 ; H
′|Hℓ] > 1− E

[

∫

E

[

f(a|X⊳
ℓ )−M

]

+
dπ(a)

∣

∣

∣
Hℓ

]

− E

[

∫

E

[

f(a|Z1:ℓ)−mf(a|X⊳
ℓ )

]

+
dπ(a)

∣

∣

∣
Hℓ

]

> 1− 2ε/3,

where the last inequality stands from lemmas 3.2 and 3.3. But

P[Xℓ+1 = Zℓ+1, H
′|Hℓ] = P[H ′|Hℓ]P[Xℓ+1 = Zℓ+1|H

′ ∩Hℓ]

=
1

m(n + 1)
P[Xℓ+1 = Zℓ+1|Hℓ+1].

Hence,
P[Zℓ+1 = Xℓ+1|Hℓ+1] > 1− 2ε/3.

But, since Hℓ+1 = Hℓ ∩ H ′ and since H ′ is independent of FX,U
ℓ , the induction

hypothesis yields

P[Zℓ 6= X1:ℓ|Hℓ+1] = P[Zℓ 6= X1:ℓ|Hℓ] 6 ε/3,
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so

P[Z1:ℓ+1 6= X1:ℓ+1|Hℓ+1] 6 P[Zℓ 6= X1:ℓ|Hℓ+1] + P[Zℓ+1 6= Xℓ+1|Hℓ+1] 6 ε,

which ends the proof. �

4 End of the proof of theorem 3

In this section, we assume that the priming condition and condition H′(η) hold.
We show that the parametrization (Un)n∈Z given by proposition 2.5 is generating.
By stationarity, it suffices to show that X0 is a function of (Un)n∈Z only. We
proceed by successive approximations.

4.1 Approximation until a given time

Choose ε > 0 and ℓ > 1 such that
∑

n>ℓ ηn 6 ε, let J = [s, t] be an interval of
integers such that t− s+ 1 = ℓ. Note XJ = Xs:t.

By stationarity of X , lemma 3.1 provides an event HJ and a random variable ZJ ,
functions of UJ only, such that

• P
[

HJ ] > 0,

• L(ZJ) = L(XJ) = L(X1:ℓ),

• HJ is independent of ZJ ,

• P
[

XJ 6= ZJ

∣

∣ HJ

]

6 ε.

Using ZJ and the parametrization (Un)n>t+1, we consider the random variables
(X ′

n)n>s defined by X ′
J = ZJ and for every n > t+ 1,

X ′
n = xf ′

n−1
(Un) where f ′

n−1 = f(·|X ′
s:n−1).

Let us establish some properties of the process X ′ thus defined.

Lemma 4.1 For every n > s, the law of X ′
s:n is the law of Xs:n.

Proof. Choose n > t + 1, z ∈ En−s and B ∈ E . By lemma 2.3 and by
independence of Un and f ′

n−1, the random variable X ′
n admits the density f ′

n−1 =
f(·|X ′

s:n−1) conditionally on X ′
s:n−1. Hence

P
[

X ′
n ∈ B

∣

∣ X ′
s:n−1 = z

]

=

∫

B

f(x|z) dπ(x) = P
[

Xn ∈ B
∣

∣ Xs:n−1 = z
]

.

Since X ′
J = ZJ has the same law as XJ , the result follows by induction. �
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Lemma 4.2 One has P
[

X ′ 6= X on [s,+∞[
∣

∣ HJ

]

6 3ε.

Proof. Let n > t+1. Since Xn = xfn−1(Un) and X ′
n = xf ′

n−1
(Un), proposition 2.3

and the independence of Un and FX,U
n−1 yield,

P
[

X ′
n 6= Xn

∣

∣ FX,U
n−1

]

6 2‖f ′
n−1 − fn−1‖.

Let
pn = P

[

X ′
n 6= Xn ; X ′

s:n−1 = Xs:n−1 ; HJ

]

.

Since
{

X ′
s:n−1 = Xs:n−1 ; HJ

}

∈ FX,U
n−1 , one gets

pn 6 E

[

2‖fn−1 − f ′
n−1‖ 1{X′

s:n−1=Xs:n−1} 1HJ

]

= 2 E

[

‖f(·|X⊳
s−1X

′
s:n−1)− f(·|X ′

s:n−1)‖ 1{X′

s:n−1=Xs:n−1} 1HJ

]

6 2 E

[

‖f(·|X⊳
s−1X

′
s:n−1)− f(·|X ′

s:n−1)‖ 1HJ

]

.

But X⊳
s−1, ZJ , HJ and Ut+1:n−1 are independent hence X⊳

s−1, X
′
s:n−1 and HJ are

independent since X ′
s:n−1 is a function of ZJ and Ut+1:n−1 only. Thus,

pn 6 2 E

[

‖f(·|X⊳
s−1X

′
s:n−1)− f(·|X ′

s:n−1)‖
]

P[HJ ] = 2ηn−sP[HJ ].

Hence,
P
[

X ′
n 6= Xn ; X ′

s:n−1 = Xs:n−1

∣

∣ HJ

]

6 2ηn−s,

therefore,

P
[

X ′
s:n 6= Xs:n | HJ

]

6 P
[

X ′
s:n−1 6= Xs:n−1 | HJ

]

+ 2ηn−s.

By induction, one gets for all n > t + 1

P
[

X ′
s:n 6= Xs:n

∣

∣ HJ

]

6 P
[

X ′
J 6= XJ

∣

∣ HJ

]

+ 2
n−s
∑

m=ℓ

ηm.

Since X ′
J = ZJ and P[XJ 6= ZJ | HJ ] 6 ε, this yields

P
[

X ′ 6= X on [s,+∞[
∣

∣ HJ

]

6 ε+ 2

∞
∑

m=ℓ

ηm 6 3ε,

which ends the proof. �
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4.2 Successive approximations

Our next step in the proof of theorem 3 is to approach the random variable X0

by measurable functions of the parametrization (Un)n∈Z of proposition 2.5. To
this aim, we group the innovations by intervals of times. For every m > 1 one
chooses an integer Lm such that

∑

n>Lm

ηn 6 1/m.

Lemma 3.1 (the priming lemma) applied to ℓ = Lm and ε = 1/m provides an
event HLm

of positive probability αm and a random variable ZLm
such that

P
[

X1:Lm
= ZLm

| HLm

]

> 1− 1/m.

Choose an integer Mm > 1/αm. Split Z
∗
− into M1 intervals of length L1, M2

intervals of length L2, and so on. More precisely set, for every n > 1, ℓn = Lm(n),
εn = 1/m(n) and αn = αm(n) where m(n) is the only integer such that

M1 + · · ·+Mm(n)−1 < n 6 M1 + · · ·+Mm(n).

Therefore, for every k > 0,
∑

n>ℓk

ηn 6 εk.

For every k > 0, set

tk = −
∑

16n6k

ℓn, Jk = [tk, tk + ℓk − 1] = [tk, tk−1 − 1] and XJk = Xtk :tk−1−1.

Figure 1: Splitting Z
∗
− into intervals of times.

Lemma 3.1 applied to (εk)k>1 and (UJk)k>1 provides events (HJk)k>1 and random
variables (ZJk)k>1. For every k > 0, let us use the construction of section 4.1: set
Xk

Jk
= ZJk , then for every n > tk + ℓk = tk−1

Xk
n = xfk

n−1
(Un) where fk

n−1 = f(·|Xk
tk:n−1).
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Therefore, lemma 4.2 yields the inequality

P[X0 6= Xk
0 | HJk ] 6 P

[

Xtk :0 6= Xk
tk :0

∣

∣ HJk

]

6 3εk,

which shows that

P
[

Xk
0 6= X0

∣

∣ HJk

]

→ 0 when k → +∞.

Moreover, the events HJk are independent as functions of random variables Uj

for disjoint sets of indices j and

∑

k>1

P
[

HJk

]

=
∑

n>1

αℓm(n)
=

+∞
∑

m=1

Mmαm = +∞

since Mmαm > 1 by choice of Mm.

Lemma 4.3, stated below, provides a deterministic increasing function θ such that

∑

k>1

P
[

X
θ(k)
0 6= X0 ; HJθ(k)

]

< +∞

and
∑

k>1

P
[

HJθ(k)

]

= +∞.

Using Borel-Cantelli’s lemma, one deduces that

•
{

X
θ(k)
0 6= X0

}

∩HJθ(k) occurs only for finitely many k only, a.s.

• HJθ(k) occurs for infinitely many k a.s.

Thus, for every B ∈ E ,

{X0 ∈ B} = lim sup
k→∞

HJθ(k) ∩
{

X
θ(k)
0 ∈ B

}

,

hence
{

x0 ∈ B
}

∈ FU
0 . By stationarity of the process (X,U), one gets the

inclusion of the filtration FX into the filtration FU , which ends the proof. �

Lemma 4.3 Let (an)n>0 and (bn)n>0 denote two bounded sequences of nonneg-
ative real numbers such that the series

∑

n bn diverges and such that an ≪ bn.
Then there exists an increasing function θ : N → N such that the series

∑

n aθ(n)
converges and the series

∑

n bθ(n) diverges.

A proof of this lemma can be found in [4].
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5 proof of proposition 1.2

Assume that E is countable. Let ε = (εa)a∈E be an i.i.d. family of exponential
random variables with parameter 1.

Let us show that, for any probability p on E, there exists almost surely one and
only one a ∈ E such that

εa
p(a)

= inf
b∈E

εb
p(b)

(⋆),

with the convention that εb/p(b) = +∞ if p(b) = 0. For every positive real
number r,

∑

b∈E

P[εb/p(b) 6 r] =
∑

b∈E

(

1− e−p(b)r
)

6
∑

b∈E

p(b)r = r < +∞,

hence Borel-Cantelli’s lemma ensures that the event {εb/p(b) 6 r} occurs only
for finitely many b ∈ E. Thus the infimum in (⋆) is achieved at some a ∈ E. The
uniqueness follows from the equalities P[εa/p(a) = εb/p(b) < +∞] = 0 for every
a 6= b, since εa and εb are independent random variables with diffuse laws.

Define g(ε, p) (almost surely) as the only index a such (⋆) holds. Let us show
that, for every p, q ∈ P(E),

P[g(ε, p) 6= g(ε, q)] 6 2
‖p− q‖

1 + ‖p− q‖
.

For every a, b ∈ E, set Ca = {g(ε, p) = g(ε, q) = a} and

λb/a = max
(p(b)

p(a)
,
q(b)

q(a)

)

.

Fix a ∈ E. Then up to negligible events,

{g(ε, p) = a} =
⋂

b6=a

{ εa
p(a)

6
εb
p(b)

}

=
⋂

b6=a

{

εb >
p(b)

p(a)
εa

}

,

and the same holds for q. Thus,

Ca =
⋂

b6=a

{

εb > λb/aεa
}

,

Conditioning on εa and using the fact that the random variables (εb) are i.i.d.
and exponentially distributed, one gets

P
[

Ca

∣

∣ εa
]

=
∏

b6=a

exp
(

−λb/aεa
)

,
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hence

P(Ca) = E

[

exp
(

−
∑

b6=a

λb/aεa

)]

=
(

1 +
∑

b6=a

λb/a

)−1

=
(

∑

b

λb/a

)−1

. (3)

But λb/a 6 max(p(b), q(b))/min(p(a), q(a)), hence

P(Ca) >
min(p(a), q(a))

∑

b max(p(b), q(b))
=

min(p(a), q(a))

1 + ‖p− q‖
.

Therefore

P[g(ε, p) = g(ε, q)] =
∑

a∈E

P(Ca) =
1− ‖p− q‖

1 + ‖p− q‖
.

Last, note that if p = q, then for each a ∈ E, equation (3) becomes

P[g(ε, p) = a] = P(Ca) =
(

∑

b

p(b)

p(a)

)−1

= p(a),

which shows that the law of g(ε, p) is p. The proof is complete. �
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Séminaire de Probabilités, XXXVI, LNM 1801, 493–497 (2002).

[10] M. Smorodinsky, Processes with no standard extension. Israel Journal of
Mathematics, 107, 327–331 (1998).

[11] A. Vershik, Theory of decreasing sequences of measurable partitions. Algebra
i Analiz, 6, no 4, 1–68 (1994). English Translation: St. Petersburg Mathe-
matical Journal, 6, no 4, 705–761 (1995).

23


