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Abstract

A family of fourth order locally implicit schemes
is presented as a special case of fourth order cou-
pled implicit schemes for linear wave equations.
The domain of interest is decomposed into sev-
eral regions where different (explicit or implicit)
fourth order time discretization are used. The
coupling is based on a Lagrangian formulation
on the boundaries between the several non con-
forming meshes of the regions. Fourth order ac-
curacy follows from global energy identities. Nu-
merical results in 1d and 2d illustrate the good
behavior of the schemes and their potential for
the simulation of realistic highly heterogeneous
media or strongly refined geometries, for which
using everywhere an explicit scheme can be ex-
tremely penalizing. Fourth order accuracy re-
duces the numerical dispersion inherent to im-
plicit methods used with a large time step, and
makes this family of schemes attractive com-
pared to classical approaches.

Keywords: High-order numerical methods, Time
discretization, Locally implicit schemes.

1 Continuous system

We want to solve for time t > 0, the system
(closed with Neumann homogeneous boundary
conditions):

∂2
t u0 −∇ · c2(x)∇u0 = s0 in Ω0, (1a)

c2(x)∇u0 · n0 = λ on Γ, (1b)

∂2
t u1 −∇ · c2(x)∇u1 = s1 in Ω1, (1c)

c2(x)∇u1 · n1 = −λ on Γ, (1d)

u0 = u1 on Γ (1e)

in a domain Ω composed by disjoint sets Ω =
Ω0 ∪ Ω1 separated by Γ = Ω0 ∩ Ω1. s0 and s1

are given source terms, and c(x) > c0 > 0 is
the inhomogeneous velocity of the waves. Any
solution to (1) satisfies the energy identity:

dE01

dt
=

∫
Ω0

s0 ∂tu0 +

∫
Ω1

s1 ∂tu1, where

E01 =
1

2
‖∂tu0‖2L2(Ω0) +

1

2
‖∂tu1‖2L2(Ω1)

+
1

2
‖c∇u0‖2L2(Ω0) +

1

2
‖c∇u1‖2L2(Ω1) (2)

2 Semi discrete system

We consider spatial meshes of Ω0 and Ω1 upon
which are based finite dimensional finite element
spaces: Vh,0 ⊂ H1(Ω0), Vh,1 ⊂ H1(Ω1) and
Γh ⊂ H−1/2(Γ). One have leeway in the choice
of (Vh,0,Vh,1) after which Γh must be chosen
so that an inf-sup type condition is satisfied,
see [1, 3, 4]. (Ũh,0, Ũh,1, Λ̃h) is the solution of:
d2
tMh,0Ũh,0 +Kh,0Ũh,0 −tCh,0Λ̃h = Mh,0S̃h,0(3a)

d2
tMh,1Ũh,1 +Kh,1Ũh,1 +tCh,1Λ̃h = Mh,1S̃h,1(3b)

Ch,0 Ũh,0 = Ch,1 Ũh,1 (3c)

A semi discrete energy identity can be obtained.

dE01,h

dt
= Mh,0S̃h,0·dtŨh,0+Mh,1S̃h,1·dtŨh,1, where

E01,h =
1

2
‖dtŨh,0‖2Mh,0

+
1

2
‖dtŨh,1‖2Mh,1

+
1

2
‖Ũh,0‖2Kh,0

+
1

2
‖Ũh,1‖2Kh,1

(4)

where ‖X‖2M = MX · X for any nonnegative
matrix M .

3 Discrete system

The proposed numerical discretization is based
on the following definitions:

D2
∆tU

n
h :=

(
Un+1
h − 2Unh + Un−1

h

)
/∆t2

{Uh}nθ := θ Un+1
h + (1− 2θ)Unh + θ Un−1

h

1



The consistency analysis of the fourth order fam-
ily of schemes [2] applied to each equation of
system (3) instigates the following scheme:

Mh,0D
2
∆tU

n
h,0 +Kh,0{Uh,0}nθ0 −

tCh,0Πn
h = Mh,0 S

n
h,0

+∆t2α0Kh,0M
−1
h,0

[
−Kh,0{Uh,0}nϕ0

+ tCh,0Πn
h

]
(5a)

Mh,1D
2
∆tU

n
h,1 +Kh,1{Uh,1}nθ1 + tCh,1Πn

h = Mh,1 S
n
h,1

+∆t2α1Kh,1M
−1
h,1

[
−Kh,1{Uh,1}nϕ1

− tCh,1Πn
h

]
(5b)

Ch,0
Un+1
h,0 − U

n−1
h,0

2∆t
− Ch,1

Un+1
h,1 − U

n−1
h,1

2∆t
= 0 (5c)

where αi = θi − 1/12. Any solution to (5) satis-
fies the energy identity:

En+1/2
01,4,h − E

n+1/2
01,4,h

∆t
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h,0 Mh,0 S
n
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2∆t
,

where the discrete energy reads
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where the modified mass matrices M̂h,i are de-

fined by M̂h,i = Ĩ−1
h,i M̃h,i where

Ĩh,i = Ih,i + ∆t2
(
θi −

1

12

)
Kh,iM

−1
h,i

M̃h,i = Mh,i + ∆t2
(
θi −

1

4

)
Kh,i

+∆t4
(
θi −

1

12

)(
ϕi −

1

4

)
Kh,iM

−1
h,iKh,i

The positivity of the energy can be proven un-
der standard CFL condition that depend on the
parameters (θi, ϕi). Despite the non standard
form of this energy, stability in L2-norm can be
proved in the case θi ≥ 1/4 and ϕi ≥ 1/4. L2-
Stability in the other cases is not proven yet but
show good numerical behavior.
A 1d numerical experiment is performed where
the segment [0, 1] is cut in two intervals Ω0 =
[0, 0.5] and Ω1 = [0.5, 1]. Ω0 and Ω1 are respec-
tively divided into 7 and 13 elements. Sixth or-
der spectral elements are implemented. A fourth

order explicit scheme is used on Ω0 (θ0 = ϕ0 =
0) while an unconditionally stable implicit scheme
is used on Ω1 (θ1 = ϕ1 = 1/4). A gaussian
initial condition is set on the left interval and
crosses the middle point around time 0.3. Fig. 1
shows that the energy is preserved up to machine
precision. Fig. 2 shows that the coupling of sec-
ond order implicit and explicit schemes only pro-
vides second order accuracy (as expected), while
our scheme provides fourth order accuracy.

Figure 1: Relative energy deviation
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Figure 2: Convergence curve
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0 (Explicit) − 1/4 (Implicit)
(0−0) (Explicit) − (1/4,1/4) (Implicit)

Numerical illustrations in 2D as well as details
about stability and consistency of scheme (5)
will be presented at the oral session.
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