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We study the inverse problem of the simultaneous identification of two discontinuous diffusion coefficients for a one-dimensional coupled parabolic system with the observation of only one component. The stability result for the diffusion coefficients is obtained by a Carleman-type estimate. Results from numerical experiments in the one-dimensional case are reported, suggesting that the method makes possible to recover discontinuous diffusion coefficients.

Introduction.

Let Ω =]0, 1[, T > 0. We consider the following linear parabolic system:

       ∂ t u 1 -∂ x (c 1 ∂ x )u 1 = a 11 u 1 + a 12 u 2 in Q, ∂ t u 2 -∂ x (c 2 ∂ x )u 2 = a 21 u 1 + a 22 u 2 + h in Q, u j (t, x) = 0 on Σ, j = 1, 2, u j (0, x) = u 0,j (x) in Ω, j = 1, 2, (1) 
where we set Q = Ω × (0, T ), Σ = ∂Ω × (0, T ). For any

h ∈ L 2 (Q), a j,k (t, x) ∈ L ∞ (Q), 1 ≤ j, k ≤ 2, u 0,1 , u 0,2 ∈ L 2 (Ω), c 1 , c 2 ∈ L ∞ (Ω) such that c 1 , c 2 ≥ δ > 0,
there exists a unique solution in C 0 ([0, T ]; (H 1 0 (Ω) 2 )) to the linear system [START_REF] Alvarez | Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems[END_REF], (e.g., [START_REF] Ladyzenskaja | Linear and quasi-linear equations of parabolic type[END_REF]Chap. 7], [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]Chap. 3]). We denote it by U(u 0 , h; c) = (U 1 (u 0 , h; c), U 2 (u 0 , h; c)), with c = (c 1 , c 2 ), u 0 = (u 0,1 , u 0,2 ).

Let us introduce the following inverse problem. Let t 0 ∈ (0, T ), θ ∈ (t 0 , T ), and a non empty open interval ω ⊂⊂ Ω be arbitrarily fixed. We restrict the function h in [START_REF] Alvarez | Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems[END_REF] to have support in (t 0 , T ) × ω and the diffusion coefficients c j (•), j = 1, 2, to be time-independent and to belong to the set E of positive piecewise smooth functions in Ω. The problem is to determine the discontinuous diffusion coefficients c 1 , c 2 by observation data U 2 (u 0 , h; c)| (t0,T )×ω , U(u 0 , h; c)| t=θ . Then, from the knowledge of c, we obtain the finite set of singularities of c j : the interface S cj ⊂ Ω, j = 1, 2. Around known c = ( c 1 , c 2 ), we will determine c = (c 1 , c 2 ), which means that we can know the solution U(u 0 , h; c) and S c1 , S c2 , which are unknowns of the inverse problem. In the formulation of the inverse problem, the initial values are also unknown. In the numerical part, a primal-dual path following interior-point method is used to recover c. The method used in this work is similar as was used in [START_REF] Kolehmainen | Sparsity-promoting Bayesian inversion[END_REF]. For general references to interior-point methods see [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Wright | Primal-Dual Interior-Point Methods[END_REF][START_REF] Boyd | Convex Optimization[END_REF].

Throughout this paper we use the following notations: for s ∈ R, L 2 (H s ) = L 2 (0, T ; H s (Ω)), H 1 (H s ) = H 1 (0, T ; H s (Ω)). The formal heat operator associated with a conductivity ξ ∈ E is written L(ξ)q = ∂ t q + A(ξ)q, where A(ξ) = -∂ x (ξ∂ x •) is the formal spatial operator. We define a self adjoint operator on L 2 (Ω; dx) by A(ξ)p = A(ξ)p, with domain D(A(ξ)) = {p ∈ H 1 0 (Ω) , A(ξ)p ∈ L 2 (Ω)}. The solution U(u 0 , h; c) belongs to C 0 ([0, T ]; (L 2 (Ω)) 2 ) ∩ C 2 ((0, T ]; D(A(c 1 )) × D(A(c 2 ))) for sufficiently smooth h. We need to introduce, for a positive number R, the sets:

E(R) = {ξ ∈ E; ξ |Ω\S ξ W 1,∞ (Ω\S ξ ) ≤ R}, L 2 R = {f ∈ L 2 (Ω); f L 2 (Ω) ≤ R},
where we set E = {ξ : Ω → (0, +∞); ξ is piecewise smooth}.

Finally, we assume that the coefficients a 21 and a 12 check the condition: Let us present the main theoretical result of this paper.

Theorem 1.1. (Stability) -Let R > 0, c ∈ E 2 . Under (C-1) there exist C > 0, h ∈ C ∞ c ((t 0 , T ) × ω) such that, for all c ∈ E(R) 2 , u 0 , ũ0 ∈ (L 2 R ) 2 , we have

c -c L 2 (Ω) ≤ C k=1,2 ∂ k t (u 2 -u 2 ) L 2 ((t0,T )×ω) + ∂ t (u -u)| t=θ L 2 (ω) + (u -u)| t=θ H 2 (ω) + (u -u)| t=θ H 1 (Ω) . Corollary 1. (Local Uniqueness) -Let R > 0, c ∈ E 2 . Under (C-1) there exists h ∈ C ∞ c ((t 0 , T ) × ω) such that, for all c ∈ E(R) 2 , u 0 , ũ0 ∈ (L 2 R ) 2 , if u 2 = u 2 in Q and u(θ, •) = u(θ, •) in Ω, then c = c and u 0 = u 0 .
The domain of inverse problems and control problems for systems of coupled reaction-diffusion equations has recently been the subject of several papers (see e.g. [START_REF] Cristofol | Inverse problems for a two by two reaction-diffusion system using a carleman estimate with one observation[END_REF][START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF][START_REF] Benabdallah | A new Carleman inequality for parabolic systems with a single observation and applications[END_REF][START_REF] Cristofol | Identification of two coefficients with data of one component for a nonlinear parabolic system[END_REF][START_REF] Roques | The inverse problem of determining several coefficients in a non linear Lotka-Volterra system[END_REF][START_REF] Sakthivel | Erratum to: Stability of Diffusion Coefficients in an Inverse Problem for the Lotka-Volterra Competition System[END_REF]). In all these papers, the diffusion coefficients are assumed to be smooth enough. Few results concern discontinuous diffusion coefficients. For the scalar case, we can cite [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF][START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF] where the authors established the uniqueness and stability results for both the discontinuous diffusion coefficients and the initial condition, from the measurement of the solution on an arbitrary part of the boundary, and for some arbitrary non negative time θ on all the domain Ω. For coupled reaction-diffusion coefficients with discontinuous conductivities, at our knowledge, any result exists.

The first part of this work is devoted to the proof of Theorem 1.1. We follow the same steps than in [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF]: we show Carleman estimates for systems of heat equations (see Theorems 2.3, 2.4, Corollaries 3, 4) and for a stationary first-order equation [START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]. The difficulty that arises here for the case of a system is to deal with the same Carleman weight -the spatial function ϕ(x) -adequate for any parabolic equation of the system. Carleman weight functions for one heat equation in the one-dimensional space are built in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and a inverse problem[END_REF]. But we need two additional properties on ϕ when we deal with the first-order linear equation [START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] where ξ(x) is the unknown. Firstly, since ρ∂ x ϕ is sufficiently smooth for some positive function ρ, we are able to prove a stability result for ( 13) by using only one measurement. Secondly, the explicit form of ϕ in ω allows us to prove this stability result without the knowledge of c 1 and c 2 in ω. Hence the formulation of Theorem 1.1 only involves one measurement at t = θ without the knowledge of c 1 , c 2 in ω.

In the numerical part of this work, we restore the discontinuous diffusion coefficients by solving an optimization problem with parabolic constraints. To this we apply a primal-dual path following interior-point method. Primal-dual interior-point methods have been used to solve optimal control problems with PDE constraints in [START_REF] Alvarez | Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems[END_REF][START_REF] Hinze | Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment[END_REF][START_REF] Schiela | Barrier methods for optimal control problems with state constraints[END_REF][START_REF] Schiela | Superlinear convergence of the control reduced interior point method for PDE constrained optimization[END_REF][START_REF] Schiela | An interior point algorithm with inexact step computation in function space for state constrained optimal control[END_REF][START_REF] Ulbrich | Primal-dual interior point methods for PDE-constrained optimization[END_REF][START_REF] Weiser | A control reduced primal interior point method for PDE constrained optimization[END_REF][START_REF] Wollner | A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints[END_REF]. In particular, in [START_REF] Neitzel | Strategies for time-dependent PDE control using an integrated modeling and simulation environment. Part one: problems without inequality constraints[END_REF][START_REF] Neitzel | Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment[END_REF][START_REF] Prüfert | An interior point method for a parabolic optimal control problem with regularized pointwise state constraints[END_REF], primal-dual interior-point methods were applied to optimal control problems with parabolic constraints. Up to our knowledge, besides the optimal control problems stated above, the similar studies of recovering the diffusion coefficients by applying primal-dual interior-point methods have not been proposed in the literature before.

The outline of the paper is as follows. In Section 2 we prove a Carleman estimate for the system with the observation of only one component, and a Carleman estimate for a stationary first order equation. We use these estimates to prove our main stability result for the diffusion coefficients c 1 (x) and c 2 (x). In Section 3 the primal-dual path following interior-point method is presented. Section 4 presents and discusses the results of the numerical experiments and Appendix contains the remaining proofs.

2. Stability results. We introduce some notations. For ξ ∈ E let

D(L(ξ)) = {q : q ∈ L 2 (0, T ; H 1 0 (Ω)), L(ξ)q ∈ L 2 (Q)}, D(L * (ξ)) = {q : q ∈ L 2 (0, T ; H 1 0 (Ω)), L * (ξ)q ∈ L 2 (Q)} .
The differential operators L(ξ), L * (ξ) with respective domain D(L(ξ)), D(L * (ξ)) are denoted by L(ξ), L * (ξ). For any r > 0, the domain of the non-bounded self-

adjoint operator A r (c) = (A r (c 1 ), A r (c 2 )) on (L 2 (Ω)) 2 is D(A r (c)) = D(A r (c 1 )) × D(A r (c 2 )).
We denote by S ξ the total interface associated with ξ ∈ E, that is,

S ξ := {x ∈ Ω; ξ or ∂ x ξ is discontinuous at x}.
Notice that S ξ is a finite set. We write

S cj = S j , ∪ 2 j=1 S j = S c , S cj = Sj , S c = ∪ 2
j=1 Sj = S. For a piecewise smooth function q, we define q ± (x) = lim ε 0 q(x ± ε),

[q] x = q + (x) -q -(x). If V is an open interval of R and f a function defined in V ⊃ V , we write f | V ∈ C k (R), k ∈ [0, ∞], if f | V can be extended as a C k function in R.
Let us recall some tools used in [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and a inverse problem[END_REF] that provide a global Carleman estimate for one heat equation of the form    ∂ t q -∂ x (ξ∂ x q) + b∂ x q + aq = f in (0, T ) × Ω q(t, •) = 0 on (0, T ) × ∂Ω, q(0, •) ∈ L 2 (Ω).

(
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We also consider the adjoint equation to (2):

   -∂ t q -∂ x (ξ∂ x q) -∂ x (bq) + aq = f in (0, T ) × Ω q(t, •) = 0 on (0, T ) × ∂Ω, q(T, •) ∈ L 2 (Ω). (3) 
The Proposition 1. There exist a negative Lipschitzian function ϕ in Ω, and C > 0, s 0 > 0, such that, for all s > s 0 and for all q satisfying (2) or (3

) with f ∈ L 2 (Q), we have Q Π -1 |∂ t q| 2 + Π -1 |A(ξ)q| 2 + Π 1 |∂ x q| 2 + Π 3 |q| 2 dx dt (4) 
≤ C

(0,T )×ω

Π 3 |q| 2 dx dt + Q Π 0 |f | 2 dx dt ,
where we set

η(t) = T 2 t(T -t) , (5) 
Π r (t, x; s) = s r η r (t)e 2sη(t)ϕ(x) , s ∈ R + , r ∈ R, (t, x) ∈ Q.

The "weight" function ϕ is not uniquely defined but satisfies the following properties.

1. ϕ is continuous and piecewise smooth. The set S ϕ of discontinuities of ∂ x ϕ is finite (this point is not crucial) and contains S ξ , 2. -C 2 ≤ ϕ ≤ -C 1 < 0 in Ω = (0, 1), 3. ∂ x ϕ(x) ≥ δ > 0 for x ≤ inf ω, x ∈ S ϕ and ∂ x ϕ(x) ≤ -δ for x ≥ sup ω, x ∈ S ϕ , 4. There exists a sufficiently large K > 0 such that [∂ x ϕ] x ≥ K at each x ∈ S ϕ . Remark 1. We assume that ω ∩ S cj = ∅, j = 1, 2, since we always can reduce ω.

Remark 2. Let S be any finite subset of Ω \ ω that contains S ξ . Then one can choose ϕ such that S ϕ = S .

We call such functions ϕ, that satisfy the above conditions, "Carleman weight functions". It has to be notice that ϕ depends on the conductivity ξ.

With the same notations we obtain the following result.

Corollary 2. Assume that in (2) (respectively, in (3)) the function f does not belong to L 2 (Q) but can be written

f = f 0 + ∂ x f 1 , with (f 0 , f 1 ) ∈ (L 2 (Q)) 2 .
Then there exist C > 0, s 0 > 0, such that for all s > s 0 and for all q satisfying (2) or (3) we have

Q Π 3 |q| 2 dx dt ≤ C (0,T )×ω Π 3 |q| 2 dx dt + Q (Π 0 |f 0 | 2 + Π 2 |f 1 | 2 ) dx dt .
The proof is given in Appendix A.2 We will need the following obvious but important lemma:

Lemma 2.1. There exists ρ ∈ E such that

ρ∂ x ϕ ∈ W 1,∞ (Ω).
Proof. We can choose ρ such that:

ρ = 1 |∂ x ϕ| in Ω \ (S ϕ ∪ ω ),
where ω is a open interval such that ω 0 ⊂⊂ ω ⊂⊂ ω. Then we extend smoothly ρ inside ω so that ρ ≥ δ > 0.

For the sake of clarity we give a complete construction of ϕ in Ω. We assume that ω = (α 1 , α 2 ) with 0 < α 1 < α 2 < 1. Let S be an arbitrary finite set of Ω \ ω, that contains S ξ . Let ψ(x) be a Lipschitzian function in Ω satisfying the following conditions.

1.

ψ ∂ω = 0, ψ is negative in Ω \ ω, ψ is positive in ω. 2. ψ is increasing in [0, α 1 [, and decreasing in [α 2 , 1]. 3. [∂ x ψ] y > 0 at every point y ∈ S . 4. ψ| V ∈ C 2 (R)
, where V is any connected open subset of Ω \ S . 5. ψ ± (x) = 0 implies x ∈ ω 0 . Let K > max Ω ψ, λ > 0 and set ϕ = e λψ -e λK .

For any λ sufficiently large, ϕ is a Carleman weight function. See [START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] for example. Definition 2.2. We shall call such a function ϕ adequate for the equations ( 2) or (3).

We consider now a system of two heat equations

L(c j )q j = 2 k=1 (b jk ∂ x q k + a jk q k ) + f j , j = 1, 2, (7) 
or the adjoint system:

L * (c j )q j = 2 k=1 (-∂ x (q k b kj ) + a kj q k ) + f j , j = 1, 2, (8) 
We assume that c

= (c 1 , c 2 ) ∈ E 2 , a jk , b jk , ∂ x b jk ∈ L ∞ (Q), f j ∈ L 2 (Q). We denote S cj = S j , j ∈ [[1, 2]], S 1 ∪ S 2 = S c .
If a Carleman weight function is adequate for the two equations ( 7) or (8), we then call it a common weight function for the system [START_REF] Cristofol | Inverse problems for a two by two reaction-diffusion system using a carleman estimate with one observation[END_REF] or [START_REF] Cristofol | Identification of two coefficients with data of one component for a nonlinear parabolic system[END_REF]. Thanks to Remark 2, there exists a common weight function ϕ, since we can choose S = S c . The function ϕ is smooth in ω, and, thanks to Remark 3, we can assume that {x ∈ Ω;

∂ x ϕ ± (x) = 0} = {x ∈ ω; ∂ x ϕ(x) = 0} ⊂ ω 0 .
The main consequences lie in the following results.

Theorem 2.3.

There exist C = C(Q, ω, c, a, b) > 0, s 0 = s 0 (Q, ω, c, a, b) > 0,
such that for all s > s 0 and for all q = (q 1 , q 2 ) satisfying ( 7) or ( 8)

with f = (f 1 , f 2 ) ∈ (L 2 (Q)) 2 , we have Q Π -1 |∂ t q| 2 + Π -1 |A(c)q| 2 + Π 1 |∂ x q| 2 + Π 3 |q| 2 dx dt (9) 
≤ C

(0,T )×ω0

Π 3 |q| 2 dx dt + Q Π 0 |f | 2 dx dt ,
where we set a = (a jk ) jk , b = (b jk ) jk , and the weight functions Π r are defined by [START_REF] Boyd | Convex Optimization[END_REF].

Corollary 3. Assume that b 21 = 0, |a 21 | ≥ δ > 0 in ω for the system (7) (respectively, b 12 = 0, |a 12 | ≥ δ > 0 in ω for the system ( 8)). Then there exist positive constants C, s 0 depending on T, Ω, ω, c, a, b, δ, such that, for all s > s 0 , f ∈ (L 2 (Q)) 2 , q satisfying (7) (respectively, satisfying ( 8)), we have

Q Π -1 |∂ t q| 2 + Π -1 |A(c)q| 2 + Π 1 |∂ x q| 2 + Π 3 |q| 2 dx dt (10) ≤ C (0,T )×ω0 Π 7 |q k | 2 dx dt + Q Π 0 |f | 2 dx dt , with k = 2 if q satisfies (7) (respectively, with k = 1 if q satisfies (8)).
The complete proof is in Appendix A.1. Let us consider the systems ( 7) or ( 8) with

f j = f 0j + ∂ x f 1j , j ∈ [[1, 2]], where f 0j , f 1j ∈ L 2 (Q).
Theorem 2.4. There exist positive constants C, s 0 such that, for all s > s 0 , q j satisfying (7) (respectively, ( 8)), we have

Q Π 3 |q| 2 dx dt ≤ C Q (Π 2 |f 1 | 2 + Π 0 |f 0 | 2 ) dx dt + (0,T )×ω0 Π 3 |q| 2 dx dt , ( 11 
)
where we set q = (q 1 , q 2 ),

f 1 = (f 11 , f 12 ), f 0 = (f 01 , f 02 ).
Proof: see Appendix, A.3. It combines the corresponding proof in [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF] 8)). Then there exist positive constants C, s 0 depending on T, Ω, ω, c, a, b, δ, such that, for all s > s 0 , q satisfying (7) (respectively, ( 8)), we have

Q Π 3 |q| 2 dx dt ≤ C Q (Π 2 |f 1 | 2 + Π 0 |f 0 | 2 ) dx dt + (0,T )×ω0 Π 7 |q k | 2 dx dt , ( 12 
)
where we set k = 2 for (7) (respectively, k = 1 for (8)).

The proof is in Appendix A. [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and a inverse problem[END_REF] We consider now the following first-order partial differential equation with unknown function ξ ∈ E:

-∂ x (ξ∂ x w) = f in Ω, ( 13 
)
where w ∈ H 1 (Ω), f ∈ L 2 (Ω). Let ξ ∈ E be a known solution of ( 13) with (w, f ) replaced by ( w, f ) ∈ H 1 (Ω) × L 2 (Ω). In fact we consider that ξ = c1 or ξ = c2 , and, respectively, w(x) = ũ1 (θ, x) or w(x) = ũ2 (θ, x). We look for a L 2 (Ω)-estimate on γ := ξ -ξ, derived from a Carleman inequality. Let ϕ be a common weight function for the system (1), with c = (c 1 , c2 ) replacing c. We set S = S ξ , S := S ξ , π r (x; s) = Π r (θ, x; s), where s is a large parameter, and Π r is defined by [START_REF] Boyd | Convex Optimization[END_REF]. We recall that θ ∈ (0, T ).

Our result is based on the method developed in [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF]. We consider the following conditions on w:

(HS1): w ∈ W 1,∞ (Ω), (HS2): |∂ x w| ≥ δ > 0 a.e in Ω \ ω 0 .
The following lemma will be proved in Appendix A.5 Lemma 2.5. Let R > 0. Assume that ξ ∈ E(R), then, under (HS1) and (HS2),

there exist C 1 , s 0 > 0 such that, ∀s ≥ s 0 , ∃ C 2 (R; s) > 0 so that Ω\ω0 π 3 |γ| 2 dx ≤ C 1 Ω π 1 |f -f | 2 dx + ω0 π 2 |γ| 2 dx (14) +C 2 (R, s) w -w 2 H 1 (Ω) . Remark 4.
An assumption like w = 0 on Γ is superfluous. The constants C 1 , s 0 , C 2 depend on ξ, ϕ, but not on ξ. The constant C 1 does not depend on R, s.

The second following lemma completes Lemma 2.5 and gives a L 2 -estimate for γ in some neighbourhood of ω 0 . We consider the following third condition on w:

(HS3): There exists an open interval ω 1 such that 1.

ω 0 ⊂⊂ ω 1 ⊂⊂ ω, 2. w ∂ω1 is constant, 3. w ∈ C 2 (ω 1 ) and |∂ x w| 2 -( w -w ∂ω1 )∂ 2 x w ≥ δ > 0 in ω 1 . Lemma 2.6. Let R > 0, ξ ∈ C 1 (ω 2 ) with ξ W 1,∞ (ω1) ≤ R. Then, under (HS3), there exist C 3 , C 4 (R) > 0 such that ω1 |γ| 2 dx ≤ C 3 ω1 |f -f | 2 dx + C 4 (R) w -w 2 H 2 (ω1) .
The constants C 3 , C 4 do not depend on ξ.

Proof. Set v = w -w| ∂ω1 ∈ H 1 0 (ω 1 ). Then -∂ x ( ξ∂ x v) = f . Moreover v ∈ H 2 (ω) ⊂ L ∞ (ω). In ω 1 , we have -∂ x (γ∂ x v) = f -f + ∂ x (ξ∂ x (w -w)).
We multiply this equality by γv and we integrate by parts the first term in ω 1 . We then obtain

ω1 γ 2 |∂ x v| 2 - 1 4 ∂ 2 x (v 2 ) dx = ω1 f -f + ∂ x (ξ∂ x (w -w)) γv dx.
Thanks to (HS3), we have

|∂ x v| 2 - 1 4 ∂ 2 x (v 2 ) = 1 2 (|∂ x v| 2 -v∂ 2 x v) ≥ δ/2. Hence ω1 γ 2 dx ≤ C(δ) ω1 |f -f | + |∂ x (ξ∂ x (w -w))| |γ| dx.
Then, thanks to Schwarz's inequality,

ω1 γ 2 dx ≤ C ω1 |f -f | + |∂ x (ξ∂ x (w -w))| 2 dx. ( 15 
) Since 1 2 ∂ x (ξ∂ x (w -w)) L 2 (ω1) ≤ sup ω1 |∂ x ξ| ∂ x (w -w) L 2 (ω1) + sup ω1 |c| ∂ 2 x (w -w) L 2 (ω1) ≤ R w -w H 2 (ω1) ,
the conclusion follows [START_REF] Mehrotra | On the implementation of a primal-dual interior point method[END_REF].

Mixing lemmas 2.5 and 2.6, we straightforwardly obtain the following result.

Proposition 2. Let R > 0. Assume that ξ ∈ E(R). Then, assuming (HS1) (HS2), (HS3), there exist C 1 , s 0 > 0 such that, for all s ≥ s 0 , there exists

C 2 (s) > 0 satisfying Ω π 3 |γ| 2 dx ≤ C 1 Ω\ω π 1 |f -f | 2 dx + ω π 2 |f -f | 2 dx +C 2 (R; s) w -w 2 H 1 (Ω) + w -w 2 H 2 (ω) ,
where C 1 , C 2 depend on δ, ξ but not on (ξ, f, w).

Proof of the main result.

We use the following notations. For V ⊂ Ω, we say that a function b defined in Ω belongs to D(A(ξ))| V for some r > 0 if it can be extended as a function in c). We consider a common weight function ϕ for the system [START_REF] Cristofol | Inverse problems for a two by two reaction-diffusion system using a carleman estimate with one observation[END_REF] where c replaces c.

D(A r (ξ)). We set S = S c = ∪ 2 j=1 S j , u = (u 1 , u 2 ) = U(u 0 , h, c), ũ = (ũ 1 , ũ2 ) = U(ũ 0 , h,
Step 1. Firstly we show that we can build h such that, for all ũ0 ∈ (L 2 (Ω) R ) 2 , ũj , j = 1, 2, satisfy the conditions (HS2) and (HS3). Set j ∈ [ [START_REF] Alvarez | Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems[END_REF][START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF]], k ∈ N and consider the conductivity c j . We need the following result. (16)

∂ x b± j (x) ≥ C > 0, ∀x ≤ α 1 ; (17) 
∂ x b± j (x) ≤ -C < 0, ∀x ≥ α 2 ; ( 18 
)
|∂ x bj | 2 -( bj -bj |∂ω )∂ 2 x bj ≥ C > 0 in ω 1 ; ( 19 
)
where ω 0 = (α 1 , α 2 ).

Proof. Firstly, notice the following points. The domain D(A(c j )) is the vectorial space of functions f ∈ H 1 0 (Ω) such that

c j ∂ x f ∈ H 1 (Ω). Since c j is smooth in a neighborhoud of ω, if f ∈ D(A(c j )), then f ω ∈ H 2 (ω), and f is continu- ously differentiable in ω. Moreover, for r > 0, D(A r (c j )) ω = H 2r (ω) ⊃ C 2r (ω), D(A r (c j )) ω1 = H 2r (ω 1 ) ⊃ C 2r (ω 1 ). Since the spatial dimension is one, if f ∈ H 3 (ω), then f is twice continuously differentiable in ω, and if f ∈ H 3 (ω 1 ) ∩ H 3 (ω \ω 1 ), then f ∈ H 3 (ω) if and only if [f ] y = [∂ x f ] y = [∂ 2
x f ] y = 0 for all y ∈ ∂ω 1 . Set ω 1 = (α 3 , α 4 ). Let r > 0, and g 1 , g 2 be two smooth positive functions in R satisfying

g 1 (α 3 ) c j (α 3 ) = g 2 (α 4 ) c j (α 4 ) = r(α 4 -α 3 ), ( 20 
) α3 0 g 1 (y) dy c j (y) = 1 α4 g 2 (y) dy c j (y) = 1. ( 21 
) Put b(x) =            x 0 g 1 (z) dz c j (z) , x ∈ [0, α 3 ], r(x -α 3 )(α 4 -x) + 1 , x ∈ [α 3 , α 4 ], 1 x g 2 (z) dz c j (z) , x ∈ [α 4 , 1].
Then b satisfies conditions ( 16), ( 17), ( 18), [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF], with b, 

c j ∂ x b ∈ C 2 (Ω \ ω 1 ), b| ω1 ∈ C ∞ (R), [b] y = [∂ x b] y = 0, ∀y ∈ ∂ω
G := {U(0, h, c)(θ), h ∈ C ∞ 0 ((t 0 , T ) × ω 0 )} is dense in D(A r (c)
) equipped with the norm j=1,2 A r (c j )p j L 2 (Ω) , for all r ∈ R + . This comes thanks to (3) applied to (8), the system (1) is approximatively controllable in D(A r (c)). Then, for any ε > 0, there exists

h ∈ C ∞ 0 ((t 0 , T ) × ω 0 ) such that U(0, εh, c)| t=θ -b D(A(cj )) + U(0, εh, c)| t=θ -b D(A 3 2 (cj ))|ω < ε, j = 1, 2. (22) Observe that if p ∈ D(A(c j )) then p Ω\Sj ∈ H 2 (Ω \ S j ). See for example [5, Prop. A.4] for a proof. Moreover, [p] y = 0 for all y ∈ S j . Hence p ∈ W 1,∞ (Ω), since, in the one dimensional case, H 1 (Ω) ⊂ C 0 (Ω) ⊂ L ∞ (Ω). Thus, D(A(c j )) ⊂ W 1,∞ (Ω) with continuous embedding. Furthermore, we have D(A 3 2 (c j ))| ω = H 3 (ω) ⊂ W 2,∞ (ω),
with continuous embedding. From [START_REF] Sakthivel | Erratum to: Stability of Diffusion Coefficients in an Inverse Problem for the Lotka-Volterra Competition System[END_REF], we thus have

U(0, εh, c)| t=θ -b W 1,∞ (Ω) + U(0, εh, c)| t=θ -b W 2,∞ (ω) < ε, j = 1, 2. (23) Here, b = ( b1 , b2 ). Let ũ0 ∈ L 2 R and put p = (p 1 , p 2 ) = εU(ũ 0 , h, c)| t=θ .
Observing that U(•, •, c) is linear in the two first variables, we thus have

p = b + (U(0, εh, c)| t=θ -b) + εU(ũ 0 , 0, c)| t=θ . Since U(ũ 0 , 0, c)| t=θ W 1,∞ (Ω) + U(ũ 0 , 0, c)| t=θ W 2,∞ (ω) < C(R),
where C(R) does not depend on ũ0 , then, thanks to ( 16), ( 17), ( 18), ( 19), [START_REF] Schiela | Barrier methods for optimal control problems with state constraints[END_REF], for all ε > 0 sufficiently small, for j = 1, 2, there exist an open interval ω j 1 and a positive constant C such that ω 0 ⊂⊂ ω j 1 ⊂⊂ ω, and

p j |∂ω j 1 = Cste > 0, (24) 
∂ x p j ≥ C > 0 a.e. x < α 1 , (25) 
∂ x p j ≤ -C < 0 a.e. x > α 2 , (26) 
|∂ x p j | 2 -(p j -p j | ∂ω j )∂ 2 x p j ≥ C > 0 in ω j 1 . (27) 
Hence, ε -1 p = U(ũ 0 , h, c)| t=θ satisfies ( 24), ( 25), ( 26), ( 27) (with other constants), and so, for all j = 1, 2, ũj satisfies (HS2) and (HS3).

Step 2. For all ε > 0, the function ũ belongs to H 3 (ε, T ; D(A r (c))) with arbitrary large r.

Thus ∂ k t ũ ∈ (L ∞ (ε, T ; W 1,∞ (Ω))) 2 , k = 0, 1, 2, and
∂ k t ũj L ∞ (ε,T ;W 1,∞ (Ω)) ≤ C(R), k = 0, 1, 2, j = 1, 2,
since the choice of h depends on R but not on ũ0 . For the same reason and since c ∈ E(R) 2 , we also have

∂ k t u j L ∞ (ε,T ;W 1,∞ (Ω)) ≤ C(R), k = 0, 1, 2, j = 1, 2.
Since we can consider the system (1) starting at time t 0 we can replace t 0 and ε by 0 and omit it in the proof. We set v j (x) := u j (θ, x), ṽj (x) := ũj (θ, x), z j := ∂ t u j -∂ t ũj , w j = ∂ t z j , γ j := c j -c j . Notice that the following conditions are satisfied:

(H1): ∀j ∈ [[1, 2]], ṽj satisfies (HS1). (H2): ∀j ∈ [[1, 2]], ṽj satisfies (HS2). (H3): ∀j ∈ [[1, 2]], ṽj satisfies (HS3). (H4): ∂ k t u j , ∂ k t ũj ∈ L 2 (W 1,∞ ), j = 1, 2, k = 0, 1, 2.
We have:

∂ t z j -∂ x (c j ∂ x z j ) = 2 k=1 a jk z k + ∂ x (γ j ∂ x ∂ t u j ) in Q, z j (t, x) = 0 on Σ,
By differentiating (28) according to t we have:

∂ t w j -∂ x (c j ∂ x w j ) = 2 k=1 a jk w k + ∂ x (γ j ∂ x ∂ 2 t u j ) in Q, w j (t, x) = 0 on Σ.
We also have the following equalities:

∂ x (c j ∂ x v j ) = f j ≡ ∂ t u j (θ) - k a jk v k -δ 2j h(θ), (28) 
∂ x (c j ∂ x ṽj ) = fj ≡ ∂ t ũj (θ) - k a jk ṽk -δ 2j h(θ). (29) 
We set

B j1 := Ω 1 2 π 1 |z j (θ)| 2 dx, B 1 := j=1,2 B j1 .
Lemma 2.8. Under (H1)-(H4), there C 1 , s 0 > 0 such that, for all s > s 0 , there exists C 2 (s) > 0 satisfying:

B 1 ≤ C 1 Ω π 1 |γ| 2 dx + C 2 (s) (0,T )×ω (|z 2 | 2 + |w 2 | 2 ) dx dt . ( 30 
)
B 1 ≥ C -1 Ω π 3 |γ| 2 dx -C 2 (s) ω |z(θ)| 2 dx + v -ṽ 2 H 1 (Ω) (31) 
+ vṽ 2 H 2 (ω) , where γ = (γ 1 , γ 2 ). Recall that we set π r (x) := Π r (θ, x; s) and the constants may depend on R.

See the proof in Appendix A.6. Thanks to [START_REF] Wollner | A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints[END_REF], (31) we obtain

Ω π 3 |γ| 2 dx ≤ C(s) (0,T )×ω (|z 2 | 2 + |w 2 | 2 ) dx dt + ω |z(θ)| 2 dx + v -ṽ 2 H 2 (ω) + v -ṽ 2 H 1 (Ω)
, for all s > s 0 . The conclusion follows.

3. Numerical algorithm. We begin the derivation of the primal-dual path following interior-point method by presenting the constrained minimization problem related to recovering c.

Based on the theory presented in Section 2 and in particular on Theorem 1.1 and Corollary 1 reconstructing two discontinuous diffusion coefficients amounts to the minimization of the following functional

min 1 2 ∂ t (u 2 -ũ2 ) L 2 (ω t 0 ,T ) + 1 2 ∂ 2 t (u 2 -ũ2 ) L 2 (ω t 0 ,T ) (32) subject to        ∂ t u 1 -∂ x (c 1 ∂ x )u 1 = a 11 u 1 + a 12 u 2 in Q, ∂ t u 2 -∂ x (c 2 ∂ x )u 2 = a 21 u 1 + a 22 u 2 in Q, u j (t, x) = 0 on Σ, j = 1, 2, u j (0, x) = u 0,j (x) in Ω. and u(θ, •) = u(θ, •) in Ω .
The minimization of (32) can be reformulated into a QP form as follows:

min 1 2 u T 2 (D T D + D T 2 D 2 )u 2 -u T 2 (D T D + D T 2 D 2 )ũ 2 + 1 2 ũT 2 (D T D + D T 2 D 2 )ũ 2
where we have denoted ∂ t =: D and ∂ 2 t =: D 2 . Note that the functional in (32) depends only on u 2 and the aim is to recover c = (c 1 (x), c 2 (x)) hence we have both the u = (u 1 (t, x), u 2 (t, x)) and c = (c 1 (x), c 2 (x)) as the unknowns in our QP problem. This implies that (1) becomes non-linear with respect to solving the QP optimization problem. Hence in recovering the discontinuous diffusion coefficients we consider the linearized version of (1)

       ∂ t u 1 -∂ x (c 1 ∂ x )u 1 -a 11 u 1 -a 12 u 2 -∂ x (c 1 ∂ x )ũ 1 = -∂ x (c 1 ∂ x )ũ 1 in Q, ∂ t u 2 -∂ x (c 2 ∂ x )u 2 -a 21 u 1 -a 22 u 2 -∂ x (c 2 ∂ x )ũ 2 = -∂ x (c 2 ∂ x )ũ 2 in Q, u j (t, x) = 0 on Σ, j = 1, 2, u j (0, x) = u 0,j (x) in Ω.
(33) Next we denote (33) together with the constraint u(θ, •) = u(θ, •) by Rx = r and write the constraint minimization problem as follows

min 1 2 x T Kx + k T x + κ s.t. x ∈ F 1 (34) where x =     u 1 u 2 c 1 c 2     , K =     0 0 0 0 0 D T D + D T 2 D 2 0 0 0 0 0 0 0 0 0 0     , k =     0 -(D T D + D T 2 D 2 ) ũ2 0 0     , κ = 1 2 ũT 2 (D T D + D T 2 D 2 )ũ 2 , F 1 = {x | Rx = r, ≤ x ≤ ν}, =     -M -M c min 1 c min 2     and ν =     M M c max 1 c max 2     , (c min 1 , c min 2 ) > 0, (c max 1 , c max 2
) < R and M >> 0 so that the constraint on u = (u 1 , u 2 ) is practically ineffective. We start the derivation of the interior point method by introducing slack variables in order to replace the inequality constraints with simpler non-negativity constraints (the non-negativity constraints are enforced separately) thus the primal problem becomes

min 1 2 x T Kx + k T x + κ s.t. x ∈ F (35) 
F = {x| Rx = r, x -= g, ν -x = p} and g, p ≥ 0, where x, g and p are vectors in R n1 , r is a vector in R n2 , K is an n 1 × n 1 matrix and R is an

n 2 × n 1 matrix. The dual of (35) is max κ + r T y + T z -ν T n - 1 2 x T Kx s.t. R T y + z -n -Kx = r (36) z, n ≥ 0, y free,
where y is a vector in R n2 and z and n are vectors in R n1 . The dual variables z, n are complementary to the nonnegative primal variables g, p which implies that z, n ≥ 0.

Next we define the central path which yields the path that is followed in our approach. The central path, parameterized by µ, can be defined as P{(x µ , g µ , p µ , y µ , z µ , n µ ) | µ > 0}. Each µ > 0 define the associated central path point in the primal-dual space that satisfies simultaneously the conditions of primal feasibility, dual feasibility and µ-complementarity, namely the conditions

R T y + z -n -Kx = k Rx = r x -g = (37) x + p = ν GZ1 = µ1 P N 1 = µ1
where 1 is a vector of all ones, G, Z, P and N are diagonal matrices with elements g i , z i , p i , n i respectively. These conditions are the optimality conditions, often known as Karush-Kuhn-Tucker (KKT) conditions, for a Fiacco-McCormick [START_REF] Fiacco | Nonlinear Programming: Sequential Unconstrained Minimization Techniques[END_REF] type logarithmic barrier formulation of problem (34). The logarithmic barrier formulation of (34) writes

min 1 2 x T Kx + k T x + κ -µ i log g i + i log p i (38) s.t Rx = r.
As µ → 0 the trajectory P converges to the optimal solution of both the primal and dual problem. At the optimal point (x * , g * , p * , y * , z * , n * ), µ ≡ 0 and the primal objective function is equivalent with the dual objective function. Further this means that (38) is equivalent with (34) and the conditions (37) are the KKT conditions for the original problem (34).

When K is positive semidefinite these KKT conditions are both necessary and sufficient optimality conditions for the QP problem [START_REF] Nocedal | Numerical Optimization[END_REF] hence we can solve the QP problem (34) by finding a solution to the system (37). We write the KKT conditions in a form on a mapping F from R 5n1×n2 to R 5n1×n2 by

F (x, g, p, y, z, n; µ) =         Kx -R T y -z + n + k r -Rx -x + g x + p -ν GZ1 -µ1 P N 1 -µ1         = 0. ( 39 
)
Assuming that µ is fixed and applying Newton's method to (39) we obtain

        -K 0 0 R T I -I R 0 0 0 0 0 I -I 0 0 0 0 I 0 I 0 0 0 0 G -1 Z 0 0 I 0 0 0 P -1 N 0 0 I                 ∆x ∆g ∆p ∆y ∆z ∆n         =         Φ Λ Λ g Λ p Γ z Γ n         where Φ = k + Kx -R T y -z + n Λ = r -Rx Λ g = -x -g Λ p = ν -x -p Γ z = µG -1 1 -z -G -1 ∆g T ∆z Γ n = µP -1 1 -n -P -1 ∆p T ∆n
We can eliminate ∆p, ∆g, ∆z and ∆n without producing any off-diagonal fill-ins in the remaining system hence resulting into a reduced KKT system given by

-(K + N P -1 + G -1 Z) R T R 0 ∆x ∆y = Φ Λ , where Φ = Φ -Γ n -Γ z -N P -1 Λ p -G -1 ZΛ g and ∆z = Γ z + G -1 Z (Λ g -∆x) ∆n = Γ n + N P -1 (∆x -Λ p ) ∆g = GZ -1 (Γ z -∆z) ∆p = N -1 P (Γ n -∆n)
The algorithm for solving the problem is based on Mehrotra's [START_REF] Mehrotra | On the implementation of a primal-dual interior point method[END_REF] predictorcollector method and it proceeds iteratively from an initial point (x 0 , g 0 .p 0 , y 0 , z 0 , n 0 ) through a sequence of points determined from the search directions described above

x k+1 = x k + α primal ∆x g k+1 = g k + α primal ∆g p k+1 = p k + α primal ∆p y k+1 = y k + α dual ∆y z k+1 = z k + α dual ∆z n k+1 = n k + α dual ∆n
The step lengths α primal and α dual are obtained as follows; first we compute the maximal feasible step length in order to enforce the non-negativity requirements (g k+1 , p k+1 , z k+1 , n k+1 ) > 0

α max p = 0.95 × min min - g ∆g , min - p ∆p , 1 
α max d = 0.95 × min min - z ∆z , min - n ∆n , 1 .
Then we set α dual = α max p and compute α primal by using a backtracking line search on the interval 0, α max p . As the choice of the duality measure µ we use a similar formulation as proposed in [START_REF] Vanderbei | An Interior-point algorith for nonconvex nonlinear programming[END_REF]. [START_REF] Benabdallah | Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and a inverse problem[END_REF]. Numerical examples. The observation data U 2 (u 0 , h; c)| ω t 0 ,T , U(u 0 , h; c)| t=θ was simulated as follows. T was set to T = 1 and Gaussian noise noise ∼ N (0, σ 2 I) with a standard deviation of 1% of the maximum of the noiseless observations was added to the simulated data. A more dense grid was used for the generation of the data than was used in any of the computations of the diffusion coefficients, thus avoiding the inverse grime.

The problem of recovering the discontinuous diffusion coefficients related to the optimization problem

min 1 2 D(u 2 -ũ2 ) 2 L 2 (ω t 0 ,T ) + 1 2 D 2 (u 2 -ũ2 ) 2 L 2 (ω t 0 ,T ) subject to            ∂ t u 1 -∂ x (c 1 ∂ x )u 1 -a 11 u 1 -a 12 u 2 -∂ x (c 1 ∂ x )ũ 1 = -∂ x (c 1 ∂ x )ũ 1 in Q, ∂ t u 2 -∂ x (c 2 ∂ x )u 2 -a 21 u 1 -a 22 u 2 -∂ x (c 2 ∂ x )ũ 2 = -∂ x (c 2 ∂ x )ũ 2 in Q, u j (t, x) = 0 on Σ, j = 1, 2, u j (0, x) = u 0,j (x) in Ω. u(θ, x) = u(θ, x)
was discretized as follows. Let t ∈ [0, T ], x ∈ [0, 1] and let N t denote the number of steps in time and N x the number of steps in space. N t and N x are related to n 1 and n 2 by n 1 = 2(N x × N t + N x + 1) and n 2 = 4(N x × N t ), respectively. We approximate the time derivative ∂ t by the explicit Euler method and the spatial derivatives ∂ x by the finite difference method. In the following calculations we use N x = 128 and N t = 80 and consider two different piecewise regular realizations of the c.

In order to study the accuracy of the computed reconstructions quantitatively we compute the relative errors of c 1 (x) and c 2 (x) in Ω with respect to c 1 (x) and c 2 (x), respectively Appendix A. . We denote the formal heat operator by L(c j )q = ∂ t q + A(c j )q, with A(c j ) = -∂ x (c j ∂ x •), and its formal adjoint by L * j = -∂ t + A(c j ). We set D(A j ) = {u ∈ H 1 0 (Ω); A(c j )u ∈ L 2 (Ω)} and D(L

δ cj = c j (x) -c j (x) L 2 c j (x) L 2 , j = 1, 2. 
( * ) j ) = {z : z ∈ L 2 (0, T ; H 1 0 (Ω)), L ( * ) j z ∈ L 2 (Q)}.
A.1. Proofs of Theorem 2.3 and Corollary 3. For simplicity we only consider the system [START_REF] Cristofol | Inverse problems for a two by two reaction-diffusion system using a carleman estimate with one observation[END_REF]. The Carleman estimate (4) applied for [START_REF] Cristofol | Inverse problems for a two by two reaction-diffusion system using a carleman estimate with one observation[END_REF] with q replaced by q j and f by f j gives:

Q Π -1 |∂ t q j | 2 + Π -1 |A(c j )q j | 2 + Π 1 |∂ x q j | 2 + Π 3 |q j | 2 dx dt ≤ C Q Π 3 |q j | 2 dx dt + Q Π 0 J k=1 (|∂ x q k | 2 + |q k | 2 ) + Π 0 |f j | 2 dx dt .
We then sum these inequalities over j = 1, . . . , J. Thanks to CJΠ 0 ≤ Π 1 /2, we obtain [START_REF] Fiacco | Nonlinear Programming: Sequential Unconstrained Minimization Techniques[END_REF]. Now we replace q 2 by a -1 12 (L 1 q 1 -b 11 ∂ x q 1 -a 11 q 1 -f 1 ) in Q. Since ω ∩ S = ∅ we can apply the same method than in [START_REF] Cristofol | Identification of two coefficients with data of one component for a nonlinear parabolic system[END_REF]. Hence [START_REF] Hinze | Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment[END_REF].

A.2. Proof of Corollary 2. Set L(ξ)q := ∂ t q-∂ x (ξ∂ x q), Pq := L(ξ)q+b•∂ x q+aq, and fix q solution of (2) with f = f 0 + ∂ x f 1 . By definition, we have, for any

g ∈ L 2 (Q), Q qg dx dt = Q (f 0 z -f 1 ∂ x z) dx dt + Ω q 0 z(0) dx , (40) 
where z ∈ D(L * (ξ)) is the solution of P * z = g, z(T ) = 0. Here we have P * z = -∂ t z -∂ x (ξ∂ x z)-∂ x (bz)+az, z| Σ=0 . We solve the following equation with unknown

p ∈ Q ⊃ Q 0 = C 2 ([0, T ]; D(A 2 ))
, where Q is defined later:

P * (Π 0 Pp) + Π 3 χ ω p = Π 3 q in Q. ( 41 
)
We define on (Q 0 ) 2 the bilinear symmetric form m(•, •) and, on Q 0 , the linear form b (•) as follows :

m(p, p ) := Q Π 0 Pp Pp dx dt + (0,T )×ω Π 3 pp dx dt , b (p ) := Q Π 3 qp dx dt .
Notice that Q 0 ⊂ D(L), and so we can apply the Carleman estimate (4):

Q Π 3 p 2 dx dt ≤ Cm(p, p) , (42) 
for all p ∈ Q 0 . This implies that Q 0 equipped with p m := m(p, p) is a normed space. Then we denote by Q the closure of Q 0 with this norm. So Q equipped with the bilinear form m(•, •) is an Hilbert space and (42) holds for any p ∈ Q. Thanks to the Cauchy-Schwarz estimate and to (42), we then have for any p ∈ Q: 

|b (p)| ≤ Q Π 3 |q| 2 dx dt 1 2 Q Π 3 |p| 2 dx dt 1 2 ≤ C Q Π 3 |q| 2 dx dt
We denote by p the unique solution in Q of (44) and we set w := -Π 3 χ ω p, g = w + Π 3 q, z = Π 0 Pp. Notice that z ∈ D(L * (ξ)), z(0, •) = z(T, •) = 0 in Ω, and thanks to (41), we have P * z = g = w + Π 3 q. Furthermore, thanks to (40),

Q Π 3 q 2 dx dt = - Q f 1 • ∂ x z dx dt + Q f 0 z dx dt + Q Π 3 qp dx dt .
Thanks to (43), we have

m(p, p) = b (p) ≤ C Q Π 3 |q| 2 dx dt 1 2 |m(p, p)| 1 2 ,
and so

m(p, p) = Q Π -1 0 z 2 dx dt + Q (Π 3 ) -1 w 2 dx dt ≤ C Q Π 3 |q| 2 dx dt. (45) 
Let us prove the following estimate:

Q (Π 0 ) -1 z 2 dx dt + Q (Π 3 ) -1 w 2 dx dt + Q (Π 2 ) -1 |∂ x z| 2 dx dt ≤ C Q Π 3 q 2 dx dt . ( 46 
)
We set

I 1 := Q (Π 2 ) -1 |∂ x z| 2 ξdx dt, , I 2 := - Q (Π 2 ) -1 z ∂ x (ξ∂ x z) dx dt , I 3 := - Q ∂ x (Π -1 2 )∂ x z z ξ dx dt, I 4 := Q Π -1 2 z w dx dt , I 5 := Q Π -1 2 Π 3 z q dx dt, I 6 := Q Π -1 2 z ∂ t z dx dt , I 7 := Q Π -1 2 z ∂ x (zb) dx dt - Q Π -1 2 mz 2 dx dt.
The Green formula holds in Q with the weight dxdt for the product

(Π 2 ) -1 z ∂ x (ξ∂ x z), since ∂ x (ξ∂ x z) ∈ L 2 (Q) and Π 2 ∈ L 2 (H 1 ). Thus I 1 = I 2 + I 3 . Moreover, since -∂ x (ξ∂ x z) = w + Π 3 q + ∂ t z + ∂ x (zb) -mz, then I 1 = I 3 + I 4 + I 5 + I 6 + I 7 . (47) 
The estimates on I k for 3 ≤ k ≤ 6 are the same than in [19, A.2.1] (with similar but not exactly the same notations), and so are already proved. Thanks to

Π 3 Π 0 ≤ C(Π 2 ) 2 (or equivalently: (Π 2 ) -1 ≤ C(Π 3 Π 0 ) -1 2 ), Π 2 3 Π 0 ≤ C(Π 2 ) 3 , |∂ x Π 2 | ≤ CΠ 3 , |∂ t Π 2 | ≤ Cs -1 (Π 0 ) -1 (Π 2 ) 2 ,
where C = C(T, Ω, ω, ϕ) does not depend on s, we obtain

|I 3 | ≤ 1 2 I 1 + C Q Π 3 |q| 2 dx dt , (48) 
|I 4 | + |I 5 | + |I 6 | ≤ C Q Π 3 q 2 dx dt . ( 49 
)
The new term is I 7 . We have

I 7 = - Q Π -1 2 zb∂ x z dx dt - Q (b∂ x (Π -1 2 ) + mΠ - 1 
2 )z 2 dx dt := I 71 + I 72 .

We can estimate I 71 as for I 3 . Thanks to the Minkovski inequality and to (45), we have

|I 71 | ≤ Cs -1 Q Π -1 2 |∂ x z| 2 dx dt + Cs Q Π -1 2 |z| 2 dx dt ≤ Cs -1 I 1 + Cs -1 Q Π -1 0 |z| 2 dx dt ≤ 1 2 I 1 + Cs -1 Q Π 3 |q| 2 dx dt. ( 50 
)
We also have

|I 72 | ≤ C Q (|∂ x (Π -1 2 )| + Π -1 2 )|z| 2 dx dt ≤ C Q Π -1 0 |z| 2 dx dt ≤ C Q Π 3 |q| 2 dx dt . (51) 
From ( 47), ( 48), ( 49), ( 50) and (51), we deduce that |I 1 | ≤ C Q Π 3 q 2 dx dt. Hence (46) holds. The conclusion follows, as in [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF].

A.3. Proof of Theorem 2.4. The system (7) with data

f j = f 0j + ∂ x f 1j , j = 1, 2 ∈ L 2 (H -1
) can be written as

P j q j = F 0j + ∂ x F j in Q,
where we set P j q j := L(c j )q j -b jj ∂ x q j -a jj q j and

F 0j := k =j (-∂ x b jk + a jk )q k + f 0j , F j := k =j q k b jk + f j .
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For each j = 1, 2, we apply Corollary 2, with (f 0 , f ) replaced by (F 0,j , F j ). Hence we have

Q Π 3 |q j | 2 dx dt ≤ C Q Π 3 |q j | 2 dx dt + Q Π 0 (|q| 2 + |f 0j | 2 ) dx dt (52) + Q Π 2 (|q| 2 + |f j | 2 ) dx dt , ∀j = 1, 2,
where q := (q 1 , q 2 ). We choose s 0 such that

2(Π 0 + Π 2 ) ≤ 1 2 Π 3 , ∀s > s 0 .
We then obtain (11) by summing (52) for 1 ≤ j ≤ 2.

A.4. Proof of Corollary 4. By using (10), we mimick the proof of Corollary 2, with the following minor modifications. Set Pq = (P 1 q 1 , P 2 q 2 ), 

F 0 = (F 01 , F 02 ), F = (F 1 , F 2 ),
m(p, p ) = Q Π 0 Pp Pp dx dt + (0,T )×ω0 Π 7 p 2 p 2 dx dt, b (p ) = Q Π 3 qp dx dt , u = (0, -Π 7 χ ω p 2 ), g := u + Π 3 q, z = P * -1 z.
We then obtain (12) A.5. Proof of lemma 2.5. We have -∂ x (ξ∂ x w) = f, -∂ x ( ξ∂ x w) = f . Define q s ≡ e s ϕ q, s = sη(θ) and (54) Set q = ξ∂ x w -ξ∂ x w, we have q, q s ∈ W 1,∞ (Ω). We get

Ω q 2 s dx ≤ ∂ x ũ 2 L ∞ Ω γ 2 s dx + ξ 2 s, max Ω |∂ x (w -w)| 2 dx, ≤ C 1 Ω γ 2 s dx + C 2 (R; s) Ω |∂ x (w -w)| 2 dx, (55) 
where C 1 , C 2 > 0. We calculate I := Ω (P w -P w) 2 ρ dx = Ω (-∂ x q s + s ∂ x ϕ q s ) 2 ρ dx ≥ -2s Ω ∂ x q s ρ∂ x ϕ q s dx + s 2 Ω (∂ x ϕ q s ) 2 ρ dx ≡ s I 1 + s 2 I 2 .

Using ∂ n(x) ϕ < 0 on ∂Ω and thanks to ρ∂ x ϕ ∈ W 1,∞ (Ω), an integration by parts gives:

I 1 = - Ω ρ∂ x ϕ∂ x (q 2 s ) dx = - ∂Ω ρ∂ n(x) ϕq 2 s + Ω ∂ x (ρ∂ x ϕ) q 2 s dx ≥ -C Ω q 2 s dx,
for some C > 0. Thus, thanks to (55),

I 1 ≥ -C 1 Ω γ 2 s dx -C 2 (R; s) Ω |∂ x (w -w)| 2 dx.
Moreover, we have, thanks to (HS1), 

Thanks to (56) and (57), we obtain [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF].

A.6. Proof of lemma 2.8. For the sake of simplicity, we assume that θ = T /2. An integration by parts gives 

B j1 = Ω θ 1 
B j2 := Q sη 2 Π 1 |z j | 2 dx dt = Q s -1 Π 3 |z j | 2 dx dt .
Thanks to the Carleman estimate [START_REF] Ladyzenskaja | Linear and quasi-linear equations of parabolic type[END_REF] applied to [START_REF] Weiser | A control reduced primal interior point method for PDE constrained optimization[END_REF], we have:

s B j2 ≤ C(B 4 + Q Π 7 |z 2 | 2 dx dt),
where we set 

B 4 := Q Π 2 |∂ x ∂ t u| 2
B j5 := Q η -1 Π 0 |∂ t z j | 2 dx dt .
Notice that η(t) ≥ η(T /2) > 0. Hence we have

C -1 B j5 ≤ Q s -3 Π 3 |w j | 2 dx dt .
Thanks to (H4), an upper bound for B j5 is obtained as for B j2 by using the Carleman estimate ( 12) to [START_REF] Weiser | A control reduced primal interior point method for PDE constrained optimization[END_REF]. We thus have

|B j5 | ≤ C(R)s -2 Ω π 1 |γ| 2 dx + C(R; s) Q |w 2 | 2 dx dt. (59) 
So from (58), (59) we obtain [START_REF] Wollner | A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints[END_REF].

Lower bounds for B 1 . Thanks to (28), ( 29), (H1), (H2), (H3) and by applying Proposition 2, we obtain 

Ω π 3 |c j -c j | 2 dx
≤ CB 1 + C 1 ω π 2 |z(θ)| 2 dx + C 2 (R; s) v -ṽ 2 H 1 (Ω) + v -ṽ 2 H 2 (ω) ,
for all s ≥ s 0 . Hence (31).

(C- 1 )

 1 : ∃δ > 0, |a 21 | ≥ δ > 0 and |a 12 | ≥ δ > 0 in ω.

Remark 3 .

 3 In Theorem 1, Lemma 2.1 and Corollary 2, we can replace the open set ω by any other nonempty open interval ω 0 = (α 1 , α 2 ) such that ω 0 ⊂⊂ ω and ω 0 ⊃ (∂ x ϕ |ω ) -1 ({0}).

Corollary 4 .

 4 and [13, Proof of Theorem 5.1]. Assume that b 21 = 0, |a 21 | ≥ δ > 0 in ω for the system (7) (respectively, b 12 = 0, |a 12 | ≥ δ > 0 in ω for the system (

Lemma 2 . 7 . 3 2

 273 Let ω 1 be any non empty open interval such that ω 0 ⊂⊂ ω 1 ⊂ ω. Then there exists a lipschitzian function bj ∈ D(A(c j )) ∩ D(A (c j )) ω such that bj |∂ω1 = Cste > 0;

1 . 3 2 3 2 3 2

 1333 Hence b belongs to D(A(c)) ∩ D(A (c))| ω1 ∩ D(A (c))| Ω\ω1 , but b ∈ D(A (c))| ω since the property ([∂ 2 x b] y = 0, ∀y ∈ ∂ω 1 ) fails. We then consider bj as a regularization of b near ω 1 , sufficiently closed to b in W 2,∞ (ω 1 ) and such that bj = b on ∂ω 1 . Set ω 1 be a non empty open interval such that ω 0 ⊂⊂ ω 1 ⊂⊂ ω, bj , j = 1, 2, as in Lemma 2.7, and b = ( b1 , b2 ). As in [19, Proof of Corollary 3.1], the set

Figures 1 and 2 Figure 1 .Figure 2 .

 212 Figures 1 and 2 show the reconstructed piecewise regular diffusion coefficient for two different test cases. The relative errors related to the reconstructions in figure 1 are δ c1 = 0.1541 and δ c2 = 0.1127. The corresponding relative errors related to figure 2 are δ c1 = 0.1443 and δ c2 = 0.0802.The numerical simulations indicate that the primal-dual path following interiorpoint method with the observation data U 2 (u 0 , h; c)| ω t 0 ,T , U(u 0 , h; c)| t=θ of Theorem 1.1 allow an accurate reconstruction of the discontinuous diffusion coefficients c 1 and c 2 .

  b is m-continuous. Hence, we can apply the Lax-Milgram theorem to the following equation with unknown p ∈ Q: m(p, p ) = b (p ) for any p ∈ Q.

  and replace a, b respectively by a = (a 1 , a 2 ), b = (b 1 , b 2 ). Replace also (41) by P * (Π 0 Pp) + Π 7 χ ω p 2 = Π 3 q in Q, and the definition of m and b , w, g, z, respectively by

  P w := -∂ x (ξ s ∂ x w) + s ∂ x ϕ ξ s • ∂ x w, (53) P w := -∂ x ( ξs ∂ x w) + s ∂ x ϕ ξs • ∂ x w.

I 2 ≥ 3 Ω\ω0 γ 2 s 2 Ω\ω0 γ 2 s 2 L 2

 2322222 Ω\ω0(∂ x ϕ q s ) 2 ρ dx =Ω\ω0 (γ s ∂ x ϕ ∂ x w + c s ∂ x ϕ∂ x (w -w)) 2 ρ dx ≥ C dx -C 4 (R; s) Ω |∂ x (w -w)| 2 dx,for some C 3 , C 4 (R; s) > 0. Hence, there exist positive constants C 1 , C 2 (R; s) > 0, C 3 > 0 (depending on ξ) such thatI ≥ C 3 s dx -C 1 s Ω γ 2 s dx -C 2 (s, R) Ω |∂ x (w -w)| 2 dx. (56)But since P w -P w = f s -fs , thenI ≤ C f s -fs (Ω) .

4 ≤ λ 2 Ωπ 2

 422 |γ| 2 dx dt, with γ = (c 1 -c 1 , c 2 -c 2 ). For k ∈ N we write:η k (t)e 2sη(t)ϕ = η k (θ)e 2sη(θ)ϕ ζ k (t)e 2s(ζ(t)-1)ϕ , where ζ(t) := η(t) η(θ) = θ(T -θ)t -1 (T -t) -1 ≥ 1. Hence Π k (t, x; s) ≤ λ k η k (θ)π k (x; s) , where we fix λ k = λ k (s 0 ) ∈ R independently to s ≥ s 0 > 0 so that sup r≥1 (r k e -2s (r-1) ) ≤ λ k . Since c ∈ E(R)2 and thanks to (H4), we obtainB |γ| 2 ( T 0 |∂ t ∂ x u| 2 dt) dx ≤ C(R) Ω π 2 |γ| 2 dx ≤ C(R)s Ω π 1 |γ| 2 dx.Thus we obtain|B j2 | ≤ CB j2 ≤ C(R) Ω π 1 |γ| 2 dx + C(R; s) Q |z 2 | 2 dx dt. (58)Thanks to Minkovski's estimate, we have |B j3 | ≤ B j2 + B j5 with

  sϕ∂ t η Π 1 |z j | 2 dx + Ω θ Π 1 z j ∂ t z j dx ≡ B j2 + B j3 .Upper bounds of B j1 . We have |B j2 | ≤ CB j2 with

	2	∂ ∂t	(Π 1 (t, x; s)|z j | 2 ) dx
	=		
	Ω θ		
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