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Abstract. We study the inverse problem of the simultaneous identification of

two discontinuous diffusion coefficients for a one-dimensional coupled parabolic

system with the observation of only one component. The stability result for the
diffusion coefficients is obtained by a Carleman-type estimate. Results from

numerical experiments in the one-dimensional case are reported, suggesting

that the method makes possible to recover discontinuous diffusion coefficients.

1. Introduction. Let Ω =]0, 1[, T > 0. We consider the following linear parabolic
system: 

∂tu1 − ∂x(c1∂x)u1 = a11u1 + a12u2 in Q,
∂tu2 − ∂x(c2∂x)u2 = a21u1 + a22u2 + h in Q,

uj(t, x) = 0 on Σ, j = 1, 2,
uj(0, x) = u0,j(x) in Ω, j = 1, 2,

(1)

where we set Q = Ω × (0, T ), Σ = ∂Ω × (0, T ). For any h ∈ L2(Q), aj,k(t, x) ∈
L∞(Q), 1 ≤ j, k ≤ 2, u0,1, u0,2 ∈ L2(Ω), c1, c2 ∈ L∞(Ω) such that c1, c2 ≥ δ > 0,
there exists a unique solution in C0([0, T ]; (H1

0 (Ω)2)) to the linear system (1), (e.g.,
[12, Chap. 7], [14, Chap. 3]). We denote it by U(u0, h; c) =
(U1(u0, h; c), U2(u0, h; c)), with c = (c1, c2), u0 = (u0,1, u0,2).

Let us introduce the following inverse problem. Let t0 ∈ (0, T ), θ ∈ (t0, T ), and
a non empty open interval ω ⊂⊂ Ω be arbitrarily fixed. We restrict the function
h in (1) to have support in (t0, T )× ω and the diffusion coefficients cj(·), j = 1, 2,
to be time–independent and to belong to the set E of positive piecewise smooth
functions in Ω. The problem is to determine the discontinuous diffusion coefficients
c1, c2 by observation data U2(u0, h; c)|(t0,T )×ω, U(u0, h; c)|t=θ. Then, from the
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knowledge of c, we obtain the finite set of singularities of cj : the interface Scj ⊂ Ω,
j = 1, 2. Around known c̃ = (c̃1, c̃2), we will determine c = (c1, c2), which means
that we can know the solution U(u0, h; c) and Sc1 , Sc2 , which are unknowns of the
inverse problem. In the formulation of the inverse problem, the initial values are
also unknown. In the numerical part, a primal-dual path following interior-point
method is used to recover c. The method used in this work is similar as was used
in [11]. For general references to interior-point methods see [18, 29, 6].

Throughout this paper we use the following notations:
for s ∈ R, L2(Hs) = L2(0, T ;Hs(Ω)), H1(Hs) = H1(0, T ;Hs(Ω)).
The formal heat operator associated with a conductivity ξ ∈ E is written

L(ξ)q = ∂tq +A(ξ)q,

where A(ξ) = −∂x(ξ∂x·) is the formal spatial operator.
We define a self adjoint operator on L2(Ω; dx) by A(ξ)p = A(ξ)p, with domain
D(A(ξ)) = {p ∈ H1

0 (Ω) , A(ξ)p ∈ L2(Ω)}. The solution U(u0, h; c) belongs to
C0([0, T ]; (L2(Ω))2)∩C2((0, T ];D(A(c1))×D(A(c2))) for sufficiently smooth h. We
need to introduce, for a positive number R, the sets:

E(R) = {ξ ∈ E ; ‖ξ|Ω\Sξ‖W 1,∞(Ω\Sξ) ≤ R},
L2
R = {f ∈ L2(Ω); ‖f‖L2(Ω) ≤ R},

where we set

E = {ξ : Ω→ (0,+∞); ξ is piecewise smooth}.
Finally, we assume that the coefficients a21 and a12 check the condition:

(C-1): ∃δ > 0, |a21| ≥ δ > 0 and |a12| ≥ δ > 0 in ω.

Let us present the main theoretical result of this paper.

Theorem 1.1. (Stability) - Let R > 0, c̃ ∈ E2. Under (C-1) there exist C > 0,
h ∈ C∞c ((t0, T )× ω) such that, for all c ∈ E(R)2, u0, ũ0 ∈ (L2

R)2, we have

‖c− c̃‖L2(Ω) ≤ C
( ∑
k=1,2

‖∂kt (u2 − ũ2)‖L2((t0,T )×ω) + ‖∂t(u− ũ)|t=θ‖L2(ω)

+‖(u− ũ)|t=θ‖H2(ω) + ‖(u− ũ)|t=θ‖H1(Ω)

)
.

Corollary 1. (Local Uniqueness) - Let R > 0, c̃ ∈ E2. Under (C-1) there exists
h ∈ C∞c ((t0, T ) × ω) such that, for all c ∈ E(R)2, u0, ũ0 ∈ (L2

R)2, if u2 = ũ2 in Q
and u(θ, ·) = ũ(θ, ·) in Ω, then c = c̃ and u0 = ũ0.

The domain of inverse problems and control problems for systems of coupled
reaction-diffusion equations has recently been the subject of several papers (see e.g.
[7, 2, 3, 8, 21, 22]). In all these papers, the diffusion coefficients are assumed to
be smooth enough. Few results concern discontinuous diffusion coefficients. For
the scalar case, we can cite [5, 19] where the authors established the uniqueness
and stability results for both the discontinuous diffusion coefficients and the initial
condition, from the measurement of the solution on an arbitrary part of the bound-
ary, and for some arbitrary non negative time θ on all the domain Ω. For coupled
reaction-diffusion coefficients with discontinuous conductivities, at our knowledge,
any result exists.

The first part of this work is devoted to the proof of Theorem 1.1. We follow the
same steps than in [19]: we show Carleman estimates for systems of heat equations
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(see Theorems 2.3, 2.4, Corollaries 3, 4) and for a stationary first-order equation
(13). The difficulty that arises here for the case of a system is to deal with the same
Carleman weight – the spatial function ϕ(x) – adequate for any parabolic equation of
the system. Carleman weight functions for one heat equation in the one-dimensional
space are built in [4]. But we need two additional properties on ϕ when we deal
with the first-order linear equation (13) where ξ(x) is the unknown. Firstly, since
ρ∂xϕ is sufficiently smooth for some positive function ρ, we are able to prove a
stability result for (13) by using only one measurement. Secondly, the explicit form
of ϕ in ω allows us to prove this stability result without the knowledge of c1 and
c2 in ω. Hence the formulation of Theorem 1.1 only involves one measurement at
t = θ without the knowledge of c1, c2 in ω.

In the numerical part of this work, we restore the discontinuous diffusion coeffi-
cients by solving an optimization problem with parabolic constraints. To this we ap-
ply a primal-dual path following interior-point method. Primal-dual interior-point
methods have been used to solve optimal control problems with PDE constraints in
[1, 10, 23, 25, 24, 26, 28, 30]. In particular, in [16, 17, 20], primal-dual interior-point
methods were applied to optimal control problems with parabolic constraints. Up
to our knowledge, besides the optimal control problems stated above, the similar
studies of recovering the diffusion coefficients by applying primal-dual interior-point
methods have not been proposed in the literature before.

The outline of the paper is as follows. In Section 2 we prove a Carleman esti-
mate for the system with the observation of only one component, and a Carleman
estimate for a stationary first order equation. We use these estimates to prove our
main stability result for the diffusion coefficients c1(x) and c2(x). In Section 3 the
primal-dual path following interior-point method is presented. Section 4 presents
and discusses the results of the numerical experiments and Appendix contains the
remaining proofs.

2. Stability results. We introduce some notations. For ξ ∈ E let

D(L(ξ)) = {q : q ∈ L2(0, T ;H1
0 (Ω)), L(ξ)q ∈ L2(Q)},

D(L∗(ξ)) = {q : q ∈ L2(0, T ;H1
0 (Ω)), L∗(ξ)q ∈ L2(Q)} .

The differential operators L(ξ), L∗(ξ) with respective domain D(L(ξ)), D(L∗(ξ))
are denoted by L(ξ), L∗(ξ). For any r > 0, the domain of the non-bounded self-
adjoint operator Ar(c) = (Ar(c1), Ar(c2)) on (L2(Ω))2 is D(Ar(c)) = D(Ar(c1))×
D(Ar(c2)).
We denote by Sξ the total interface associated with ξ ∈ E , that is,

Sξ := {x ∈ Ω; ξ or ∂xξ is discontinuous at x}.

Notice that Sξ is a finite set. We write Scj = Sj , ∪2
j=1Sj = Sc, S c̃j = S̃j ,

Sc̃ = ∪2
j=1S̃j = S̃.

For a piecewise smooth function q, we define q±(x) = limε↘0 q(x ± ε), [q]x =
q+(x)− q−(x).
If V is an open interval of R and f a function defined in V ′ ⊃ V , we write
f |V ∈ Ck(R), k ∈ [0,∞], if f |V can be extended as a Ck function in R.
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Let us recall some tools used in [4] that provide a global Carleman estimate for
one heat equation of the form ∂tq − ∂x(ξ∂xq) + b∂xq + aq = f in (0, T )× Ω

q(t, ·) = 0 on (0, T )× ∂Ω,
q(0, ·) ∈ L2(Ω).

(2)

We also consider the adjoint equation to (2): −∂tq − ∂x(ξ∂xq)− ∂x(bq) + aq = f in (0, T )× Ω
q(t, ·) = 0 on (0, T )× ∂Ω,
q(T, ·) ∈ L2(Ω).

(3)

The coefficients a, b are measurable scalar functions of t, x, with a, b, ∂xb bounded
in Q, and ξ ∈ E . Let us give the following simplified global Carleman estimate (see
[4, Theorem 1.3]):

Proposition 1. There exist a negative Lipschitzian function ϕ in Ω, and C > 0,
s0 > 0, such that, for all s > s0 and for all q satisfying (2) or (3) with f ∈ L2(Q),
we have ∫

Q

(
Π−1|∂tq|2 + Π−1|A(ξ)q|2 + Π1|∂xq|2 + Π3|q|2

)
dx dt (4)

≤ C
(∫

(0,T )×ω
Π3|q|2 dx dt+

∫
Q

Π0|f |2 dx dt
)
,

where we set

η(t) =
T 2

t(T − t)
, (5)

Πr(t, x; s) = srηr(t)e2sη(t)ϕ(x), s ∈ R+, r ∈ R, (t, x) ∈ Q. (6)

The ”weight” function ϕ is not uniquely defined but satisfies the following prop-
erties.

1. ϕ is continuous and piecewise smooth. The set Sϕ of discontinuities of ∂xϕ is
finite (this point is not crucial) and contains Sξ,

2. −C2 ≤ ϕ ≤ −C1 < 0 in Ω = (0, 1),
3. ∂xϕ(x) ≥ δ > 0 for x ≤ inf ω, x 6∈ Sϕ and ∂xϕ(x) ≤ −δ for x ≥ supω, x 6∈ Sϕ,
4. There exists a sufficiently large K > 0 such that [∂xϕ]x ≥ K at each x ∈ Sϕ.

Remark 1. We assume that ω ∩ S c̃j = ∅, j = 1, 2, since we always can reduce ω.

Remark 2. Let S′ be any finite subset of Ω \ ω that contains Sξ. Then one can
choose ϕ such that Sϕ = S′.

We call such functions ϕ, that satisfy the above conditions, ”Carleman weight
functions”. It has to be notice that ϕ depends on the conductivity ξ.

With the same notations we obtain the following result.

Corollary 2. Assume that in (2) (respectively, in (3)) the function f does not
belong to L2(Q) but can be written

f = f0 + ∂xf1,

with (f0, f1) ∈ (L2(Q))2. Then there exist C > 0, s0 > 0, such that for all s > s0

and for all q satisfying (2) or (3) we have∫
Q

Π3|q|2 dx dt ≤ C
(∫

(0,T )×ω
Π3|q|2 dx dt+

∫
Q

(Π0|f0|2 + Π2|f1|2) dx dt
)
.
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The proof is given in Appendix A.2

Remark 3. In Theorem 1, Lemma 2.1 and Corollary 2, we can replace the open
set ω by any other nonempty open interval ω0 = (α1, α2) such that ω0 ⊂⊂ ω and
ω0 ⊃ (∂xϕ|ω)−1({0}).

We will need the following obvious but important lemma:

Lemma 2.1. There exists ρ ∈ E such that

ρ∂xϕ ∈W 1,∞(Ω).

Proof. We can choose ρ such that:

ρ =
1
|∂xϕ|

in Ω \ (Sϕ ∪ ω′),

where ω′ is a open interval such that ω0 ⊂⊂ ω′ ⊂⊂ ω. Then we extend smoothly ρ
inside ω′ so that ρ ≥ δ > 0.

For the sake of clarity we give a complete construction of ϕ in Ω. We assume
that ω = (α1, α2) with 0 < α1 < α2 < 1. Let S′ be an arbitrary finite set of Ω \ ω,
that contains Sξ. Let ψ(x) be a Lipschitzian function in Ω satisfying the following
conditions.

1. ψ
∣∣
∂ω

= 0, ψ is negative in Ω \ ω, ψ is positive in ω.
2. ψ is increasing in [0, α1[, and decreasing in [α2, 1].
3. [∂xψ]y > 0 at every point y ∈ S′.
4. ψ|V ∈ C2(R), where V is any connected open subset of Ω \ S′.
5. ψ±(x) = 0 implies x ∈ ω0.

Let K > maxΩ ψ, λ > 0 and set

ϕ = eλψ − eλK .

For any λ sufficiently large, ϕ is a Carleman weight function. See [13] for example.

Definition 2.2. We shall call such a function ϕ adequate for the equations (2) or
(3).

We consider now a system of two heat equations

L(cj)qj =
2∑
k=1

(bjk∂xqk + ajkqk) + fj , j = 1, 2, (7)

or the adjoint system:

L∗(cj)qj =
2∑
k=1

(−∂x(qkbkj) + akjqk) + fj , j = 1, 2, (8)

We assume that c = (c1, c2) ∈ E2, ajk, bjk, ∂xbjk ∈ L∞(Q), fj ∈ L2(Q). We denote
Scj = Sj , j ∈ [[1, 2]], S1 ∪ S2 = Sc.
If a Carleman weight function is adequate for the two equations (7) or (8), we then
call it a common weight function for the system (7) or (8). Thanks to Remark
2, there exists a common weight function ϕ, since we can choose S′ = Sc. The
function ϕ is smooth in ω, and, thanks to Remark 3, we can assume that {x ∈
Ω; ∂xϕ±(x) = 0} = {x ∈ ω; ∂xϕ(x) = 0} ⊂ ω0.

The main consequences lie in the following results.
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Theorem 2.3. There exist C = C(Q,ω, c,a,b) > 0, s0 = s0(Q,ω, c,a,b) > 0,
such that for all s > s0 and for all q = (q1, q2) satisfying (7) or (8) with f =
(f1, f2) ∈ (L2(Q))2, we have∫

Q

(
Π−1|∂tq|2 + Π−1|A(c)q|2 + Π1|∂xq|2 + Π3|q|2

)
dx dt (9)

≤ C
(∫

(0,T )×ω0

Π3|q|2 dx dt+
∫
Q

Π0|f |2 dx dt
)
,

where we set a = (ajk)jk, b = (bjk)jk, and the weight functions Πr are defined
by (6).

Corollary 3. Assume that b21 = 0, |a21| ≥ δ > 0 in ω for the system (7) (re-
spectively, b12 = 0, |a12| ≥ δ > 0 in ω for the system (8)). Then there exist
positive constants C, s0 depending on T,Ω, ω, c,a,b, δ, such that, for all s > s0,
f ∈ (L2(Q))2, q satisfying (7) (respectively, satisfying (8)), we have∫

Q

(
Π−1|∂tq|2 + Π−1|A(c)q|2 + Π1|∂xq|2 + Π3|q|2

)
dx dt (10)

≤ C
(∫

(0,T )×ω0

Π7|qk|2 dx dt+
∫
Q

Π0|f |2 dx dt
)
,

with k = 2 if q satisfies (7) (respectively, with k = 1 if q satisfies (8)).

The complete proof is in Appendix A.1. Let us consider the systems (7) or (8)
with

fj = f0j + ∂xf1j , j ∈ [[1, 2]],
where f0j , f1j ∈ L2(Q).

Theorem 2.4. There exist positive constants C, s0 such that, for all s > s0, qj
satisfying (7) (respectively, (8)), we have∫

Q

Π3|q|2 dx dt ≤ C

(∫
Q

(Π2|f1|2 + Π0|f0|2) dx dt+
∫

(0,T )×ω0

Π3|q|2 dx dt

)
, (11)

where we set q = (q1, q2), f1 = (f11, f12), f0 = (f01, f02).

Proof: see Appendix, A.3. It combines the corresponding proof in [19] and [13,
Proof of Theorem 5.1].

Corollary 4. Assume that b21 = 0, |a21| ≥ δ > 0 in ω for the system (7) (re-
spectively, b12 = 0, |a12| ≥ δ > 0 in ω for the system (8)). Then there exist
positive constants C, s0 depending on T,Ω, ω, c,a,b, δ, such that, for all s > s0, q
satisfying (7) (respectively, (8)), we have∫
Q

Π3|q|2 dx dt ≤ C

(∫
Q

(Π2|f1|2 + Π0|f0|2) dx dt+
∫

(0,T )×ω0

Π7|qk|2 dx dt

)
, (12)

where we set k = 2 for (7) (respectively, k = 1 for (8)).

The proof is in Appendix A.4

We consider now the following first-order partial differential equation with un-
known function ξ ∈ E :

− ∂x(ξ∂xw) = f in Ω, (13)
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where w ∈ H1(Ω), f ∈ L2(Ω). Let ξ̃ ∈ E be a known solution of (13) with (w, f)
replaced by (w̃, f̃) ∈ H1(Ω) × L2(Ω). In fact we consider that ξ̃ = c̃1 or ξ̃ = c̃2,
and, respectively, w̃(x) = ũ1(θ, x) or w̃(x) = ũ2(θ, x). We look for a L2(Ω)-estimate
on γ := ξ − ξ̃, derived from a Carleman inequality. Let ϕ be a common weight
function for the system (1), with c̃ = (c̃1, c̃2) replacing c. We set S = Sξ, S̃ := S ξ̃,
πr(x; s) = Πr(θ, x; s), where s is a large parameter, and Πr is defined by (6). We
recall that θ ∈ (0, T ).

Our result is based on the method developed in [19]. We consider the following
conditions on w̃:

(HS1): w̃ ∈W 1,∞(Ω),

(HS2): |∂xw̃| ≥ δ > 0 a.e in Ω \ ω0.

The following lemma will be proved in Appendix A.5

Lemma 2.5. Let R > 0. Assume that ξ ∈ E(R), then, under (HS1) and (HS2),
there exist C1, s0 > 0 such that, ∀s ≥ s0, ∃ C2(R; s) > 0 so that∫

Ω\ω0

π3|γ|2dx ≤ C1

(∫
Ω

π1|f − f̃ |2 dx+
∫
ω0

π2|γ|2 dx
)

(14)

+C2(R, s)‖w − w̃‖2H1(Ω).

Remark 4. An assumption like w̃ = 0 on Γ is superfluous.
The constants C1, s0, C2 depend on ξ̃, ϕ, but not on ξ.
The constant C1 does not depend on R, s.

The second following lemma completes Lemma 2.5 and gives a L2 - estimate for
γ in some neighbourhood of ω0. We consider the following third condition on w̃:

(HS3): There exists an open interval ω1 such that
1. ω0 ⊂⊂ ω1 ⊂⊂ ω,
2. w̃

∣∣
∂ω1

is constant,
3. w̃ ∈ C2(ω1) and |∂xw̃|2 − (w̃ − w̃

∣∣
∂ω1

)∂2
xw̃ ≥ δ > 0 in ω1.

Lemma 2.6. Let R > 0, ξ ∈ C1(ω2) with ‖ξ‖W 1,∞(ω1) ≤ R. Then, under (HS3),
there exist C3, C4(R) > 0 such that∫

ω1

|γ|2dx ≤ C3

∫
ω1

|f − f̃ |2 dx+ C4(R)‖w − w̃‖2H2(ω1).

The constants C3, C4 do not depend on ξ.

Proof. Set v = w̃ − w̃|∂ω1 ∈ H1
0 (ω1). Then −∂x(ξ̃∂xv) = f̃ . Moreover v ∈ H2(ω) ⊂

L∞(ω). In ω1, we have

−∂x(γ∂xv) = f − f̃ + ∂x(ξ∂x(w − w̃)).

We multiply this equality by γv and we integrate by parts the first term in ω1. We
then obtain∫

ω1

γ2
(
|∂xv|2 −

1
4
∂2
x(v2)

)
dx =

∫
ω1

(
f − f̃ + ∂x(ξ∂x(w − w̃))

)
γv dx.

Thanks to (HS3), we have

|∂xv|2 −
1
4
∂2
x(v2) =

1
2

(|∂xv|2 − v∂2
xv) ≥ δ/2.
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Hence ∫
ω1

γ2 dx ≤ C(δ)
∫
ω1

(
|f − f̃ |+ |∂x(ξ∂x(w − w̃))|

)
|γ|dx.

Then, thanks to Schwarz’s inequality,∫
ω1

γ2 dx ≤ C
∫
ω1

(
|f − f̃ |+ |∂x(ξ∂x(w − w̃))|

)2

dx. (15)

Since
1
2
‖∂x(ξ∂x(w − w̃))‖L2(ω1) ≤ sup

ω1

|∂xξ| ‖∂x(w − w̃)‖L2(ω1) +

sup
ω1

|c|‖∂2
x(w − w̃)‖L2(ω1)

≤ R‖w − w̃‖H2(ω1),

the conclusion follows (15).

Mixing lemmas 2.5 and 2.6, we straightforwardly obtain the following result.

Proposition 2. Let R > 0. Assume that ξ ∈ E(R). Then, assuming (HS1)
(HS2), (HS3), there exist C1, s0 > 0 such that, for all s ≥ s0, there exists
C2(s) > 0 satisfying∫

Ω

π3|γ|2 dx ≤ C1

(∫
Ω\ω

π1|f − f̃ |2 dx+
∫
ω

π2|f − f̃ |2 dx
)

+C2(R; s)
(
‖w − w̃‖2H1(Ω) + ‖w − w̃‖2H2(ω)

)
,

where C1, C2 depend on δ, ξ̃ but not on (ξ, f, w).

Proof of the main result.

We use the following notations. For V ⊂ Ω, we say that a function b defined
in Ω belongs to D(A(ξ))|V for some r > 0 if it can be extended as a function in
D(Ar(ξ)).
We set S = Sc = ∪2

j=1Sj , u = (u1, u2) = U(u0, h, c), ũ = (ũ1, ũ2) = U(ũ0, h, c̃).
We consider a common weight function ϕ for the system (7) where c̃ replaces c.

Step 1. Firstly we show that we can build h such that, for all ũ0 ∈ (L2(Ω)R)2, ũj ,
j = 1, 2, satisfy the conditions (HS2) and (HS3).
Set j ∈ [[1, 2]], k ∈ N and consider the conductivity cj . We need the following
result.

Lemma 2.7. Let ω1 be any non empty open interval such that ω0 ⊂⊂ ω1 ⊂ ω.
Then there exists a lipschitzian function b̃j ∈ D(A(cj)) ∩D(A

3
2 (cj))

∣∣
ω

such that

b̃j |∂ω1 = Cste > 0; (16)

∂xb̃
±
j (x) ≥ C > 0, ∀x ≤ α′1; (17)

∂xb̃
±
j (x) ≤ −C < 0, ∀x ≥ α′2; (18)

|∂xb̃j |2 − (b̃j − b̃j |∂ω)∂2
xb̃j ≥ C > 0 in ω1; (19)

where ω0 = (α′1, α
′
2).
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Proof. Firstly, notice the following points. The domain D(A(cj)) is the vecto-
rial space of functions f ∈ H1

0 (Ω) such that cj∂xf ∈ H1(Ω). Since cj is smooth
in a neighborhoud of ω, if f ∈ D(A(cj)), then f

∣∣
ω
∈ H2(ω), and f is continu-

ously differentiable in ω. Moreover, for r > 0, D(Ar(cj))
∣∣
ω

= H2r(ω) ⊃ C2r(ω),
D(Ar(cj))

∣∣
ω1

= H2r(ω1) ⊃ C2r(ω1). Since the spatial dimension is one, if
f ∈ H3(ω), then f is twice continuously differentiable in ω, and if f ∈ H3(ω1) ∩
H3(ω\ω1), then f ∈ H3(ω) if and only if [f ]y = [∂xf ]y = [∂2

xf ]y = 0 for all y ∈ ∂ω1.
Set ω1 = (α3, α4). Let r > 0, and g1, g2 be two smooth positive functions in R

satisfying

g1(α3)
cj(α3)

=
g2(α4)
cj(α4)

= r(α4 − α3), (20)∫ α3

0

g1(y)
dy

cj(y)
=
∫ 1

α4

g2(y)
dy

cj(y)
= 1. (21)

Put

b(x) =



∫ x

0

g1(z)
dz

cj(z)
, x ∈ [0, α3],

r(x− α3)(α4 − x) + 1 , x ∈ [α3, α4],∫ 1

x

g2(z)
dz

cj(z)
, x ∈ [α4, 1].

Then b satisfies conditions (16), (17), (18), (19), with b, cj∂xb ∈ C2(Ω \ ω1),
b|ω1 ∈ C∞(R), [b]y = [∂xb]y = 0, ∀y ∈ ∂ω1.
Hence b belongs to D(A(c)) ∩ D(A

3
2 (c))|ω1 ∩ D(A

3
2 (c))|Ω\ω1 , but b 6∈ D(A

3
2 (c))|ω

since the property ([∂2
xb]y = 0, ∀y ∈ ∂ω1) fails. We then consider b̃j as a regular-

ization of b near ω1, sufficiently closed to b in W 2,∞(ω1) and such that b̃j = b on
∂ω1.

Set ω1 be a non empty open interval such that ω0 ⊂⊂ ω1 ⊂⊂ ω, b̃j , j = 1, 2,
as in Lemma 2.7, and b̃ = (b̃1, b̃2). As in [19, Proof of Corollary 3.1], the set
G := {U(0, h, c)(θ), h ∈ C∞0 ((t0, T )× ω0)} is dense in D(Ar(c)) equipped with the
norm

∑
j=1,2 ‖Ar(cj)pj‖L2(Ω), for all r ∈ R+. This comes thanks to (3) applied

to (8), the system (1) is approximatively controllable in D(Ar(c)). Then, for any
ε > 0, there exists h ∈ C∞0 ((t0, T )× ω0) such that

‖U(0, εh, c̃)|t=θ − b̃‖D(A(cj)) + ‖U(0, εh, c̃)|t=θ − b̃‖
D(A

3
2 (cj))|ω

< ε, j = 1, 2. (22)

Observe that if p ∈ D(A(cj)) then p
∣∣
Ω\Sj

∈ H2(Ω \ Sj). See for example [5, Prop.
A.4] for a proof. Moreover, [p]y = 0 for all y ∈ Sj . Hence p ∈W 1,∞(Ω), since, in the
one dimensional case, H1(Ω) ⊂ C0(Ω) ⊂ L∞(Ω). Thus, D(A(cj)) ⊂W 1,∞(Ω) with
continuous embedding. Furthermore, we have D(A

3
2 (cj))|ω = H3(ω) ⊂ W 2,∞(ω),

with continuous embedding. From (22), we thus have

‖U(0, εh, c̃)|t=θ − b̃‖W 1,∞(Ω) + ‖U(0, εh, c̃)|t=θ − b̃‖W 2,∞(ω) < ε, j = 1, 2. (23)

Here, b̃ = (b̃1, b̃2). Let ũ0 ∈ L2
R and put

p = (p1, p2) = εU(ũ0, h, c̃)|t=θ.

Observing that U(·, ·, c̃) is linear in the two first variables, we thus have

p = b̃ + (U(0, εh, c̃)|t=θ − b̃) + εU(ũ0, 0, c̃)|t=θ.
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Since

‖U(ũ0, 0, c̃)|t=θ‖W 1,∞(Ω) + ‖U(ũ0, 0, c̃)|t=θ‖W 2,∞(ω) < C(R),

where C(R) does not depend on ũ0, then, thanks to (16), (17), (18), (19), (23),
for all ε > 0 sufficiently small, for j = 1, 2, there exist an open interval ωj1 and a
positive constant C such that ω0 ⊂⊂ ωj1 ⊂⊂ ω, and

pj |∂ωj1
= Cste > 0, (24)

∂xpj ≥ C > 0 a.e. x < α′1, (25)
∂xpj ≤ −C < 0 a.e. x > α′2, (26)

|∂xpj |2 − (pj − pj |∂ωj )∂2
xpj ≥ C > 0 in ωj1. (27)

Hence, ε−1p = U(ũ0, h, c̃)|t=θ satisfies (24), (25), (26), (27) (with other constants),
and so, for all j = 1, 2, ũj satisfies (HS2) and (HS3).

Step 2. For all ε > 0, the function ũ belongs to H3(ε, T ;D(Ar(c))) with arbitrary
large r. Thus ∂kt ũ ∈ (L∞(ε, T ;W 1,∞(Ω)))2, k = 0, 1, 2, and

‖∂kt ũj‖L∞(ε,T ;W 1,∞(Ω)) ≤ C(R), k = 0, 1, 2, j = 1, 2,

since the choice of h depends on R but not on ũ0. For the same reason and since
c ∈ E(R)2, we also have

‖∂kt uj‖L∞(ε,T ;W 1,∞(Ω)) ≤ C(R), k = 0, 1, 2, j = 1, 2.

Since we can consider the system (1) starting at time t0 we can replace t0 and ε
by 0 and omit it in the proof.
We set vj(x) := uj(θ, x), ṽj(x) := ũj(θ, x), zj := ∂tuj−∂tũj , wj = ∂tzj , γj := cj−c̃j .
Notice that the following conditions are satisfied:

(H1): ∀j ∈ [[1, 2]], ṽj satisfies (HS1).
(H2): ∀j ∈ [[1, 2]], ṽj satisfies (HS2).
(H3): ∀j ∈ [[1, 2]], ṽj satisfies (HS3).
(H4): ∂kt uj , ∂

k
t ũj ∈ L2(W 1,∞), j = 1, 2, k = 0, 1, 2.

We have:{
∂tzj − ∂x(c̃j∂xzj) =

∑2
k=1 ajkzk + ∂x(γj∂x∂tuj) in Q,

zj(t, x) = 0 on Σ,

By differentiating (28) according to t we have:{
∂twj − ∂x(c̃j∂xwj) =

∑2
k=1 ajkwk + ∂x(γj∂x∂2

t uj) in Q,
wj(t, x) = 0 on Σ.

We also have the following equalities:

∂x(cj∂xvj) = fj ≡ ∂tuj(θ)−
∑
k

ajkvk − δ2jh(θ), (28)

∂x(c̃j∂xṽj) = f̃j ≡ ∂tũj(θ)−
∑
k

ajkṽk − δ2jh(θ). (29)
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We set

Bj1 :=
∫

Ω

1
2
π1|zj(θ)|2 dx,

B1 :=
∑
j=1,2

Bj1.

Lemma 2.8. Under (H1)–(H4), there C1, s0 > 0 such that, for all s > s0, there
exists C2(s) > 0 satisfying:

B1 ≤ C1

∫
Ω

π1|γ|2 dx+ C2(s)
(∫

(0,T )×ω
(|z2|2 + |w2|2) dx dt

)
. (30)

B1 ≥ C−1

∫
Ω

π3|γ|2 dx− C2(s)
(∫

ω

|z(θ)|2 dx+ ‖v − ṽ‖2H1(Ω) (31)

+‖v − ṽ‖2H2(ω)

)
,

where γ = (γ1, γ2). Recall that we set πr(x) := Πr(θ, x; s) and the constants may
depend on R.

See the proof in Appendix A.6.
Thanks to (30), (31) we obtain∫

Ω

π3|γ|2 dx ≤ C(s)
(∫

(0,T )×ω
(|z2|2 + |w2|2) dx dt+

∫
ω

|z(θ)|2 dx

+‖v − ṽ‖2H2(ω) + ‖v − ṽ‖2H1(Ω)

)
,

for all s > s0. The conclusion follows.

3. Numerical algorithm. We begin the derivation of the primal-dual path fol-
lowing interior-point method by presenting the constrained minimization problem
related to recovering c.

Based on the theory presented in Section 2 and in particular on Theorem 1.1 and
Corollary 1 reconstructing two discontinuous diffusion coefficients amounts to the
minimization of the following functional

min
{

1
2
‖∂t(u2 − ũ2)‖L2(ωt0,T ) +

1
2
‖∂2
t (u2 − ũ2)‖L2(ωt0,T )

}
(32)

subject to 
∂tu1 − ∂x(c1∂x)u1 = a11u1 + a12u2 in Q,
∂tu2 − ∂x(c2∂x)u2 = a21u1 + a22u2 in Q,
uj(t, x) = 0 on Σ, j = 1, 2,
uj(0, x) = u0,j(x) in Ω.

and u(θ, ·) = ũ(θ, ·) in Ω .
The minimization of (32) can be reformulated into a QP form as follows:

min
{

1
2
uT2 (DTD +DT

2 D2)u2 − uT2 (DTD +DT
2 D2)ũ2 +

1
2
ũT2 (DTD +DT

2 D2)ũ2

}
where we have denoted ∂t =: D and ∂2

t =: D2. Note that the functional in (32)
depends only on u2 and the aim is to recover c = (c1(x), c2(x)) hence we have
both the u = (u1(t, x), u2(t, x)) and c = (c1(x), c2(x)) as the unknowns in our QP
problem. This implies that (1) becomes non-linear with respect to solving the QP
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optimization problem. Hence in recovering the discontinuous diffusion coefficients
we consider the linearized version of (1)

∂tu1 − ∂x(c̃1∂x)u1 − a11u1 − a12u2 − ∂x(c1∂x)ũ1 = −∂x(c̃1∂x)ũ1 in Q,
∂tu2 − ∂x(c̃2∂x)u2 − a21u1 − a22u2 − ∂x(c2∂x)ũ2 = −∂x(c̃2∂x)ũ2 in Q,

uj(t, x) = 0 on Σ, j = 1, 2,
uj(0, x) = u0,j(x) in Ω.

(33)
Next we denote (33) together with the constraint u(θ, ·) = ũ(θ, ·) by Rx = r and

write the constraint minimization problem as follows

min
(

1
2
xTKx + kTx + κ

)
s.t. x ∈ F1 (34)

where x =


u1

u2

c1
c2

, K =


0 0 0 0
0 DTD +DT

2 D2 0 0
0 0 0 0
0 0 0 0

, k =


0

−(DTD +DT
2 D2)ũ2

0
0

,

κ = 1
2 ũ

T
2 (DTD + DT

2 D2)ũ2, F1 = {x | Rx = r, ` ≤ x ≤ ν}, ` =


−M
−M
cmin
1

cmin
2

 and

ν =


M
M
cmax
1

cmax
2

, (cmin
1 , cmin

2 ) > 0, (cmax
1 , cmax

2 ) < R and M >> 0 so that the con-

straint on u = (u1, u2) is practically ineffective.
We start the derivation of the interior point method by introducing slack vari-

ables in order to replace the inequality constraints with simpler non-negativity con-
straints (the non-negativity constraints are enforced separately) thus the primal
problem becomes

min
(

1
2
xTKx + kTx + κ

)
s.t. x ∈ F (35)

F = {x| Rx = r, x− ` = g, ν − x = p} and g, p ≥ 0, where x, g and p are vectors
in Rn1 , r is a vector in Rn2 , K is an n1 × n1 matrix and R is an n2 × n1 matrix.
The dual of (35) is

max
(
κ+ rT y + `T z − νTn− 1

2
xTKx

)
s.t. RT y + z − n−Kx = r (36)

z, n ≥ 0, y free,

where y is a vector in Rn2 and z and n are vectors in Rn1 . The dual variables
z, n are complementary to the nonnegative primal variables g, p which implies that
z, n ≥ 0.

Next we define the central path which yields the path that is followed in our
approach. The central path, parameterized by µ, can be defined as
P{(xµ, gµ, pµ, yµ, zµ, nµ) | µ > 0}. Each µ > 0 define the associated central path
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point in the primal-dual space that satisfies simultaneously the conditions of primal
feasibility, dual feasibility and µ-complementarity, namely the conditions

RT y + z − n−Kx = k

Rx = r

x− g = ` (37)
x + p = ν

GZ1 = µ1

PN1 = µ1

where 1 is a vector of all ones, G,Z, P and N are diagonal matrices with ele-
ments gi, zi, pi, ni respectively. These conditions are the optimality conditions, of-
ten known as Karush-Kuhn-Tucker (KKT) conditions, for a Fiacco-McCormick [9]
type logarithmic barrier formulation of problem (34). The logarithmic barrier for-
mulation of (34) writes

min
1
2
xTKx + kTx + κ− µ

(∑
i

log gi +
∑
i

log pi

)
(38)

s.t Rx = r.

As µ→ 0 the trajectory P converges to the optimal solution of both the primal
and dual problem. At the optimal point (x∗, g∗, p∗, y∗, z∗, n∗), µ ≡ 0 and the primal
objective function is equivalent with the dual objective function. Further this means
that (38) is equivalent with (34) and the conditions (37) are the KKT conditions
for the original problem (34).

When K is positive semidefinite these KKT conditions are both necessary and
sufficient optimality conditions for the QP problem [18] hence we can solve the QP
problem (34) by finding a solution to the system (37). We write the KKT conditions
in a form on a mapping F from R5n1×n2 to R5n1×n2 by

F (x, g, p, y, z, n;µ) =


Kx−RT y − z + n+ k

r −Rx
`− x + g
x + p− ν
GZ1− µ1
PN1− µ1

 = 0. (39)

Assuming that µ is fixed and applying Newton’s method to (39) we obtain


−K 0 0 RT I −I
R 0 0 0 0 0
I −I 0 0 0 0
I 0 I 0 0 0
0 G−1Z 0 0 I 0
0 0 P−1N 0 0 I




∆x
∆g
∆p
∆y
∆z
∆n

 =


Φ
Λ
Λg
Λp
Γz
Γn
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where

Φ = k +Kx−RT y − z + n

Λ = r −Rx

Λg = `− x− g
Λp = ν − x− p
Γz = µG−11− z −G−1∆gT∆z
Γn = µP−11− n− P−1∆pT∆n

We can eliminate ∆p,∆g,∆z and ∆n without producing any off-diagonal fill-ins
in the remaining system hence resulting into a reduced KKT system given by

[
−(K +NP−1 +G−1Z) RT

R 0

] [
∆x
∆y

]
=
[

Φ̃
Λ

]
,

where Φ̃ = Φ− Γn − Γz −NP−1Λp −G−1ZΛg and

∆z = Γz +G−1Z (Λg −∆x)

∆n = Γn +NP−1 (∆x− Λp)

∆g = GZ−1 (Γz −∆z)
∆p = N−1P (Γn −∆n)

The algorithm for solving the problem is based on Mehrotra’s [15] predictor-
collector method and it proceeds iteratively from an initial point (x0, g0.p0, y0, z0, n0)
through a sequence of points determined from the search directions described above

xk+1 = xk + αprimal∆x

gk+1 = gk + αprimal∆g

pk+1 = pk + αprimal∆p

yk+1 = yk + αdual∆y
zk+1 = zk + αdual∆z
nk+1 = nk + αdual∆n

The step lengths αprimal and αdual are obtained as follows; first we compute the
maximal feasible step length in order to enforce the non-negativity requirements
(gk+1, pk+1, zk+1, nk+1) > 0

αmax
p = 0.95×min

(
min

(
− g

∆g

)
,min

(
− p

∆p

)
, 1
)

αmax
d = 0.95×min

(
min

(
− z

∆z

)
,min

(
− n

∆n

)
, 1
)
.

Then we set αdual = αmax
p and compute αprimal by using a backtracking line search

on the interval
[
0, αmax

p

]
. As the choice of the duality measure µ we use a similar

formulation as proposed in [27].
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4. Numerical examples. The observation data U2(u0, h; c)|ωt0,T , U(u0, h; c)|t=θ
was simulated as follows. T was set to T = 1 and Gaussian noise εnoise ∼ N (0, σ2I)
with a standard deviation of 1% of the maximum of the noiseless observations was
added to the simulated data. A more dense grid was used for the generation of the
data than was used in any of the computations of the diffusion coefficients, thus
avoiding the inverse grime.

The problem of recovering the discontinuous diffusion coefficients related to the
optimization problem

min
{

1
2
‖D(u2 − ũ2)‖2L2(ωt0,T ) +

1
2
‖D2(u2 − ũ2)‖2L2(ωt0,T )

}
subject to

∂tu1 − ∂x(c̃1∂x)u1 − a11u1 − a12u2 − ∂x(c1∂x)ũ1 = −∂x(c̃1∂x)ũ1 in Q,
∂tu2 − ∂x(c̃2∂x)u2 − a21u1 − a22u2 − ∂x(c2∂x)ũ2 = −∂x(c̃2∂x)ũ2 in Q,

uj(t, x) = 0 on Σ, j = 1, 2,
uj(0, x) = u0,j(x) in Ω.
ũ(θ, x) = u(θ, x)

u(θ, ·) = ũ(θ, ·)
was discretized as follows. Let t ∈ [0, T ], x ∈ [0, 1] and let Nt denote the number
of steps in time and Nx the number of steps in space. Nt and Nx are related to
n1 and n2 by n1 = 2(Nx × Nt + Nx + 1) and n2 = 4(Nx × Nt), respectively. We
approximate the time derivative ∂t by the explicit Euler method and the spatial
derivatives ∂x by the finite difference method. In the following calculations we use
Nx = 128 and Nt = 80 and consider two different piecewise regular realizations of
the c̃.

In order to study the accuracy of the computed reconstructions quantitatively
we compute the relative errors of c1(x) and c2(x) in Ω with respect to c̃1(x) and
c̃2(x), respectively

δcj =
‖c̃j(x)− cj(x)‖L2

‖c̃j(x)‖L2
, j = 1, 2.

Figures 1 and 2 show the reconstructed piecewise regular diffusion coefficient for
two different test cases. The relative errors related to the reconstructions in figure
1 are δc1 = 0.1541 and δc2 = 0.1127. The corresponding relative errors related to
figure 2 are δc1 = 0.1443 and δc2 = 0.0802.

The numerical simulations indicate that the primal-dual path following interior-
point method with the observation data U2(u0, h; c)|ωt0,T , U(u0, h; c)|t=θ of Theo-
rem 1.1 allow an accurate reconstruction of the discontinuous diffusion coefficients
c1 and c2.
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0 Ωc1 Ωc2ω 1
0
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Figure 1. Reconstructions of c1 and c2 . The results for c1 are
denoted by black dots and the results for c2 are denoted by gray
dots. c̃1 is denoted by solid line and c̃2 by a dashed line. The
relative error δerror for c1 = 0.1541 in Ω and for c2 = 0.1127 in Ω.

0 Ωc1 Ωc2 ω 1
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Figure 2. . Reconstructions of c1 and c2 . The results for c1 are
denoted by black dots and the results for c2 are denoted by gray
dots. c̃1 is denoted by solid line and c̃2 by a dashed line. The
relative error δerror for c1 = 0.1443 in Ω and for c2 = 0.0802 in Ω.
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Appendix A. . We denote the formal heat operator by L(cj)q = ∂tq + A(cj)q,
with A(cj) = −∂x(cj∂x·), and its formal adjoint by L∗j = −∂t + A(cj). We set

D(Aj) = {u ∈ H1
0 (Ω); A(cj)u ∈ L2(Ω)} and D(L(∗)

j ) = {z : z ∈ L2(0, T ;H1
0 (Ω)),

L(∗)
j z ∈ L2(Q)}.

A.1. Proofs of Theorem 2.3 and Corollary 3. For simplicity we only consider
the system (7). The Carleman estimate (4) applied for (7) with q replaced by qj
and f by fj gives:∫

Q

(
Π−1|∂tqj |2 + Π−1|A(cj)qj |2 + Π1|∂xqj |2 + Π3|qj |2

)
dxdt ≤

C
(∫

Q

Π3|qj |2 dxdt+
∫
Q

(
Π0

J∑
k=1

(|∂xqk|2 + |qk|2) + Π0|fj |2
)

dxdt
)
.

We then sum these inequalities over j = 1, . . . , J . Thanks to CJΠ0 ≤ Π1/2, we
obtain (9).

Now we replace q2 by a−1
12 (L1q1 − b11∂xq1 − a11q1 − f1) in Q. Since ω ∩ S = ∅

we can apply the same method than in [8]. Hence (10).

A.2. Proof of Corollary 2. Set L(ξ)q := ∂tq−∂x(ξ∂xq), Pq := L(ξ)q+b·∂xq+aq,
and fix q solution of (2) with f = f0 + ∂xf1. By definition, we have, for any
g ∈ L2(Q), ∫

Q

qg dxdt =
∫
Q

(f0 z − f1∂xz) dx dt+
∫

Ω

q0 z(0) dx , (40)

where z ∈ D(L∗(ξ)) is the solution of P ∗z = g, z(T ) = 0. Here we have P∗z =
−∂tz−∂x(ξ∂xz)−∂x(bz)+az, z|Σ=0. We solve the following equation with unknown
p ∈ Q ⊃ Q0 = C2([0, T ];D(A2)), where Q is defined later:

P∗(Π0Pp) + Π3χωp = Π3q in Q. (41)

We define on (Q0)2 the bilinear symmetric form m(·, ·) and, on Q0, the linear form
b\(·) as follows :

m(p, p′) :=
∫
Q

Π0PpPp′ dxdt+
∫

(0,T )×ω
Π3pp

′ dxdt ,

b\(p′) :=
∫
Q

Π3qp
′ dx dt .

Notice that Q0 ⊂ D(L), and so we can apply the Carleman estimate (4):∫
Q

Π3p
2 dxdt ≤ Cm(p, p) , (42)

for all p ∈ Q0. This implies that Q0 equipped with ‖p‖m :=
√
m(p, p) is a normed

space. Then we denote by Q the closure of Q0 with this norm. So Q equipped with
the bilinear form m(·, ·) is an Hilbert space and (42) holds for any p ∈ Q. Thanks
to the Cauchy–Schwarz estimate and to (42), we then have for any p ∈ Q:

|b\(p)| ≤
(∫

Q

Π3|q|2 dx dt
) 1

2
(∫

Q

Π3|p|2 dx dt
) 1

2

≤ C
(∫

Q

Π3|q|2 dxdt
) 1

2

‖p‖m .

(43)
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So the form b\ is m-continuous. Hence, we can apply the Lax–Milgram theorem to
the following equation with unknown p ∈ Q:

m(p, p′) = b\(p′) for any p′ ∈ Q. (44)

We denote by p the unique solution in Q of (44) and we set w := −Π3χωp, g =
w + Π3q, z = Π0Pp. Notice that z ∈ D(L∗(ξ)), z(0, ·) = z(T, ·) = 0 in Ω, and
thanks to (41), we have P ∗z = g = w + Π3q. Furthermore, thanks to (40),∫

Q

Π3q
2 dxdt = −

∫
Q

f1 · ∂xz dxdt+
∫
Q

f0 z dx dt+
∫
Q

Π3qpdxdt .

Thanks to (43), we have

m(p, p) = b\(p) ≤ C
(∫

Q

Π3|q|2 dx dt
) 1

2

|m(p, p)| 12 ,

and so

m(p, p) =
∫
Q

Π−1
0 z2 dxdt+

∫
Q

(Π3)−1w2 dx dt ≤ C
∫
Q

Π3|q|2 dx dt. (45)

Let us prove the following estimate:∫
Q

(Π0)−1z2 dxdt+
∫
Q

(Π3)−1w2 dxdt+
∫
Q

(Π2)−1|∂xz|2 dxdt ≤ C
∫
Q

Π3q
2 dxdt . (46)

We set

I1 :=
∫
Q

(Π2)−1|∂xz|2ξdx dt, ,

I2 := −
∫
Q

(Π2)−1z ∂x(ξ∂xz) dx dt ,

I3 := −
∫
Q

∂x(Π−1
2 )∂xz z ξ dxdt,

I4 :=
∫
Q

Π−1
2 z w dxdt ,

I5 :=
∫
Q

Π−1
2 Π3z q dx dt,

I6 :=
∫
Q

Π−1
2 z ∂tz dxdt ,

I7 :=
∫
Q

Π−1
2 z ∂x(zb) dxdt−

∫
Q

Π−1
2 mz2 dxdt.

The Green formula holds in Q with the weight dxdt for the product
(Π2)−1 z ∂x(ξ∂xz), since ∂x(ξ∂xz) ∈ L2(Q) and Π2 ∈ L2(H1). Thus I1 = I2 + I3.
Moreover, since

−∂x(ξ∂xz) = w + Π3q + ∂tz + ∂x(zb)−mz,

then

I1 = I3 + I4 + I5 + I6 + I7. (47)
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The estimates on Ik for 3 ≤ k ≤ 6 are the same than in [19, A.2.1] (with similar
but not exactly the same notations), and so are already proved. Thanks to

Π3 Π0 ≤ C(Π2)2 (or equivalently: (Π2)−1 ≤ C(Π3 Π0)−
1
2 ),

Π2
3 Π0 ≤ C(Π2)3 ,

|∂xΠ2| ≤ CΠ3 ,

|∂tΠ2| ≤ Cs−1(Π0)−1(Π2)2 ,

where C = C(T,Ω, ω, ϕ) does not depend on s, we obtain

|I3| ≤
1
2
I1 + C

∫
Q

Π3 |q|2 dx dt , (48)

|I4|+ |I5|+ |I6| ≤ C

∫
Q

Π3q
2 dx dt . (49)

The new term is I7. We have

I7 = −
∫
Q

Π−1
2 zb∂xz dxdt−

∫
Q

(b∂x(Π−1
2 ) +mΠ−1

2 )z2 dxdt := I71 + I72 .

We can estimate I71 as for I3. Thanks to the Minkovski inequality and to (45), we
have

|I71| ≤ Cs−1

∫
Q

Π−1
2 |∂xz|2 dx dt+ Cs

∫
Q

Π−1
2 |z|2 dx dt

≤ Cs−1I1 + Cs−1

∫
Q

Π−1
0 |z|2 dxdt

≤ 1
2
I1 + Cs−1

∫
Q

Π3|q|2 dxdt. (50)

We also have

|I72| ≤ C

∫
Q

(|∂x(Π−1
2 )|+ Π−1

2 )|z|2 dxdt ≤ C
∫
Q

Π−1
0 |z|2 dxdt

≤ C

∫
Q

Π3|q|2 dxdt . (51)

From (47), (48), (49), (50) and (51), we deduce that |I1| ≤ C
∫
Q

Π3q
2 dx dt. Hence (46)

holds. The conclusion follows, as in [19].

A.3. Proof of Theorem 2.4. The system (7) with data fj = f0j + ∂xf1j , j =
1, 2 ∈ L2(H−1) can be written as

Pjqj = F0j + ∂xFj in Q,

where we set Pjqj := L(cj)qj − bjj∂xqj − ajjqj and

F0j :=
∑
k 6=j

(−∂xbjk + ajk)qk + f0j ,

Fj :=
∑
k 6=j

qkbjk + fj .



20 M CRISTOFOL, P GAITAN, K NIINIMÄKI AND O POISSON

For each j = 1, 2, we apply Corollary 2, with (f0, f) replaced by (F0,j ,Fj). Hence
we have∫

Q

Π3|qj |2 dxdt ≤ C
(∫

Q

Π3|qj |2 dxdt+
∫
Q

Π0(|q|2 + |f0j |2) dx dt (52)

+
∫
Q

Π2(|q|2 + |fj |2) dxdt
)
, ∀j = 1, 2,

where q := (q1, q2). We choose s0 such that

2(Π0 + Π2) ≤ 1
2

Π3, ∀s > s0.

We then obtain (11) by summing (52) for 1 ≤ j ≤ 2.

A.4. Proof of Corollary 4. By using (10), we mimick the proof of Corollary 2,
with the following minor modifications. Set Pq = (P1q1, P2q2), F0 = (F01, F02),
F = (F1,F2), and replace a, b respectively by a = (a1, a2), b = (b1,b2). Replace
also (41) by

P∗(Π0Pp) + Π7χωp2 = Π3q in Q,
and the definition of m and b\, w, g, z, respectively by

m(p,p′) =
∫
Q

Π0PpPp′ dx dt+
∫

(0,T )×ω0

Π7p2p
′
2 dx dt, b\(p′) =

∫
Q

Π3qp′ dx dt ,

u = (0,−Π7χωp2), g := u + Π3q, z = P∗−1z.

We then obtain (12)

A.5. Proof of lemma 2.5. We have

−∂x(ξ∂xw) = f, −∂x(ξ̃∂xw̃) = f̃ .

Define qs ≡ es
′ϕq, s′ = sη(θ) and

P w := −∂x(ξs∂xw) + s′∂xϕ ξs · ∂xw, (53)

P̃ w̃ := −∂x(ξ̃s∂xw̃) + s′∂xϕ ξ̃s · ∂xw̃. (54)

Set q = ξ∂xw − ξ̃∂xw̃, we have q, qs ∈W 1,∞(Ω). We get∫
Ω

q2
s dx ≤ ‖∂xũ‖2L∞

∫
Ω

γ2
s dx+ ξ2

s,max

∫
Ω

|∂x(w − w̃)|2 dx,

≤ C1

∫
Ω

γ2
s dx+ C2(R; s)

∫
Ω

|∂x(w − w̃)|2 dx, (55)

where C1, C2 > 0. We calculate

I :=
∫

Ω

(Pw − P ′w̃)2ρdx =
∫

Ω

(−∂xqs + s′∂xϕ qs)2ρ dx

≥ −2s′
∫

Ω

∂xqs ρ∂xϕ qs dx+ s′
2
∫

Ω

(∂xϕ qs)2ρ dx ≡ s′I1 + s′
2
I2.

Using ∂n(x)ϕ < 0 on ∂Ω and thanks to ρ∂xϕ ∈ W 1,∞(Ω), an integration by parts
gives:

I1 = −
∫

Ω

ρ∂xϕ∂x(q2
s) dx = −

∑
∂Ω

ρ∂n(x)ϕq
2
s +

∫
Ω

∂x(ρ∂xϕ) q2
s dx

≥ −C
∫

Ω

q2
s dx,
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for some C > 0. Thus, thanks to (55),

I1 ≥ −C1

∫
Ω

γ2
s dx− C2(R; s)

∫
Ω

|∂x(w − w̃)|2 dx.

Moreover, we have, thanks to (HS1),

I2 ≥
∫

Ω\ω0

(∂xϕ qs)2ρdx =
∫

Ω\ω0

(γs∂xϕ∂xw̃ + cs∂xϕ∂x(w − w̃))2ρ dx

≥ C3

∫
Ω\ω0

γ2
s dx− C4(R; s)

∫
Ω

|∂x(w − w̃)|2 dx,

for some C3, C4(R; s) > 0. Hence, there exist positive constants C1, C2(R; s) > 0,
C3 > 0 (depending on ξ̃) such that

I ≥ C3s
′2
∫

Ω\ω0

γ2
s dx− C1s

′
∫

Ω

γ2
s dx− C2(s,R)

∫
Ω

|∂x(w − w̃)|2 dx. (56)

But since Pw − P̃ w̃ = fs − f̃s, then

I ≤ C‖fs − f̃s‖2L2(Ω). (57)

Thanks to (56) and (57), we obtain (14).

A.6. Proof of lemma 2.8. For the sake of simplicity, we assume that θ = T/2.
An integration by parts gives

Bj1 =
∫

Ωθ

1
2
∂

∂t
(Π1(t, x; s)|zj |2) dx

=
∫

Ωθ

sϕ∂tηΠ1 |zj |2 dx+
∫

Ωθ

Π1zj ∂tzj dx ≡ Bj2 +Bj3.

Upper bounds of Bj1. We have |Bj2| ≤ CB′j2 with

B′j2 :=
∫
Q

sη2Π1 |zj |2 dxdt =
∫
Q

s−1Π3 |zj |2 dxdt .

Thanks to the Carleman estimate (12) applied to (28), we have:

sB′j2 ≤ C(B4 +
∫
Q

Π7|z2|2 dxdt),

where we set

B4 :=
∫
Q

Π2|∂x∂tu|2|γ|2 dxdt,

with γ = (c1 − c̃1, c2 − c̃2). For k ∈ N we write:

ηk(t)e2sη(t)ϕ = ηk(θ)e2sη(θ)ϕζk(t)e2s(ζ(t)−1)ϕ ,

where

ζ(t) :=
η(t)
η(θ)

= θ(T − θ)t−1(T − t)−1 ≥ 1.

Hence
Πk(t, x; s) ≤ λkηk(θ)πk(x; s) ,

where we fix λk = λk(s′0) ∈ R independently to s′ ≥ s′0 > 0 so that

sup
r≥1

(rke−2s′(r−1)) ≤ λk.
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Since c ∈ E(R)2 and thanks to (H4), we obtain

B4 ≤ λ2

∫
Ω

π2|γ|2(
∫ T

0

|∂t∂xu|2 dt) dx

≤ C(R)
∫

Ω

π2|γ|2 dx ≤ C(R)s
∫

Ω

π1|γ|2 dx.

Thus we obtain

|Bj2| ≤ CB′j2

≤ C(R)
∫

Ω

π1|γ|2 dx+ C(R; s)
∫
Q

|z2|2 dx dt. (58)

Thanks to Minkovski’s estimate, we have |Bj3| ≤ B′j2 +Bj5 with

Bj5 :=
∫
Q

η−1Π0|∂tzj |2 dxdt .

Notice that η(t) ≥ η(T/2) > 0. Hence we have

C−1Bj5 ≤
∫
Q

s−3Π3|wj |2 dxdt .

Thanks to (H4), an upper bound for Bj5 is obtained as for B′j2 by using the
Carleman estimate (12) to (28). We thus have

|Bj5| ≤ C(R)s−2

∫
Ω

π1|γ|2 dx+ C(R; s)
∫
Q

|w2|2 dxdt. (59)

So from (58), (59) we obtain (30).

Lower bounds for B1. Thanks to (28), (29), (H1), (H2), (H3) and by applying
Proposition 2, we obtain∫

Ω

π3|cj − c̃j |2 dx ≤ C1

(∫
Ω\ω

π1|fj − f̃j |2 dx+
∫
ω

π2|fj − f̃j |2 dx
)

+C2(R; s)(‖vj − ṽj‖2H1(Ω) + ‖vj − ṽj‖2H2(ω)

)
≤ C ′1

(∫
Ω\ω

π1|zj(θ)|2 dx+
∫
ω

π2|zj(θ)|2 dx+
∫

Ω\ω
π1|v − ṽ|2 dx

+
∫
ω

π2|v − ṽ|2 dx
)

+ C2(R; s)(‖vj − ṽj‖2H1(Ω) + ‖vj − ṽj‖2H2(ω)

)
≤ CB1 + C ′1

∫
ω

π2|z(θ)|2 dx+ C2(R; s)
(
‖v − ṽ‖2H1(Ω)

+‖v − ṽ‖2H2(ω)

)
,

for all s ≥ s0. Hence (31).
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