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Abstract. In this paper, we prove a uniqueness result in the inverse problem of

determining several non-constant coefficients of a system of two parabolic equations

which corresponds to a Lotka-Volterra competition model. Our result gives a sufficient

condition for the uniqueness of the determination of four coefficients of the system.

This sufficient condition only involves pointwise measurements of the solution (u, v)

of the system and of the spatial derivative ∂u/∂x or ∂v/∂x of one component at a

single point x0, during a time interval (0, ε). Our results are illustrated by numerical

computations.
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1. Introduction

This papers deals with an inverse problem of coefficient determination in a system

of two parabolic equations with spatially heterogeneous coefficients. The system that

we consider corresponds to a Lotka-Volterra competition model. In this model, the

unknowns typically correspond to biological species which are in competition with each

other. This type of model is widely used in theoretical as well as more applied works,

see e.g. [1, 2, 3] for Lotka-Volterra competition models based on ordinary differential

equations and [4, 5] for spatial competition models using systems of partial differential

equations of the parabolic type. In these models, the dynamics of the species critically

depends on the precise value of the coefficients: depending on these coefficients, the

species may coexist or not [6, 4, 7]. The aim of our study is to determine these coefficients

using only partial measurements of the species concentrations.

For scalar parabolic equations, uniqueness and stability results in the inverse

problem of coefficient determination are generally obtained using the method of

Carleman estimates [8, 9]. This method requires, among other measurements, the

knowledge of the solution u(θ, x) of the equation at some time θ > 0 and for all x

in the domain Ω (see [10, 11, 12, 13, 14, 15]). Uniqueness and stability results can also

be derived from boundary measurements. In particular, there is a huge literature on the

determination of nonlinear spatially homogeneous terms f(u) in scalar reaction-diffusion

equations from such boundary measurements [16, 17, 18, 19, 20, 21].

In the one-dimensional scalar case, more recent approaches [22, 23] lead to

uniqueness results for one or several spatially-varying coefficients under the assumption

that the solution u(t, x0) and its spatial derivative
∂u

∂x
(t, x0) are known at a single point

x0 for all t ∈ (0, ε) and that the initial condition u(0, x) is known over Ω.

Here, we obtain comparable uniqueness results for several coefficients in a system

of two nonlinear parabolic equations, using only local or boundary measurements.

The previous results on inverse problems of coefficient determination in systems of

parabolic equations were based on the method of Carleman estimates [24, 11, 25, 26].

Consequently, as in the scalar case, these methods used measurements of the solution

of the model in the whole domain Ω at some positive time θ. Uniqueness results had

not been previously carried out on the basis of local (i.e., without the measurement at

t = θ) or boundary measurements. Besides, apart from [26] where the authors deal with

a system involving a linear equation coupled with a nonlinear equation, the previous

works were only concerned with systems of linear equations.

The next section is devoted to the clear formulation of our assumptions and to the

statement of our main results. These results are proved in Section 3 and are illustrated

by numerical computations in Section 4.
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2. Assumptions and main results

Consider a single-species model:

∂u

∂t
= D1

∂2u

∂x2
+ r1(x)u− a11(x)u

2, for t > 0, x ∈ (a, b) ⊂ R, (2.1)

where the diffusion coefficient D1 is a positive constant, the intrinsic growth rate r1
belongs to C0,η([a, b]), for some η ∈ (0, 1] (The space C0,η corresponds to Hölder

continuous functions with exponent η, see e.g. [27]), and the intraspecific competition

coefficient a11 is positive and also belongs to C0,η([a, b]).

Assume that a second species enters in competition with species 1, and that the

two-species system can be modelled by the Lotka-Volterra competition model:
∂u

∂t
= D1

∂2u

∂x2
+ r1 u− a11 u

2 − a12 uv,

∂v

∂t
= D2

∂2v

∂x2
+ r2 v − a21 uv − a22 v

2,
for t > 0, x ∈ (a, b) ⊂ R. (2.2)

As in (2.1), D2 > 0 is a constant corresponding to the diffusion coefficient of the second

species, r2 ∈ C0,η([a, b]) is the 2nd species intrinsic growth rate and a22 > 0 corresponds

to the 2nd species intraspecific competition coefficient (a22 ∈ C0,η([a, b])).

Since the system is competitive, we have:

a12, a21 > 0 on [a, b]. (2.3)

We furthermore assume that a12 is constant and a21 ∈ C0,η([a, b]). These two coefficients

respectively measure the impact of species 2 upon species 1 (resp. of species 1 upon

species 2).

Apart from D2, we assume that all the coefficients associated with species 2 are

unknown: r2(x), a21(x), a22(x) and a12 are not known. Our aim is to study under

which conditions these coefficients can be uniquely determined by measurements of the

solution (u, v).

Initial and boundary conditions

We assume that u and v satisfy the initial conditions

u(0, x) = u0, v(0, x) = v0,

and the boundary conditions:
α1u(t, a)− β1

∂u

∂x
(t, a) = 0, γ1u(t, b) + δ1

∂u

∂x
(t, b) = 0,

α2v(t, a)− β2
∂v

∂x
(t, a) = 0, γ2v(t, b) + δ2

∂v

∂x
(t, b) = 0,

for t > 0, (2.4)

with

α2
i + β2

i > 0 and δ2i + γ2i > 0, for i = 1, 2. (2.5)
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These general boundary conditions include the classical Dirichlet case (βi = δi = 0, for

i = 1, 2) and Neumann case (αi = γi = 0, for i = 1, 2).

In order to deal with classical solutions (u, v) of (2.2), we furthermore make the

following hypotheses on the initial conditions:

u0, v0 ∈ C2,η([a, b]), (2.6)

that is u0 and v0 are C2 function such that (u0)
′′ and (v0)

′′ are Hölder continuous. In

addition to that, we assume the following compatibility conditions:
α1u0(a)− β1(u0)

′(a) = 0 and (u0)
′′(a) = 0 if β1 = 0,

γ1u0(b) + δ1(u0)
′(b) = 0 and (u0)

′′(b) = 0 if δ1 = 0,

α2v0(a)− β2(v0)
′(a) = 0 and (v0)

′′(a) = 0 if β2 = 0,

γ2v0(b) + δ2(v0)
′(b) = 0 and (v0)

′′(b) = 0 if δ2 = 0.

(2.7)

Under these assumptions, the problem (2.2) admits a unique solution (u, v) with

u, v ∈ C2
1 ([0,∞)× [a, b]) . Existence, uniqueness and regularity of the solution (u, v)

are classical (see e.g. [28], Chapter 8).

Hypotheses on the unknown coefficients

As above-mentioned, the coefficient a12 is assumed to be constant. Our assumptions

on the coefficients r2, a21, and a22 is that they belong to the following functional space

M:

M := {ψ ∈ C0,η([a, b]) s. t. ψ is piecewise analytic on (a, b)}. (2.8)

A continuous function ψ is called piecewise analytic if there exist n ≥ 1 and an increasing

sequence (κj)1≤j≤n such that κ1 = a, κn = b, and

ψ(x) =
n−1∑
j=1

χ[κj ,κj+1)(x)φj(x),

for all x ∈ (a, b); here φj are some analytic functions defined on the intervals [κj, κj+1],

and χ[κj ,κj+1) are the characteristic functions of the intervals [κj, κj+1) for j = 1, . . . , n−1.

In particular, if ψ ∈ M, then, for each x ∈ [a, b) (resp. x ∈ (a, b]), there exists r = rx > 0

such that ψ is analytic on [x, x+ r] (resp. [x− r, x]).

Note that the assumption ψ ∈ M is not very restrictive. For instance, the set of

piecewise linear functions on [a, b] is a subset of M.

Measurements of the solution

Our results use three measurements of the solution of the system (2.2), starting

from three different couples of initial conditions. More precisely, We consider three

couples of initial conditions (u10, v
1
0), (u

2
0, v

2
0), (u

3
0, v

3
0) such that

u10, u
2
0, u

3
0, v

1
0, v

2
0, v

3
0 > 0 in (a, b), (2.9)
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and

(u30 − u20) (v
2
0 − v10)− (v30 − v20) (u

2
0 − u10) ̸= 0 in (a, b). (2.10)

In other terms, for all x ∈ (a, b), the points (u10, v
1
0)(x), (u

2
0, v

2
0)(x) and (u30, v

3
0)(x) belong

to the positive quadrant and are misaligned.

We assume that for some x0 ∈ (a, b), the solution (u, v) of (2.2) and its spatial

derivative can be measured at the position x0. More precisely, for some ε > 0 and for

each couple of initial conditions (uk0, v
k
0), with k = 1, 2, 3, we assume that (u, v)(t, x0)

and
∂u

∂x
(t, x0) (or

∂v

∂x
(t, x0), see Theorem 2.1 below) can be measured for all t ∈ (0, ε).

In the next section, Theorem 2.1 shows that these measurements are sufficient to

determine the four unknown coefficients r2(x), a21(x), a22(x) and a12, and consequently

the solution (u, v) of (2.2) on (0,∞)× (a, b).

Main result

Let ã12 ∈ (0,∞) and r̃2, ã21, ã22 belong to M. Let (ũ, ṽ) be the solution of:
∂ũ

∂t
= D1

∂2ũ

∂x2
+ r1 ũ− a11 ũ

2 − ã12 ũṽ,

∂ṽ

∂t
= D2

∂2ṽ

∂x2
+ r̃2 ṽ − ã21 ũṽ − ã22 ṽ

2,
for t > 0, x ∈ (a, b) ⊂ R,(2.11)

with the initial conditions:

ũ(0, x) = u0, ṽ(0, x) = v0.

Theorem 2.1. Let x0 ∈ (a, b) and ε > 0. Assume that for each couple of initial

conditions (uk0, v
k
0), with k = 1, 2, 3, and for all t ∈ (0, ε), we have: (u, v)(t, x0) = (ũ, ṽ)(t, x0),

∂u

∂x
(t, x0) =

∂ũ

∂x
(t, x0) or

∂v

∂x
(t, x0) =

∂ṽ

∂x
(t, x0).

(2.12)

Then, ã12 = a12 and r̃2 ≡ r2, ã21 ≡ a21, ã22 ≡ a22 in (a, b).

If the second derivative
∂2ũ

∂x2
(t, x0) is known, the coefficients r2(x), a21(x), a22(x)

and a12 can be determined without any measurement of the function v. This is the

consequence of our next result.

Corollary 2.2. Let x0 ∈ (a, b) and ε > 0. Assume that for each couple of initial

conditions (uk0, v
k
0), with k = 1, 2, 3, we have:

u(t, x0) = ũ(t, x0),

∂u

∂x
(t, x0) =

∂ũ

∂x
(t, x0),

∂2u

∂x2
(t, x0) =

∂2ũ

∂x2
(t, x0),

for all t ∈ (0, ε). (2.13)

Then, ã12 = a12 and r̃2 ≡ r2, ã21 ≡ a21, ã22 ≡ a22 in (a, b).
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Remarks 2.3. - The conclusions of Theorem 2.1 and Corollary 2.2 are still valid

when x0 = a and β1, β2 ̸= 0 (resp. x0 = b and δ1, δ2 ̸= 0) if the initial conditions

ui0, v
i
0 are assumed to be positive in [a, b) (resp. (a, b]).

- The result of Corollary 2.2 implies that, for any subset ω ⊂ (a, b), all the unknown

coefficients r2, a22, a12, a21 are uniquely determined on [a, b] by a measurement of

u on ω during a time period (0, ε).

A counter-example

The results of Theorem 2.1 and Corollary 2.2 are not true in general if the initial

conditions (uk0, v
k
0) do not verify the assumption (2.10). We construct here a counter-

example to these results in a case where the assumption (2.10) is not verified. This

counter-example also shows that our results are not true in general if the number of

initial conditions is less than three.

Assume that the boundary conditions are of the Neumann type (αi = γi = 0, for

i = 1, 2) and that all the coefficients r1, r2, a11, a12, a21 and a22 are constant. Assume

furthermore that there exists λ > 0 such that r2 = λ r1, a21 = λ a11 and a22 = λ a12.

Now, take three couples (uk0, v
k
0), k = 1, 2, 3, of constant and positive initial conditions

on the straight line {(x, y), | a11 x+ a12 y = r1}. Then, each couple (uk0, v
k
0) is a solution

of: {
r1 u

k
0 − a11 (u

k
0)

2 − a12 u
k
0 v

k
0 = 0,

r2 v
k
0 − a21 u

k
0 v

k
0 − a22 (v

k
0)

2 = 0,

for k = 1, 2, 3. Thus, each couple (uk0, v
k
0) is also a stationary solution of (2.2). Note

that the couples (uk0, v
k
0), k = 1, 2, 3, are aligned and therefore do not verify the

assumption (2.10).

Let λ̃ > 0 verify λ̃ ̸= λ, and take r̃2 = λ̃ r1, ã21 = λ̃ a11 and ã22 = λ̃ a12. Again, the

three couples (uk0, v
k
0) verify the system:{

r1 u
k
0 − a11 (u

k
0)

2 − a12 u
k
0 v

k
0 = 0,

r̃2 v
k
0 − ã21 u

k
0 v

k
0 − ã22 (v

k
0)

2 = 0,

and are therefore stationary solutions of (2.11). In particular, the assumptions (2.12)

and (2.13) of Theorem 2.1 and Corollary 2.2 are fulfilled at any point x0 ∈ (a, b) and

for all ε > 0. However, the conclusions of Theorem 2.1 and Corollary 2.2 are not true,

since r̃2 ̸= r2, ã21 ̸= a21 and ã22 ̸= a22.

3. Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1

We set U = u− ũ, V = ṽ − v, R = r2 − r̃2 and Aij = aij − ãij for all i, j ∈ {1, 2} (and

(i, j) ̸= (1, 1)).
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Remark 3.1. It would be more natural to set U = u − ũ and V = v − ṽ, as it is

done in most papers involving inverse problems of coefficient determination in systems

[24, 11, 25, 26]. It is noteworthy that here we have set U = u− ũ and V = ṽ − v. This

enables us to obtain a “cooperative” system for (U, V ). In such cooperative systems, an

increase of U has a positive effect on V and similarly, an increase of V has a positive

effect on U. Such systems are known to satisfy a comparison principle (see Chap. 3,

Sec. 8 in [29]). Note that, when the number of species is 3 or more, it is not possible in

general to convert a competitive system into a cooperative system.

Whatever the initial condition (uk0, v
k
0), with k = 1 . . . 3, the couple (U, V ) verifies:

∂U

∂t
−D1

∂2U

∂x2
= U [r1 − a11(u+ ũ)− ã12v] + ã12ũV − A12 u v,

∂V

∂t
−D2

∂2V

∂x2
= V [r̃2 − ã22(v + ṽ)− ã21u] + ã21ṽU − v [R− A21u− A22v] ,

(3.14)

and U(0, x) = V (0, x) = 0 for all x ∈ (a, b). Evaluating the first equation in (3.14) at

(t, x) = (0, x0) and using assumption (2.12) we obtain:

A12 u0(x0) v0(x0) = 0. (3.15)

Thus, using e.g. the initial condition (u0, v0) = (u10, v
1
0), we get A12 = 0. Thus, ã12 = a12

and system (3.14) can be rewritten:
∂U

∂t
−D1

∂2U

∂x2
= U [r1 − a11(u+ ũ)− a12v] + a12ũV,

∂V

∂t
−D2

∂2V

∂x2
= V [r̃2 − ã22(v + ṽ)− ã21u] + ã21ṽU − v [R− A21u− A22v] .

(3.16)

Let us set:

A+ =
{
x ≥ x0 s.t. R(y) ≡ A21(y) ≡ A22(y) ≡ 0 for all y ∈ [x0, x]

}
,

and

x1 :=

{
sup (A+) if A+ is not empty,

x0 if A+ is empty.

If x1 = b, then R(y) ≡ A21(y) ≡ A22(y) ≡ 0 on [x0, b]. Let us assume on the contrary

that x1 < b.

Step 1. Assume that x1 < b. We prove that there exists an initial condition

(uk
∗

0 , v
k∗
0 ), with k∗ ∈ {1, 2, 3} such that for some θ ∈ (0, T ), and x2 ∈ (x1, b) we have

R(x)− A21(x)u(t, x)− A22(x) v(t, x) ̸= 0 for all (t, x) ∈ [0, θ]× (x1, x2].

By assumption, x1 < b. Thus, from the definition of the set M, there exists δ > 0

such that x1 + δ < b and R, A21, A22 are analytic on [x1, x1 + δ] and not all identically
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zero. Thus, the integer

ρ = max
{
ρ′ ∈ N such that


R(x) = O

(
(x− x1)

ρ′
)
,

A21(x) = O
(
(x− x1)

ρ′
)
,

A22(x) = O
(
(x− x1)

ρ′
)
,

as x→ x+1

}
.

is well-defined.

Furthermore, the function (t, x) 7→ R(x) − A21(x)u(t, x) − A22(x) v(t, x) can then

be written as

(t, x) 7→ (x− x1)
ρ ×

[
R̂(x)− Â21(x)u(t, x)− Â22(x) v(t, x)

]
, (3.17)

for all (t, x) ∈ R+ × [x1, x1 + δ], where the functions R̂, Â21 and Â22 are analytic and

not all zero at the point x1. From our assumption (2.10) on the initial conditions, there

necessarily exists k∗ ∈ {1, 2, 3} such that R̂(x1)− Â21(x1)u
k∗
0 (x1)− Â22(x1) v

k∗
0 (x1) ̸= 0.

By continuity of the solution (u, v) of (2.2) with initial condition (uk
∗

0 , v
k∗
0 ), the

application (t, x) 7→ R̂(x) − Â21(x)u(t, x) − Â22(x) v(t, x) is continuous in [0,∞) ×
[x1, x1 + δ). In particular, there exist θ > 0 and x2 ∈ (x1, x1 + δ) such that

R̂(x)− Â21(x)u(t, x)− Â22(x) v(t, x) ̸= 0 for all (t, x) in [0, θ]× [x1, x2]. Using (3.17) we

obtain

R(x)− A21(x)u(t, x)− A22(x) v(t, x) ̸= 0, (3.18)

for all (t, x) ∈ [0, θ]× (x1, x2].

Step 2. We show that if (u0, v0) = (uk
∗

0 , v
k∗
0 ), there exists ε′ > 0 such that either

U > 0 and V > 0 or U < 0 and V < 0 in (0, ε′)× (x0, x2).

From the previous step, we know that if the initial condition (u0, v0) is set to

(uk
∗

0 , v
k∗
0 ), the application (t, x) 7→ R(x)− A21(x)u(t, x)− A22(x) v(t, x) has a constant

strict sign in [0, θ]× (x1, x2].

Case (a) Assume that R(x)−A21(x)u(t, x)−A22(x) v(t, x) < 0 in [0, θ]× (x1, x2].

Since U(0, x) = 0 and V (0, x) = 0 for all x ∈ (a, b), it follows from (3.16) that

∂V

∂t
(0, x2) = −v [R− A21u− A22v] (0, x2) > 0. (3.19)

Next, we show that

∂U

∂t
(0, x2) = 0 and

∂2U

∂t2
(0, x2) > 0. (3.20)

Indeed, evaluating the first equation in (3.16) at t = 0, we easily get the equality
∂U
∂t
(0, x) = 0 for all x ∈ (a, b). The proof of the inequality in (3.20) is more involved.
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Let W be the (classical) solution of the equation:
∂W

∂t
= D1

∂2W

∂x2
+
∂

∂t
(U [r1 − a11(u+ ũ)− a12v]) +

∂

∂t
(a12ũ)V + a12ũ

∂V

∂t
,

α1W (t, a)− β1
∂W

∂x
(t, a) = 0, γ1W (t, b) + δ1

∂W

∂x
(t, b) = 0,

W (0, x) = 0,

(3.21)

for all t > 0 and x ∈ (a, b).

Now, let us set Ŵ =
∂U

∂t
. Differentiating the equation satisfied by U in (3.16) with

respect to t, and using Theorems 4 and 5 in [30] Chap. 7 (which readily extend to more

general boundary conditions such as those in (3.21)), we obtain that Ŵ is the unique

weak solution of (3.21). It follows that Ŵ = W and therefore Ŵ is a classical solution

of (3.21). As a consequence, U ∈ C2
2([0,∞) × (a, b)) and ∂2U

∂t2
(t, x) = ∂W

∂t
(t, x) for all

(t, x) ∈ [0,∞) × (a, b). Computing the equation (3.21) at t = 0 and x = x2, and using

the equalities U(0, x2) =
∂U

∂t
(0, x2) = V (0, x2) = 0, we get:

∂2U

∂t2
(0, x2) =

∂W

∂t
(0, x2) = a12 u

k∗

0 (x2)
∂V

∂t
(0, x2) > 0 (3.22)

from assumptions (2.3), (2.9) and from (3.19). This proves (3.20).

From (3.19) and (3.20), and since U(0, x2) = V (0, x2) = 0, we know that there exists

ε′ ∈ (0, ε) such that U(t, x2) > 0 and V (t, x2) > 0 in (0, ε′). Besides, from the assumption

(2.12) of Theorem 2.1, we know that U(t, x0) = V (t, x0) = 0 for all t ∈ (0, ε′). As a

consequence, the couple (U, V ) verifies:

{
∂U
∂t

−D1
∂2U
∂x2 − U [r1 − a11(u+ ũ)− a12v] = a12ũV,

∂V
∂t

−D2
∂2V
∂x2 − V [r̃2 − ã22(v + ṽ)− ã21u] > ã21ṽU,

t ∈ (0, ε′), x ∈ (x0, x2),

U(t, x0) = 0, U(t, x2) > 0, t ∈ (0, ε′),

V (t, x0) = 0, V (t, x2) > 0, t ∈ (0, ε′),

U(0, x) = V (0, x) = 0, x ∈ (x0, x2).

(3.23)

By continuity of (ũ, ṽ) with respect to t and from assumption (2.9) on the initial

conditions, we known that for t > 0 small enough ũ(t, x) > 0 and ṽ(t, x) > 0 for

all x ∈ (x0, x2). Thus, even if it means decreasing ε′, we can assume that ũ(t, x) > 0 and

ṽ(t, x) > 0 in (0, ε′)× (x0, x2). As a consequence, and since a12 and ã21 are assumed to

be positive, the system (3.23) satisfies a monotonicity assumption:

∂

∂V
(a12ũV ) = a12ũ > 0 and

∂

∂U
(ã21ṽU) = ã21ṽ > 0 in (0, ε′)× (x0, x2). (3.24)

Finally, the couple (U, V ) satisfies all the assumptions of the strong maximum principle

for systems satisfying the monotonicity assumption (3.24) (Theorem 13 p. 190 in [29]),

which implies that either (U, V ) > 0 in (0, ε′) × (x0, x2) or there exists some time

t0 ∈ (0, ε′) such that U ≡ 0 or V ≡ 0 in (0, t0)× (x0, x2). From the boundary condition

satisfied by U and V at x2, we necessarily have (U, V ) > 0 in (0, ε′)× (x0, x2).



Coefficient determination in a nonlinear Lotka-Volterra system 10

Case (b) Assume that R(x)−A21(x)u(t, x)−A22(x) v(t, x) > 0 in [0, θ]× (x1, x2].

Applying the same arguments as above to −U and −V, we obtain that U < 0 and V < 0

in (0, ε′)× (x0, x2).

Step 3. Using Hopf’s Lemma and assumption (2.12), we get a contradiction with

the assumption of Step 1.

From Step 2, we know that either U > 0 and V > 0 or U < 0 and V < 0 in

(0, ε′)× (x0, x2]. Assume that U > 0 and V > 0 in (0, ε′)× (x0, x2) (the case U < 0 and

V < 0 can be treated the same way). Then,

∂U

∂t
−D1

∂2U

∂x2
− U [r1 − a11(u+ ũ)− a12v] > 0 in (0, ε′)× (x0, x2), (3.25)

and

∂V

∂t
−D2

∂2V

∂x2
− V [r̃2 − ã22(v + ṽ)− ã21u] > 0 in (0, ε′)× (x0, x2). (3.26)

Since U > 0 and V > 0 in (0, ε′) × (x0, x2) and U(t, x0) = V (t, x0) = 0, the Hopf’s

Lemma (Theorem 14 p. 190 in [29]) implies that

∂U

∂x
(t, x0) > 0 and

∂V

∂x
(t, x0) > 0 for all t ∈ (0, ε′),

which contradicts the assumption (2.12) of Theorem 2.1. As a consequence, the

assumption x1 < b of Step 1 is false.

Step 4. Conclusion.

From Step 3, we know that x1 = b. Therefore R(y) ≡ A21 ≡ A22(y) ≡ 0 on [x0, b].

Setting:

A− =
{
x ≤ x0 s.t. R(y) ≡ A21(y) ≡ A22(y) ≡ 0 for all y ∈ [x, x0]

}
,

and

y1 :=

{
inf (A−) if A− is not empty,

x0 if A− is empty,

we can prove, by applying the same arguments as above, that y1 = a and consequently

R(y) ≡ A21(y) ≡ A22(y) ≡ 0 on [a, x0].

Finally, R(y) ≡ A21(y) ≡ A22(y) ≡ 0 on [a, b] which concludes the proof of Theorem

2.1. �
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Proof of Corollary 2.2

Assume that u verifies (2.13). Take any initial data (uk0, v
k
0). As already observed,

evaluating the first equation in (3.14) at (t, x) = (0, x0) and using the assumption (2.13)

we obtain that ã12 = a12. Rewriting the equations satisfied by u and ũ, we get:
∂u

∂t
= D1

∂2u

∂x2
+ r1 u− a11 u

2 − a12 uv,

∂ũ

∂t
= D1

∂2ũ

∂x2
+ r1 ũ− a11 ũ

2 − a12 ũṽ,
for t > 0, x ∈ (a, b) ⊂ R.(3.27)

Using assumption (2.13), we obtain:
∂u

∂t
= D1

∂2u

∂x2
+ r1 u− a11 u

2 − a12 uv,

∂u

∂t
= D1

∂2u

∂x2
+ r1 u− a11 u

2 − a12 uṽ,
for t ∈ (0, ε), x = x0. (3.28)

From assumption (2.9), and by continuity of u with respect to t, we know that

u(t, x0) > 0 for t small enough and for any initial data (uk0, v
k
0). Finally, it follows from

(3.28) that

v(t, x0) = ṽ(t, x0) for all t ∈ (0, ε′),

for some ε′ ∈ (0, ε). The result of Corollary then follows from Theorem 2.1. �

4. Numerical computations

In this section, we check whether the measurements (2.12) of Theorem 2.1 allow for an

accurate reconstruction of the coefficients r2, a21, a22 and a12.

Given the initial data (uk0, v
k
0), for k = 1, 2, 3, and the measurements (uk, vk)(t, x0)

and ∂uk/∂x(t, x0) of the corresponding solution of (2.2) for t ∈ (0, ε), we can look for

the vector of coefficients Γ = (a12, r2, a21, a22) as a minimizer of some functional GΓ.

Indeed, define the set M+ as the subset of M made of positive functions. Then, for any

Γ̃ = (ã12, r̃2, ã21, ã22) ∈ (0,∞)×M×M+×M+, the distance between our measurements

and the solutions (ũk, ṽk) associated with the vector of coefficients Γ̃ can be evaluated

through the function:

GΓ(Γ̃) =
3∑

k=1

∥(uk, vk)(·, x0)− (ũk, ṽk)(·, x0)∥(L2(0,ε))2 + ∥∂u
k

∂x
(·, x0)−

∂ũk

∂x
(·, x0)∥L2(0,ε).

Then, GΓ(Γ) = 0 and from Theorem 2.1 this is the unique global minimum of GΓ in

(0,∞)×M×M+ ×M+.

In our numerical computations, we fixed (a, b) = (0, 1), D1 = 0.1, D2 = 0.2,

r1 = a11 = 1 and αi = γi = 0, for i = 1, 2 (Neumann boundary conditions). The solution

was measured at the point x0 = 2/3 and during the time-interval (0, ε) = (0, 0.3).

Besides, we assumed that the vector of coefficients Γ belongs to a finite-dimensional

subspace of (0,∞)×M×M+ ×M+. Let E be the n + 1−dimensional (n = 9 in our
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computations) subspace of M defined by:

E :=
{
ρ ∈ C0,η([0, 1]) | ∃ (hj)0≤j≤n ∈ Rn+1,

ρ(x) =
∑n

j=0 hj · J ((n− 2) (x− cj)) on [0, 1]
}
,

with cj =
j−1
n−2

and J(x) =
(x− 2)4(x+ 2)4

28
if x ∈ (−2, 2), and J(x) = 0 otherwise. Let

E+ be the set of positive functions in E. We assumed that Γ ∈ (0,∞)×E ×E+ ×E+.

We randomly drawn 30 vectors with a uniform law in (0, 10)×(−5, 5)10×(0, 10)10×
(0, 10)10. Each vector corresponds to an element Γi of (0,∞)× E × E+ × E+. Starting

from the constant initial data (u10, v
1
0) = (0.1, 0.5), (u20, v

2
0) = (0.5, 0.2) and (u30, v

3
0) =

(0.9, 0.5), the corresponding values of (uk, vk)(t, x0) and ∂uk/∂x(t, x0) for k = 1, 2, 3,

were recorded‡. This enabled us to compute GΓi
(Γ̃) for any Γ̃ in (0,∞)×E×E+×E+.

The minimizations§ of the functions GΓi
led to 30 vectors of coefficients Γ∗

i , each one

corresponding to a computed minimizer of the function GΓi
.

The average values of the quantities ∥r2 − r∗2∥L2(0,1), ∥a21 − a∗21∥L2(0,1), ∥a22 − a∗22∥L2(0,1)

and |a12 − a∗12| over the 30 samples of vectors Γi were 4 · 10−2, 5 · 10−2, 6 · 10−2 and

5 · 10−6, respectively. These values correspond to a very accurate estimation of Γ.

This is illustrated by Fig. 1, which depicts an example of vector of coefficients Γ in

(0,∞)× E × E+ × E+, together with the vector of coefficients Γ∗ which was obtained

by minimizing GΓ.

‡ The numerical computations of (u, v) and (ũ, ṽ) were carried out with Comsol Multiphysicsr time-

dependent solver. We used a second order finite element method (FEM) with 960 elements. This

solver uses a method of lines approach incorporating variable order and variable stepsize backward

differentiation formulas.

§ The minimization of the functions GΓ was performed using MATLAB’sr fminunc solver. This

optimization algorithm uses a Quasi-Newton method with a mixed quadratic and cubic line search

procedure. The stopping criterion was GΓi < 10−6.
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Figure 1. An example of vector of coefficients Γ together with the vector of

coefficients Γ∗ obtained by minimizing GΓ. Plain lines: the coefficients r2 (in red),

a21 (in blue) and a22 (in green). The black line corresponds to a constant value a12.

Crosses: the functions r∗1 (in red), a∗21 (in blue), a∗22 (in green) and a∗12 obtained by

minimizing GΓ=(a12,r2,a21,a22). In this particular example, we have ∥r2 − r∗2∥L2(0,1) =

3·10−2, ∥a21 − a∗21∥L2(0,1) = 5·10−2, ∥a22 − a∗22∥L2(0,1) = 0.1, and |a12 − a12| = 5·10−7.
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