Laure Cardoulis 
email: laure.cardoulis@univ-tlse1.fr
  
Michel Cristofol 
email: michel.cristofol@cmi.univ-mrs.fr
  
Inverse Problem for a Curved Quantum Guide

Keywords: Inverse Problem, Quantum Guide, Curvature

In this paper, we consider the Dirichlet Laplacian operator -∆ on a curved quantum guide in R n (n = 2, 3) with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by using either observations of spectral data or a boot-strapping method.

Introduction and main results in dimension n = 2

The spectral properties of curved quantum guides have been studied intensively for several years, because of their applications in quantum mechanics, electron motion. We can cite among several papers [START_REF] Exner | Bound States in Curved Quantum Waveguides[END_REF], [START_REF] Goldstone | Bound States in twisting tubes[END_REF], [START_REF] Krejcirik | On the spectrum of curved quantum waveguides[END_REF], [START_REF] Duclos | Curvature-Induced Bound States in Quantum Waveguides in Two and Three Dimensions[END_REF], [START_REF] Duclos | Bound States in Curved Quantum Layers[END_REF], [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF] . . . However, inverse problems associated with curved quantum guides have not been studied to our knowledge, except in [START_REF] Cardoulis | An Application of Carleman Inequalities for a Curved Quantum Guide, accepted by Mono. del Seminario Matematico[END_REF]. Our aim is to establish uniqueness results for the inverse problem of the reconstruction of the curvature of the quantum guide: the data of one eigenpair determines uniquely the curvature up to its sign and similar results are obtained by considering the knowledge of a solution of Poisson's equation in the guide. We consider the Laplacian operator on a non trivially curved quantum guide Ω ⊂ R 2 which is not self-intersecting, with Dirichlet boundary conditions, denoted by -∆ Ω D . We proceed as in [START_REF] Exner | Bound States in Curved Quantum Waveguides[END_REF]. We denote by Γ = (Γ 1 , Γ 2 ) the function C 3 -smooth (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF]Remark 5]) which characterizes the reference curve and by N = (N 1 , N 2 ) the outgoing normal to the boundary of Ω. We denote by d the fixed width of Ω and by Ω 0 := R×] -d/2, d/2[. Each point (x, y) of Ω is described by the curvilinear coordinates (s, u) as follows: f : Ω 0 -→ Ω with (x, y) = f (s, u) = Γ(s) + uN (s).

(1.1)

We assume Γ ′ 1 (s) 2 + Γ ′ 2 (s) 2 = 1 and we recall that the signed curvature γ of Γ is defined by:

γ(s) = -Γ ′′ 1 (s)Γ ′ 2 (s) + Γ ′′ 2 (s)Γ ′ 1 (s), (1.2) 
named so because |γ(s)| represents the curvature of the reference curve at s. We recall that a guide is called simply-bent if γ does not change sign in R. We assume throughout this article that:

Assumption 1.1. i) f is injective. ii) γ ∈ C 2 (R) ∩ L ∞ (R), γ ≡ 0, (i.e. Ω is non-trivially curved). iii) d 2 < 1 γ ∞ , where γ ∞ := sup s∈R |γ(s)| = γ L ∞ (R) . iv) γ(s) → 0 as |s| → +∞ (i.e. Ω is asymptotically straight).
Note that, by the inverse function theorem, the map f (defined by (1.1)) is a local diffeomorphism provided 1 -uγ(s) = 0, for all u, s, which is guaranteed by Assumption 1.1 and since f is assumed to be injective, the map f is a global diffeomorphism. Note also that 1 -uγ(s) > 0 for all u and s. (More precisely, 0

< 1 -d 2 γ ∞ ≤ 1 -uγ(s) ≤ 1 + d 2 γ
∞ for all u, s.) The curvilinear coordinates (s, u) are locally orthogonal, so by virtue of the Frenet-Serret formulae, the metric in Ω is expressed with respect to them through a diagonal metric tensor (e.g. [START_REF] Krejcirik | On the spectrum of curved quantum waveguides[END_REF])

(g ij ) = (1 -uγ(s)) 2 0 0 1 . (1.
3)

The transition to the curvilinear coordinates represents an isometric map of L 2 (Ω) to L 2 (Ω 0 , g 1/2 dsdu) where (g(s, u))

1/2 := 1 -uγ(s) (1.4)
is the Jacobian ∂(x, y) ∂(s, u) . So we can replace the Laplacian operator -∆ Ω D acting on L 2 (Ω) by the Laplace-Beltrami operator H g acting on L 2 (Ω 0 , g 1/2 dsdu) relative to the given metric tensor (g ij ) ( see (1.3) and (1.4)) where:

H g := -g -1/2 ∂ s (g -1/2 ∂ s ) -g -1/2 ∂ u (g 1/2 ∂ u ).
(

We rewrite H g (defined by (1.5)) into a Schrödinger-type operator acting on L 2 (Ω 0 , dsdu). Indeed, using the unitary transformation

U g : L 2 (Ω 0 , g 1/2 dsdu) -→ L 2 (Ω 0 , dsdu) ψ → g 1/4 ψ (1.6) setting H γ := U g H g U -1 g , we get H γ = -∂ s (c γ (s, u)∂ s ) -∂ 2 u + V γ (s, u) (1.7) with c γ (s, u) = 1 (1 -uγ(s)) 2 (1.8)
and

V γ (s, u) = - γ 2 (s) 4(1 -uγ(s)) 2 - uγ ′′ (s) 2(1 -uγ(s)) 3 - 5u 2 γ ′2 (s) 4(1 -uγ(s)) 4 .
(1.9)

We will assume throughout all this paper that the following assumption is satisfied:

Assumption 1.2. γ ∈ C 2 (R) and γ (k) ∈ L ∞ (R)
for each k = 0, 1, 2 where γ (k) denotes the k th derivative of γ.

Remarks: Since Ω is non trivially-curved and asymptotically straight, the operator -∆ Ω D has at least one eigenvalue of finite multiplicity below its essential spectrum (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF], [START_REF] Krejcirik | On the spectrum of curved quantum waveguides[END_REF] ; see also [START_REF] Exner | Bound States in Curved Quantum Waveguides[END_REF] under the additional assumptions that the width d is sufficiently small and the curvature γ is rapidly decaying at infinity ; see [START_REF] Goldstone | Bound States in twisting tubes[END_REF] under the assumption that the curvature γ has a compact support). Furthermore, note that such operator H γ admits bound states and that the minimum eigenvalue λ 1 is simple and associated with a positive eigenfunction φ 1 (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Sec.8.17]). Then, note that by [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]Theorem 7.1] any eigenfunction of H γ is continuous and by [1, Remark 25 p.182] any eigenfunction of H γ belongs to H 2 (Ω 0 ). Finally, note also that (λ, φ) is an eigenpair (i.e. an eigenfunction associated with its eigenvalue) of the operator H γ acting on L 2 (Ω 0 , dsdu) means that (λ, U -1 g φ) is an eigenpair of -∆ Ω D acting on L 2 (Ω). So the data of one eigenfunction of the operator H γ is equivalent to the data of one eigenfunction of -∆ Ω D . We first prove that the data of one eigenpair determines uniquely the curvature.

Theorem 1.1. Let Ω be the curved guide in R 2 defined as above. Let γ be the signed curvature defined by (1.2) and satisfying Assumptions 1.1, 1.2. Let H γ be the operator defined by (1.7) and (λ, φ) be an eigenpair of H γ . Then

γ 2 (s) = -4 ∆φ(s, 0) φ(s, 0) -4λ
for all s when φ(s, 0) = 0.

Note that the condition φ(s, 0) = 0 in Theorem 1.1 is satisfied for the positive eigenfunction φ 1 and for all s ∈ R. Then, we prove under

Assumption 1.3. γ ∈ C 5 (R) and γ (k) ∈ L ∞ (R) for each k = 0, . . . , 5,
that one weak solution φ of the problem

H γ φ = f in Ω 0 φ = 0 on ∂Ω 0 (1.10)
(where f is a known given function) is in fact a classical solution and the data of φ determines uniquely the curvature γ.

Theorem 1.2. Let Ω be the curved guide in R 2 defined as above. Let γ be the signed curvature defined by (1.2) and satisfying Assumptions 1.1 and 1.3. Let H γ be the operator defined by

(1.7). Let f ∈ H 3 (Ω 0 ) ∩ C(Ω 0 ) and let φ ∈ H 1 0 (Ω 0 ) be a weak solution of (1.10). Then we have γ 2 (s) = -4 ∆φ(s, 0) φ(s, 0) -4 f (s, 0) φ(s, 0)
for all s when φ(s, 0) = 0

In the case of a simply-bent guide (i.e. when γ does not change sign in R), we can restrain the hypotheses upon the regularity of γ. We obtain the following result:

Theorem 1.3.
Let Ω be the curved guide in R 2 defined as above. Let γ be the signed curvature defined by (1.2) and satisfying Assumptions 1.1 and 1.2. We assume also that γ is a nonnegative function. Let H γ be the operator defined by (1.7). Let f ∈ L 2 (Ω 0 ) be a non null function and let φ be a weak solution in H 1 0 (Ω 0 ) of (1.10) Assume that there exists a positive constant M such that |f (s, u)| ≤ M |φ(s, u)| almost everywhere in Ω 0 . Then (f, φ) determines uniquely the curvature γ.

Note that the above result is still valid for a nonpositive function γ. This paper is organized as follows: In Section 2, we prove Theorems 1.1, 1.2 and 1.3. In Sections 3 and 4, we extend our results to the case of a curved quantum guide defined in R 3 .

2 Proofs of Theorems 1.1, 1.2 and 1.3

Proof of Theorem 1.1

Recall that φ is an eigenfunction of H γ , belonging to H 2 (Ω 0 ). Since φ is continuous and H γ φ = λφ, then H γ φ is continuous too. Thus, noticing that c γ (s, 0) = 1, we deduce the continuity of the function (s, 0) → ∆φ(s, 0) and from (1.7) to (1.9), we get:

-∆φ(s, 0) - γ 2 (s) 4 φ(s, 0) = λφ(s, 0)
and equivalently,

γ 2 (s) = -4 ∆φ(s, 0) φ(s, 0) -4λ if φ(s, 0) = 0.

Proof of Theorem 1.2

First, we recall from [1, Remark 25 p.182] the following lemma.

Lemma 2.1. For a second-order elliptic operator defined in a domain

ω ⊂ R n , if φ ∈ H 1 0 (ω) satisfies ω i,j a ij ∂φ ∂x i ∂ψ ∂x j = ω f ψ for all ψ ∈ H 1 0 (ω) then if ω is of class C 2 (f ∈ L 2 (ω), a ij ∈ C 1 (ω), D α a ij ∈ L ∞ (ω)
for all i, j and for all α, |α| ≤ 1)

imply (φ ∈ H 2 (ω)) and for m ≥ 1, if ω is of class C m+2 (f ∈ H m (ω), a ij ∈ C m+1 (ω), D α a ij ∈ L ∞ (ω)
for all i, j and for all α, |α| ≤ m + 1)

imply (φ ∈ H m+2 (ω)).
Now we can prove the Theorem 1.2.

We have

H γ φ = f , so Ω0 [c γ (∂ s φ)(∂ s ψ) + (∂ u φ)(∂ u ψ)] = Ω0 [f -V γ φ]ψ for all ψ ∈ H 1 0 (Ω 0 ) (2.1)
with c γ defined by (1.8) and V γ defined by (1.9).

Using Assumption 1.3, since γ (k) ∈ L ∞ (Ω 0 ) for k = 0, 1, 2 then V γ ∈ L ∞ (Ω 0 ) and f -V γ φ ∈ L 2 (Ω 0 ). From the hypotheses γ ∈ C 1 (R) and γ ′ ∈ L ∞ (R), we get that c γ ∈ C 1 (Ω 0 ), D α c γ ∈ L ∞ (Ω 0 ) for any α, |α| ≤ 1,
and so, using Lemma 2.1 for the equation (2.1), we obtain that φ ∈ H 2 (Ω 0 ). By the same way, we get that f -

V γ φ ∈ H 1 (Ω 0 ), c γ ∈ C 2 (Ω 0 ) and D α c γ ∈ L ∞ (Ω 0 ) for any α, |α| ≤ 2 (from γ ∈ C 3 (R), γ (k) ∈ L ∞ (R)
for any k = 0, . . . , 3). Using Lemma 2.1, we obtain that φ ∈ H 3 (Ω 0 ). We apply again the Lemma 2.1 to get that φ ∈ H

4 (Ω 0 ) (since f -V γ φ ∈ H 2 (Ω 0 ), c γ ∈ C 3 (Ω 0 ), D α c γ ∈ L ∞ (Ω 0 ) for all α, |α| ≤ 3, from the hypotheses γ ∈ C 4 (R) and γ (k) ∈ L ∞ (R)
for k = 0, . . . , 4.). Finally, using Assumption 1.3 and Lemma 2.1, we obtain that φ ∈ H 5 (Ω 0 ).

Due to the regularity of Ω 0 , we have φ ∈ H 5 (R 2 ) and ∆φ

∈ H 3 (R 2 ). Since ∇(∆φ) ∈ (H 2 (R 2 )) 2 and H 2 (R 2 ) ⊂ L ∞ (R 2 )
, we can deduce that ∆φ is continuous (see [START_REF] Brezis | Analyse Fonctionnelle. Théorie et Applications[END_REF]Remark 8 p.154]). Therefore we can conclude by using the continuity of the function

(s, 0) → -∂ s (c γ (s, 0)∂ s φ(s, 0)) -∂ 2 u φ(s, 0) = f (s, 0) -V γ (s, 0) φ(s, 0).
Therefore, we get: -∆φ(s, 0) -γ 2 (s) 4 φ(s, 0) = f (s, 0) and equivalently,

γ 2 (s) = -4 ∆φ(s, 0) φ(s, 0) -4 f (s, 0) φ(s, 0) if φ(s, 0) = 0.

Proof of Theorem 1.3

We prove here that (f, φ) determines uniquely γ when γ is a nonnegative function.

For that, assume that Ω 1 and Ω 2 are two quantum guides in R 2 with same width d. We denote by γ 1 and γ 2 the curvatures respectively associated with Ω 1 and Ω 2 and we suppose that each γ i satisfies Assumption 1.2 and is a nonnegative function. Assume that

H γ1 φ = f = H γ2 φ. Then φ satisfies -∂ s ((c γ1 (s, u) -c γ2 (s, u))∂ s φ(s, u)) + (V γ1 (s, u) -V γ2 (s, u))φ(s, u) = 0. (2.2) 
Assume that γ 1 ≡ γ 2 .

Step 1. First, we consider the case where (for example) γ 1 (s) < γ 2 (s) for all s ∈ R.

Let ǫ > 0, ω ǫ := R × I ǫ with I ǫ =] -ǫ, 0[. Multiplying (2.
2) by φ and integrating over ω ǫ , we get:

ωǫ (c γ1 -c γ2 )(∂ s φ) 2 - ∂ωǫ (c γ1 -c γ2 )(∂ s φ)φν s + ωǫ (V γ1 -V γ2 )φ 2 = 0. (2.3) Since ǫ << 1, V γi (s, u) ≃ - γ 2 i (s) 4
for i = 1, 2, and so V γ1 (s, u) -V γ2 (s, u) > 0 in ω ǫ . Moreover, since

c γ1 (s, u) -c γ2 (s, u) = u(γ 1 (s) -γ 2 (s))(2 -u(γ 1 (s) + γ 2 (s)) (1 -uγ 1 (s)) 2 (1 -uγ 2 (s)) 2 , (2.4) 
we have c γ1 (s, u) > c γ2 (s, u) in ω ǫ . Since

∂ωǫ (c γ1 -c γ2 )(∂ s φ)φν s = 0, (2.5) 
Thus from (2.3)-(2.5), we get

ωǫ (c γ1 -c γ2 )(∂ s φ) 2 + ωǫ (V γ1 -V γ2 )φ 2 = 0 (2.6)
with c γ1 -c γ2 > 0 in ω ǫ and V γ1 -V γ2 > 0 in ω ǫ . We can deduce that φ = 0 in ω ǫ . Using a unique continuation theorem (see [10, Theorem XIII.63 p.240]), from

H γ φ = f , noting that -∆(U -1 g φ) = U -1 g f = g -1/4
f, (recall that U g is defined by (1.6)) and so by |f | ≤ M |φ| we have |∆(U -1 g φ)| ≤ M |g -1/4 φ| with g > 0 a.e., and we can deduce that φ = 0 in Ω 0 . So we get a contradiction (since H γ φ = f and f is assumed to be a non null function).

Step 2. From Step 1, we obtain that there exists at least one point s 0 ∈ R such that γ 1 (s 0 ) = γ 2 (s 0 ). Since γ 1 ≡ γ 2 , we can choose a ∈ R and b ∈ R ∪ {+∞} such that (for example)

γ 1 (a) = γ 2 (a), γ 1 (s) < γ 2 (s) for all s ∈]a, b[ and γ 1 (b) = γ 2 (b) if b ∈ R.
We proceed as in Step 1,considering,in 

(c γ1 (a, u) -c γ2 (a, u))∂ s φ(a, u)φ(a, u) du = 0.
By the same way if b ∈ R, we also have c γ1 (b, u) = c γ2 (b, u). Thus the equation (2.3) becomes (2.6) with c γ1 -c γ2 > 0 in ω ǫ and V γ1 -V γ2 > 0 in ω ǫ . So φ = 0 in ω ǫ and as in Step 1, by a unique continuation theorem, we obtain that φ = 0 in Ω 0 . Therefore we get a contradiction.

Note that the previous theorem is true if we replace the hypothesis "γ is nonnegative" by the hypothesis "γ is nonpositive". Indeed, in this last case, we just have to take I ǫ =]0, ǫ[ and the proof rests valid.

3 Uniqueness result for a R 3 -quantum guide Now, we apply the same ideas for a tube Ω in R 3 . We proceed here as in [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF]. Let s → Γ(s), Γ = (Γ 1 , Γ 2 , Γ 3 ), be a curve in R 3 . We assume that Γ : R → R 3 is a C 4 -smooth curve satisfying the following hypotheses Assumption 3.1. Γ possesses a positively oriented Frenet frame {e 1 , e 2 , e 3 } with the properties that i)

e 1 = Γ ′ , ii) ∀i ∈ {1, 2, 3}, e i ∈ C 1 (R, R 3 ), iii) ∀i ∈ {1, 2}, ∀s ∈ R, e ′
i (s) lies in the span of e 1 (s), . . . , e i+1 (s). Recall that a sufficient condition to ensure the existence of the Frenet frame of Assumption 3.1 is to require that for all s ∈ R the vectors Γ ′ (s), Γ ′′ (s) are linearly independent. Then we define the moving frame {ẽ 1 , ẽ2 , ẽ3 } along Γ by following [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF]. This moving frame better reflects the geometry of the curve and it is still called the Tang frame because it is a generalization of the Tang frame known from the theory of three-dimensional waveguides. Given a C 5 bounded open connected neighborhood ω of (0, 0) ∈ R 2 , let Ω 0 denote the straight tube R × ω. We define the curved tube Ω of cross-section ω about Γ by

Ω := f (R × ω) = f (Ω 0 ), f (s, u 2 , u 3 ) := Γ(s) + 3 i=2 u i 3 j=2 R ij (s)e j (s) = Γ(s) + 3 i=2 u i ẽi (s) (3.1) with u = (u 2 , u 3 ) ∈ ω and R(s) := (R ij (s)) i,j∈{2,3} = cos(θ(s)) -sin(θ(s)) sin(θ(s)) cos(θ(s)) ,
θ being a real-valued differentiable function such that θ ′ (s) = τ (s) the torsion of Γ. This differential equation is a consequence of the definition of the moving Tang frame (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF]Remark 3]).

Note that R is a rotation matrix in R 2 chosen in such a way that (s, u 2 , u 3 ) are orthogonal "coordinates" in Ω. Let k be the first curvature function of Ω. Recall that since Ω ⊂ R 3 , k is a nonnegative function. We assume throughout all this section that the following hypothesis holds:

Assumption 3.2. i) k ∈ C 2 (R) ∩ L ∞ (R), a := sup u∈ω u R 2 < 1 k ∞ , k(s) → 0 as |s| → +∞ ii) Ω does not overlap.
The Assumption 3.2 assures that the map f (defined by (3.1)) is a diffeomorphism (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF]) in order to identify Ω with the Riemannian manifold (Ω 0 , (g ij )) where (g ij ) is the metric tensor induced by f , i.e. (g ij ) := t J( f ).J( f ), (J( f ) denoting the Jacobian matrix of f ). Recall that (g ij ) = diag(h 2 , 1, 1) (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF]) with h(s, u 2 , u 3 ) := 1 -k(s)(cos(θ(s))u 2 + sin(θ(s))u 3 ).

(3.2)

Note that Assumption 3.2 implies that 0 < 1 -a k ∞ ≤ 1 -h(s, u 2 , u 3 ) ≤ 1 + a k ∞ for all s ∈ R and u = (u 2 , u 3 ) ∈ ω. Moreover, setting

g := h 2 (3.3)
we can replace the Dirichlet Laplacian operator -∆ Ω D acting on L 2 (Ω) by the Laplace-Beltrami operator K g acting on L 2 (Ω 0 , hdsdu) relative to the metric tensor (g ij ). We can rewrite K g into a Schrödinger-type operator acting on L 2 (Ω 0 , dsdu). Indeed, using the unitary transformation

W g : L 2 (Ω 0 , hdsdu) -→ L 2 (Ω 0 , dsdu) ψ → g 1/4 ψ (3.4) 
setting

H k := W g K g W -1 g , (3.5) 
we get

H k = -∂ s (h -2 ∂ s ) -∂ 2 u2 -∂ 2 u3 + V k (3.6)
where ∂ s denotes the derivative relative to s and ∂ ui denotes the derivative relative to u i and with

V k := - k 2 4h 2 + ∂ 2 s h 2h 3 - 5(∂ s h) 2 4h 4 . (3.7) 
We assume also throughout all this section that the following hypotheses hold:

Assumption 3.3. i) k ′ ∈ L ∞ (R), k ′′ ∈ L ∞ (R) ii) θ ∈ C 2 (R), θ ′ = τ ∈ L ∞ (R), θ ′′ ∈ L ∞ (R).
Remarks: Note that, as for the 2-dimensional case, such operator H k (defined by (3.2)-(3.7)) admits bound states and that the minimum eigenvalue λ 1 is simple and associated with a positive eigenfunction φ 1 (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF][START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]). Still note that (λ, φ) is an eigenpair of the operator H k acting on L 2 (Ω 0 , dsdu) means that (λ, W -1 g φ) is an eigenpair of -∆ Ω D acting on L 2 (Ω) (with W g defined by (3.4)). Finally, note that by [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]Theorem 7.1] any eigenfunction of H k is continuous and by [1, Remark 25 p.182] any eigenfunction of H k belongs to H 2 (Ω 0 ).

As for the 2-dimensional case, first we prove that the data of one eigenpair determines uniquely the curvature. From Assumptions 3.2 and 3.3, since k, k ′ , k ′′ , θ ′ , θ ′′ are bounded, we deduce that V k ∈ L ∞ (Ω 0 ). Therefore f -V k φ ∈ L 2 (Ω 0 ). Moreover we have also h -2 ∈ C 1 (Ω 0 ) and D α (h -2 ) ∈ L ∞ (Ω 0 ) for any α, |α| ≤ 1. Thus, using Lemma 2.1 for the equation (4.1), we obtain that φ ∈ H 2 (Ω 0 ). By the same way, we get that f -

V k φ ∈ H 1 (Ω 0 ), h -2 ∈ C 2 (Ω 0 ) and D α (h -2 ) ∈ L ∞ (Ω 0 ) for any α, |α| ≤ 2 (since k ∈ C 3 (R), θ ∈ C 3 (R)
and all of their derivatives are bounded). Using Lemma 2.1, we obtain that φ ∈ H 3 (Ω 0 ). We apply again the Lemma 2.1 to get that φ ∈ H

4 (Ω 0 ) (since f -V γ φ ∈ H 2 (Ω 0 ), c γ ∈ C 3 (Ω 0 ), D α c γ ∈ L ∞ (Ω 0 ) for all α, |α| ≤ 3, from the hypotheses γ ∈ C 4 (R) and γ (k) ∈ L ∞ (R) for k = 0, . . . , 4 
.). Finally, using Assumption 3.4 and Lemma 2.1, we obtain that φ ∈ H 5 (Ω 0 ). Due to the regularity of Ω 0 (see [1, Note p.169]), we have φ ∈ H 5 (R 3 ) and ∆φ ∈ H 3 (R 3 ). Since ∇(∆φ) ∈ (H 2 (R 3 )) 3 and H 2 (R 3 ) ⊂ L ∞ (R 3 ), we can deduce that ∆φ is continuous (see [START_REF] Brezis | Analyse Fonctionnelle. Théorie et Applications[END_REF]Remark 8 p.154]). Thus we conclude as in Theorem 1.2 and for u = (u 2 , u 3 ) = (0, 0), we get: -∆φ(s, 0, 0)k 2 (s) 4 φ(s, 0, 0) = f (s, 0, 0) and equivalently, k 2 (s) = -4 ∆φ(s,0,0) φ(s,0,0) -4 f (s,0,0) φ(s,0,0) if φ(s, 0, 0) = 0.

Proof of Theorem 3.3

We prove here that (f, φ, θ) determines uniquely k.

Assume that Ω 1 and Ω 2 are two guides in R 3 . We denote by k 1 and k 2 the first curvatures functions associated with Ω 1 and Ω 2 and we denote by θ a primitive of τ the common torsion of Ω 1 and Ω 2 . We suppose that k 1 , k 2 and θ satisfy the Assumptions 3.2 and 3.3 and that 0 ≤ θ(s) ≤ π 2 for all s ∈ R. Assume that H k1 φ = f = H k2 φ. Then φ satisfies -∂ s ((h -2 1 (s, u 2 , u 3 ) -h -2 2 (s, u 2 , u 3 ))∂ s φ(s, u 2 , u 3 )) +(V k1 (s, u 2 , u 3 ) -V k2 (s, u 2 , u 3 ))φ(s, u 2 , u 3 ) = 0 (

where h 1 (associated with k 1 ) is defined by (3.2), V k1 is defined by (3.7), h 2 (associated with k 2 ) is defined by (3.2) and V k2 is defined by (3.7). Assume that k 1 ≡ k 2 .

Step 1. First, we consider the case where (for example) k 1 (s) < k 2 (s) for all s ∈ R. Recall that each k i is a nonnegative function. Let ǫ > 0 and denote by J ǫ :=] -ǫ, 0[×] -ǫ, 0[, O ǫ := R × J ǫ with ǫ small enough to have J ǫ ⊂ ω (recall that Ω 0 = R × ω). Multiplying (4.2) by φ and integrating over O ǫ , we get:

Oǫ (h -2 1 -h -2 2 )(∂ s φ) 2 + ∂Oǫ (h -2 1 -h -2 2 )(∂ s φ)φν s + Oǫ (V k1 -V k2 )φ 2 = 0. (4.3) Since ǫ << 1, V ki ≃ - k 2 i (s) 4
for i = 1, 2, and so V k1 (s, u 2 , u 3 ) -V k2 (s, u 2 , u 3 ) > 0 in O ǫ . Moreover, note that:

h -2
1 (s, u 2 , u 3 ) -h -2 2 (s, u 2 , u 3 ) = α(s, u 2 , u 3 )(k 1 (s) -k 2 (s))(h 1 (s, u 2 , u 3 ) + h 2 (s, u 2 , u 3 )) h 2 1 (s, u 2 , u 3 )h 2 2 (s, u 2 , u 3 ) (4.4) with α(s, u 2 , u 3 ) := cos(θ(s))u 2 + sin(θ(s))u 3 . Since (u 2 , u 3 ) ∈ J ǫ and 0 ≤ θ(s) ≤ π 2 for all s ∈ R, we have α(s, u 2 , u 3 ) < 0. Therefore, by (4.4), we deduce that h -2 1 -h -2 2 > 0 in O ǫ .

  this case, ω ǫ :=]a, b[×I ǫ . We study again the equation (2.3) and as in Step 1, we have ∂ωǫ (c γ1 -c γ2 )(∂ s φ)φν s = 0. Indeed from (2.4) and γ 1 (a) = γ 2 (a) we have c γ1 (a, u) = c γ2 (a, u) and so 0 -ǫ

Theorem 3.1. Let Ω be the curved guide in R 3 defined as above. Let k be the first curvature function of Ω. Assume that Assumptions 3.1 to 3.3 are satisfied. Let H k be the operator defined by (3.2)-(3.7) and (λ, φ) be an eigenpair of H k . Then k 2 (s) = -4 ∆φ(s,0,0) φ(s,0,0) -4λ for all s when φ(s, 0, 0) = 0. Then, under

where k (i) (resp. θ (i) ) denotes the i-th derivative of k (resp. of θ), we obtain the following result:

Let Ω be the curved guide in R 3 defined as above. Let k be the first curvature function of Ω. Assume that Assumptions 3.1 to 3.4 are satisfied. Let H k be the operator defined by

Then φ is a classical solution and k 2 (s) = -4 ∆φ(s,0,0) φ(s,0,0) -4 f (s,0,0) φ(s,0,0) for all s when φ(s, 0, 0) = 0.

Remarks: Recall that in R 3 , k is a nonnegative function and that the condition imposed on φ (φ(s, 0, 0) = 0) in Theorems 3.1 and 3.2 is satisfied by the positive eigenfunction φ 1 .

As for the two-dimensional case, we can restrain the hypotheses upon the regularity of the functions k and θ.

For a guide with a known torsion, we obtain the following result: Recall that φ is an eigenfunction of H k . Since φ is continuous, H k φ = λφ and φ ∈ H 2 (Ω 0 ) then H k φ is continous. Therefore, for u = (u 2 , u 3 ) = (0, 0), we get: -∆φ(s, 0, 0) -k 2 (s) 4 φ(s, 0, 0) = λφ(s, 0, 0) and equivalently, k 2 (s) = -4 ∆φ(s,0,0) φ(s,0,0) -4λ if φ(s, 0, 0) = 0.

Proof of Theorem 3.2

We follow the proof of Theorem 1.2. We have

with h defined by (3.2) and V k defined by (3.7).

Thus

Therefore, from (4.3) and (4.5) we get:

From (4.6) we can deduce that φ = 0 in O ǫ . Using a unique continuation theorem (see [10, Theorem XIII.63 p.240]), from

in Ω 0 , we can deduce that φ = 0 in Ω 0 . So we get a contradiction since f is assumed to be a non null function.

Step2. From Step 1, we obtain that there exists at least one point s

2 (a, u 2 , u 3 ). Therefore we obtain ∂Oǫ (h -2 1 -h -2 2 )(∂ s φ)φν s = 0. So (4.3) becomes (4.6) with h -2 1 -h -2 2 > 0 in O ǫ and V k1 -V k2 > 0 in O ǫ . So φ = 0 in O ǫ and as in Step 1, by a unique continuation theorem, we obtain that φ = 0 in Ω 0 . Therefore we get a contradiction.