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We prove an adapted global Carleman estimate and an energy estimate for this operator. Using these estimates, we give a stability result for the diffusion coefficient c(x, y).
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Introduction

Let

Ω = R × (-d 2 , d
2 ) be an unbounded strip of R 2 with a fixed width d. We will consider the Schrödinger equation (1.1)    Hq := i∂tq + ∇ • (c(x, y)∇q) = 0 in Q = Ω × (0, T ), q(x, y, t) = b(x, y, t) on Σ = ∂Ω × (0, T ), q(x, y, 0) = q0(x, y) on Ω, where c(x, y) ∈ C 3 (Ω) and c(x, y) ≥ cmin > 0. Moreover, we assume that c and all its derivatives up to order three are bounded. If we assume that q0 belongs to H 4 (Ω) and b is sufficiently regular (e.g. b ∈ H 1 (0, T, H

• q0 is a real valued function in C 3 (Ω),

• q0 and all its derivatives up to order three are in Λ(R2) .

Our main result is |c -c| 2 H 1 (Ω) ≤ C|∂ν (∂tq) -∂ν (∂t q)| 2 L 2 ((0,T )×Γ + ) , where C is a positive constant which depends on (Ω, Γ, T, R1, R2) and where the above norms are weighted Sobolev norms. The major novelty of this paper is to give an H 1 stability estimate for the diffusion coefficient with only one observation in an unbounded domain. We prove an adapted global Carleman estimate and an energy estimate for the operator H with a boundary term on Γ + . Such energy estimate has been proved in [START_REF] Lasiecka | Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates[END_REF] for the Schrödinger operator in a bounded domain in order to obtain a controllability result. Then using these estimates and following the method developed by Imanuvilov, Isakov and Yamamoto for the Lamé system in [START_REF] Yu | An Inverse Problem for the Dynamical Lamé system with two set of boundary data[END_REF], [START_REF] Yu | Carleman estimates for the non-stationary Lamé system and the application to an inverse problem[END_REF], we give a stability and uniqueness result for the diffusion coefficient c(x, y). Note that this stability result corresponds to a stability result for three linked coefficients (c, ∂yc and ∂yc) with only one observation. For independent coefficients, in our knowledge, there is no stability result with one observation. The method of Carleman estimates was introduced in the field of inverse problems in the works of Bukhgeim and Klibanov (see [START_REF] Bukhgeim | Volterra Equations and Inverse Problems, Inverse and Ill-Posed Problems Series[END_REF], [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF], [START_REF] Klibanov | Inverse problems in the large and Carleman bounds[END_REF], [START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF]). The first stability result for a multidimensional inverse problem (for a hyperbolic equation) was obtained by Puel and Yamamoto [START_REF] Puel | On a global estimate in a linear inverse hyperbolic problem[END_REF] using a modification of the idea of [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF]. For the non stationnary Schrödinger equation, [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] gives a stability result for the potential in a bounded domain. For the stationnary Schrödinger equation, we can cite recent results concerning uniqueness for the potential from partial Cauchy data (see for exemple [START_REF] Kenig | The Calderón problem with partial data[END_REF] and the references herein). In unbounded domains Carleman estimate with an internal observation has been proved for the heat equation in [START_REF] Burgos-Gonzalez | Some results on null controllability for the heat equation in unbounded domains[END_REF]. A physical background could be the characterization of the diffusion coefficient for a strip in geophysics. Indeed if we look for time harmonic solutions of (1.1), the problem can be written, after some changes of variables as the reconstruction of a non local potential P in a strip for the operator -∆ + P . Few results for inverse problems exist in a two-dimensional strip (see [START_REF] Cristofol | Inverse Problem for a Perturbed Stratified Strip in two dimension[END_REF]). For the layer R n × [0, h] with n ≥ 2, several results exist for the stationnary inverse problems (see [START_REF] Buchanan | Marine acoustics. Direct and inverse problems[END_REF], [START_REF] Cristofol | Inverse Problem for the Schrödinger Operator in a Layer[END_REF], [START_REF] Cristini | Identification of the size, proportions and location of a soft body of revolution in a shallow-water waveguide[END_REF], [START_REF] Ikehata | Inverse Conductivity Problem in the Infinite Slab[END_REF], [START_REF] Ikehata | Inverse Boundary Problems for Ocean Accoustics[END_REF], [START_REF] Wirgin | Inverse problems in underwater acoustics[END_REF], ...). On the other hand, we can link our problem to the determination of the curvature function for a curved quantum guide (see [START_REF] Exner | Bound states in curved quantum waveguides[END_REF], [START_REF] Chenaud | Geometrically Induced Discrete Spectrum in Curved Tubes[END_REF], [START_REF] Duclos | Bound States in Curved Quantum Layers[END_REF], ...). This paper is organized as follows. In section 2, we give an adapted global Carleman estimate for the operator H. In section 3, we prove an energy estimate and we give a stability result for the diffusion coefficient c.

Global Carleman Estimate

Let c = c(x, y) be a bounded positive function in C 3 (Ω) such that Assumption 2.1. c(x, y) ∈ Λ(R1), c and all its derivatives up to order three are in Λ(R2).

Let q = q(x, y, t) be a function equals to zero on ∂Ω×(-T, T ) and solution of the Schrödinger equation

i∂tq + ∇ • (c(x, y)∇q) = f.
We prove here a global Carleman-type estimate for q with a single observation acting on a part Γ + of the boundary Γ in the right-hand side of the estimate. Let β be a C 4 (Ω) positive function such that there exists positive constant Cpc which satisfies Assumption 2.2.

• |∇ β| ∈ Λ(R1), ∂ν β ≤ 0 on Γ -,

• β and all its derivatives up to order four are in Λ(R2).

• 2 (D 2 β(ζ, ζ)) -c∇c • ∇ β|ζ| 2 + 2c 2 |∇ β • ζ| 2 ≥ Cpc|ζ| 2 , for all ζ ∈ C
where

D 2 β = c∂x(c∂x β) c∂x(c∂y β) c∂y(c∂x β) c∂y(c∂y β) .
Note that the last assertion of Assumption 2.2 expresses the pseudo-convexity condition for the function β. This Assumption imposes restrictive conditions for the choice of the functions c(x, y) in connection with the function β. Note that there exists functions satisfying such Assumptions; indeed, if we consider

c(x, y) ∈ f ∈ C 1 (Ω); ∃r0 positive constant, -f ∂yf ∂y β ≥ r0 > 0, f ∂yf ∂y β(( ∂xf ∂y f ) 2 + 1) + 2f 2 (∂yy β + (∂y β) 2 ) ≥ r0 > 0.
then a function β(x, y) = β(y) is available (for example, c(x, y) = ( 1 1+x 2 + 1)e -y and β(x, y) = e y ). Similar restrictive conditions have been highlighted for the hyperbolic case in [START_REF] Klibanov | Lipshitz stability for an inverse problem for an acoustic equation[END_REF], [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF] and for the Schrödinger operator in [START_REF] Isakov | Inverse problems for partial differential equations[END_REF] Then, we define β = β + K with K = m β ∞ and m > 1. For λ > 0 and t ∈ (-T, T ), we define the following weight functions

(2.1) ϕ(x, y, t) = e λβ(x,y) (T + t)(T -t) , η(x, y, t) = e 2λK -e λβ(x,y) (T + t)(T -t) .
Let H be the operator defined by (2.2)

Hq := i∂tq + ∇ • (c(x, y)∇q) in Q = Ω × (-T, T ).
We set ψ = e -sη q, M ψ = e -sη H(e sη ψ) for s > 0 and we introduce the following operators

(2.3) M1ψ := i∂tψ + ∇ • (c∇ψ) + s 2 c|∇η| 2 ψ, (2.4) 
M2ψ := is∂tηψ + 2cs∇η • ∇ψ + s∇ • (c∇η)ψ.
Then the following result holds.

Theorem 2.3. Let H, M1, M2 be the operators defined respectively by (2.2), (2.3), (2.4). We assume that Assumptions 2.1 and 2.2 are satisfied. Then there exist λ0 > 0, s0 > 0 and a positive constant C = C(Ω, Γ, T, Cpc, R1, R2) such that, for any λ ≥ λ0 and any s ≥ s0, the next inequality holds:

s 3 λ 4 T -T Ω e -2sη ϕ 3 |q| 2 dx dy dt + sλ T -T Ω e -2sη ϕ|∇q| 2 dx dy dt + M1(e -sη q) 2 L 2 ( Q) (2.5) + M2(e -sη q) 2 L 2 ( Q) ≤ C sλ T -T Γ + e -2sη ϕ|∂ν q| 2 ∂ν β dσ dt + T -T Ω e -2sη |Hq| 2 dx dy dt ,
for all q satisfying Hq ∈ L 2 (Ω × (-T, T )), q ∈ L 2 (-T, T ; H 1 0 (Ω)), ∂ν q ∈ L 2 (-T, T ; L 2 (Γ)).

Proof. If we set ψ = e -sη q, we calculate M ψ = e -sη H(e sη ψ) and we obtain:

M ψ = M1ψ + M2ψ
with M1 and M2 defined respectively by (2.3) and (2.4). Then

T -T Ω |M ψ| 2 dx dy dt = T -T Ω |M1ψ| 2 dx dy dt + T -T Ω |M2ψ| 2 dx dy dt (2.6) + 2 ( T -T Ω M1ψ M2ψ dx dy dt),
where z is the conjugate of z, (z) its real part and (z) its imaginary part. We have to compute the scalar product in (2. After an integration by parts with respect to the space variable in the first integral and to the time variable in the second integral, we obtain

I 12 = -s T -T Ω ∇ • (c∇η) ψ ∂tψ dx dy dt + s T -T Ω cψ ∇(∂tη) • ∇ψ dx dy dt . (2.8)
I 13 = s T -T Ω ∇ • (c∇η) ψ ∂tψ dx dy dt . (2.9)
Note that I 13 vanishes with the first term of I 12 .

I 21 = -is T -T Ω ∂tη ψ ∇ • (c∇ψ)dx dy dt (2.10) = s T -T Ω cψ ∇(∂tη) • ∇ψ dx dy dt .
Using integrations by parts, we obtain

I 22 = 2s T -T Ω c∇ • (c∇ψ)∇η • ∇ψ)dx dy dt (2.11) = -sλ T -T Ω ϕ|∇ψ| 2 (∇ • (c 2 ∇β) + λc 2 |∇β| 2 ) dx dy dt + s T -T ∂Ω c 2 ∂ν η |∂ν ψ| 2 dσ dt + 2sλ 2 T -T Ω ϕc 2 |∇β • ∇ψ| 2 dx dy dt + 2sλ T -T Ω ϕc 2 i,j=1 ∂x i (c∂x j β) ∂x i ψ ∂x j ψ dx dy dt = -sλ T -T Ω ϕ|∇ψ| 2 (∇ • (c 2 ∇β) + λc 2 |∇β| 2 ) dx dy dt -sλ T -T ∂Ω c 2 ϕ ∂ν β |∂ν ψ| 2 dσ dt + 2sλ 2 T -T Ω ϕc 2 |∇β • ∇ψ| 2 dx dy dt + 2sλ T -T Ω ϕD 2 β(∇ψ, ∇ψ) dx dy dt .
Using integration by parts, we obtain

I 23 = s T -T Ω ∇ • (c∇ψ) ∇ • (c∇η) ψ dx dy dt (2.12) = sλ T -T Ω cϕ |∇ψ| 2 (∇ • (c∇β) + λc|∇β| 2 ) dx dy dt - sλ 2 2 T -T Ω ϕ∇ • (c∇ • (c∇β)∇β))|ψ| 2 dx dy dt - sλ 3 2 T -T Ω ϕc|∇β| 2 ∇ • (c∇β)|ψ| 2 dx dy dt - sλ 4 2 T -T Ω ϕc 2 |∇β| 4 |ψ| 2 dx dy dt - sλ 3 2 T -T Ω ϕ∇ • (c 2 |∇β| 2 ∇β)|ψ| 2 dx dy dt - sλ 2 2 T -T Ω ϕc∇β • ∇(∇ • (c∇β) + λc|∇β| 2 )|ψ| 2 dx dy dt - sλ 2 T -T Ω ϕ∇ • (c∇(∇ • (c∇β) + λc|∇β| 2 ))|ψ| 2 dx dy dt.
And we obviously have (2.13)

I 31 = s 3 T -T Ω c (-i∂tη ψ)|∇η| 2 ψ dx dy dt = 0. I 32 = 2s 3 T -T Ω c 2 |∇η| 2 ψ ∇η • ∇ψ dx dy dt (2.14) = s 3 T -T Ω c 2 |∇η| 2 ∇η • ∇|ψ| 2 dx dy dt = s 3 λ 3 T -T Ω cϕ 3 |∇β| 2 ∇ • (c∇β) + ∇β • ∇(c|∇β| 2 ) |ψ| 2 dx dy dt + 3s 3 λ 4 T -T Ω c 2 ϕ 3 |∇β| 4 |ψ| 2 dx dy dt. I 33 = s 3 T -T Ω c |∇η| 2 ψ∇ • (c∇η)ψ dx dy dt (2.15) = -s 3 λ 3 T -T Ω c ϕ 3 |∇β| 2 ∇ • (c∇β)|ψ| 2 dx dy dt -s 3 λ 4 T -T Ω c 2 ϕ 3 |∇β| 4 |ψ| 2 dx dy dt.
So, by (2.7)-(2.15), we get :

T -T Ω M1ψ M2ψ dx dy dt = 2sλ 2 T -T Ω ϕc 2 |∇β • ∇ψ| 2 dx dy dt -sλ T -T Ω ϕ c ∇c • ∇β|∇ψ| 2 dx dy dt + 2sλ T -T Ω ϕD 2 β(∇ψ, ∇ψ) dx dy dt + 2s 3 λ 4 T -T Ω c 2 ϕ 3 |∇β| 4 |ψ| 2 dx dy dt -sλ T -T ∂Ω c 2 ϕ∂ν β|∂ν ψ| 2 dσ dt + X,
where

X = -s 2 T -T Ω ∂ttη |ψ| 2 dx dy dt + 2s T -T Ω cψ∇(∂tη) • ∇ψdx dy dt - sλ 2 2 T -T Ω ϕ∇ • (c∇ • (c∇β)∇β))|ψ| 2 dx dy dt - sλ 3 2 T -T Ω ϕc|∇β| 2 ∇ • (c∇β)|ψ| 2 dx dy dt - sλ 4 2 T -T Ω ϕc 2 |∇β| 4 |ψ| 2 dx dy dt - sλ 3 2 T -T Ω ϕ∇ • (c 2 |∇β| 2 ∇β)|ψ| 2 dx dy dt - sλ 2 2 T -T Ω ϕc∇β • ∇(∇ • (c∇β) + λc|∇β| 2 )|ψ| 2 dx dy dt - sλ 2 T -T Ω ϕ∇ • (c∇(∇ • (c∇β) + λc|∇β| 2 ))|ψ| 2 dx dy dt + s 3 λ 3 T -T Ω ϕ 3 c∇β • ∇(c|∇β| 2 )|ψ| 2 dx dy dt.
Recall that:

M ψ 2 L 2 ( Q) = M1ψ 2 L 2 ( Q) + M2ψ 2 L 2 ( Q) + 2 (M1ψ, M2ψ). Then : M1ψ 2 L 2 ( Q) + M2ψ 2 L 2 ( Q) + 4sλ 2 T -T Ω ϕc 2 |∇β • ∇ψ| 2 dx dy dt (2.16) +4sλ T -T Ω ϕD 2 β(∇ψ, ∇ψ)dx dy dt -2sλ T -T Ω ϕ c ∇c • ∇β|∇ψ| 2 dx dy dt +4s 3 λ 4 T -T Ω c 2 ϕ 3 |∇β| 4 |ψ| 2 dx dy dt -2sλ T -T ∂Ω c 2 ϕ∂ν β|∂ν ψ| 2 dσ dt ≤ M ψ 2 L 2 ( Q) + 2|X|.
Taking into account

• | β| + |∇ β| + |∇(∇ • (c∇ β))| + |∇ • (∇(∇ • (c∇ β)))| ≤ C(Ω, Γ, T, R2) in Ω, • |∂ttη| ≤ C(T )ϕ 3 , |∂tϕ| ≤ C(T )ϕ 2 , ϕ ≤ C(T )ϕ 3 , ϕ 2 ≤ C(T )ϕ 3 , • |s ( T -T Ω cψ∇(∂tη) • ∇ψdx dy dt)| ≤ C(T )sλ T -T Ω cϕ|∇β • ∇ψ| 2 dx dy dt +C(T )sλ T -T Ω cϕ 3 |ψ| 2 dx dy dt,
where C(Ω, Γ, T, R2) is a positive constant depending upon Ω, Γ, T, R2 and C(T ) is a positive constant depending upon T. Therefore we obtain the following estimation for X:

|X| ≤ C(Ω, Γ, T, R2) (sλ 4 + s 3 λ 3 ) T -T Ω ϕ 3 |ψ| 2 dx dy dt + sλ T -T Ω ϕ|∇β • ∇ψ| 2 dx dy dt .
The two terms of the previous estimate of |X| are neglectable with respect to 

s 3 λ 4 T -T Ω c 2 ϕ 3
M1ψ 2 L 2 ( Q) + M2ψ 2 L 2 ( Q) + 4s 3 λ 4 T -T Ω c 2 ϕ 3 |∇β| 4 |ψ| 2 dx dy dt +sλ T -T Ω ϕ|∇ψ| 2 dx dy dt ≤ 2sλ T -T ∂Ω c 2 ϕ∂ν β|∂ν ψ| 2 dσ dt + M ψ 2 L 2 ( Q) .
Recall that ∂ν β ≤ 0 on Γ -, c(x, y) ∈ Λ(R1) ∩ Λ(R2), |∇β| ∈ Λ(R1) and ψ = e -sη q, then the proof is complete.

Inverse Problem

In this section, we establish a stability inequality and deduce a uniqueness result for the coefficient c. The Carleman estimate (2.5) proved in section 2 will be the key ingredient in the proof of such a stability estimate.

Let q be solution of (3.1)

   i∂tq + ∇ • (c∇q) = 0 in Ω × (0, T ), q(x, y, t) = b(x, y, t) on ∂Ω × (0, T ), q(x, y, 0) = q0(x, y) in Ω,
and q be solution of (3.2)

   i∂t q + ∇ • ( c∇ q) = 0 in Ω × (0, T ), q(x, y, t) = b(x, y, t) on ∂Ω × (0, T ), q(x, y, 0) = q0(x, y) in Ω,
where c and c both satisfy Assumption 2.1. If we set u = q -q, v = ∂tu and γ = c -c, then u and v satisfy respectively

(3.3)    i∂tu + ∇ • (c∇u) = ∇ • (γ∇ q) in Ω × (0, T ), u(x, y, t) = 0 on ∂Ω × (0, T ), u(x, y, 0) = 0 in Ω, (3.4) 
   i∂tv + ∇ • (c∇v) = ∇ • (γ∇∂t q) = f in Ω × (0, T ), v(x, y, t) = 0 on ∂Ω × (0, T ), v(x, y, 0) = 1 i ∇ • (γ∇q0) in Ω. Assumption 3.1. q0 is a real valued function in C 3 (Ω)
We extend the function v on Ω × (-T, T ) by the formula v(x, y, t) = -v(x, y, -t) for every (x, y, t) ∈ Ω × (-T, 0). Note that this extension is available if the initial data is a real valued function. For a pure imaginary initial data, the right extension is v(x, y, t) = v(x, y, -t). Note that these extensions satisfy the previous Carleman estimate.

Energy Estimate

We assume throughout this section that γ ∈ H 1 0 (Ω). We introduce

(3.5) E(t)
= Ω e -2sη(x,y,t) |∂tu(x, y, t)| 2 dx dy + Ω ϕ -1 (x, y, t) e -2sη(x,y,t) |∂t∇u(x, y, t)| 2 dx dy.

In this section, we will give an estimation of E(0).

First

Step: We first give an estimation of Ω e -2sη(x,y,0) |∂tu(x, y, 0)| 2 dx dy.

We set ψ = e -sη v. With the operator

(3.6) M1ψ = i∂tψ + ∇ • (c∇ψ) + s 2 |∇η| 2 ψ,
we introduce, following [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF],

I = 2 0 -T Ω
M1ψ ψ dx dy dt .

Assumption 3.2. ∂t q, ∇(∂t q), ∆(∂t q) are in Λ(R2).

We have the following estimate Lemma 3.3. We assume that Assumption 3.2 is satisfied. Then there exists a positive constant C = C(Ω, Γ, T, R1, R2) such that for any λ ≥ λ0 and s ≥ s0, we have

I = Ω e -2sη(x,y,0) |∂tu(x, y, 0)| 2 dx dy and |I| ≤ Cs -3/2 λ -2 Ω e -2sη(x,y,0) (|γ| 2 + |∇γ| 2 ) dx dy +Cs -1/2 λ -1 T -T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt.
Proof. In a first step, we calculate In a second step, we estimate I. Using Young inequality we can write e -2sη(x,y,t) ≤ e -2sη(x,y,0) for all t ∈ (-T, T ), we obtain for s and λ sufficiently large the estimate

I I = 2 0 -T Ω i∂tψ ψ + ∇ • (c∇ψ) ψ + s 2
|I| ≤ 2 T -T Ω |M1ψ| 2 dx dy dt 1 2 T -T Ω e -2sη |v| 2 dx dy dt 1 2 ≤ C(T )s -3 2 λ -2 M1ψ 2 L 2 ( Q) + s 3 λ 4 T -T Ω e -2sη
|I| ≤ C s -3/2 λ -2 Ω e -2sη(x,y,0) (|γ| 2 + |∇γ| 2 ) dx dy (3.7) +C s -1/2 λ -1 T -T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt.
where C = C(Ω, Γ + , T, R1, R2) is a positive constant.

Second

Step: We then give an estimate of Ω ϕ -1 (x, y, 0) e -2sη(x,y,0) |∂t∇u(x, y, 0)| 2 dx dy. We denote

(3.8) E(t) := Ω c ϕ -1 (x, y, t) e -2sη(x,y,t) |∇v(x, y, t)| 2 dx dy,
where ϕ -1 = 1 ϕ . We give an estimate for E(0) in Theorem 3.5. In a first step we prove the following lemma : Lemma 3.4. Let v be solution of (3.4) in the following class

v ∈ C([0, T ], H 1 (Ω)), ∂ν v ∈ L 2 (0, T, L 2 (Γ)).
Then the following identity holds true

E(τ ) -E(κ) = -2 τ κ Ω e -2sη f ϕ -1 ∂tv dx dy dt + τ κ Ω c e -2sη (-4sλ + 2λϕ -1 )∂tv ∇β • ∇v dx dy dt -2s τ κ Ω c e -2sη ϕ -1 ∂tη|∇v| 2 dx dy dt + τ κ Ω ce -2sη ∂t(ϕ -1 )|∇v| 2 , for f ∈ H 1 0 (Ω).
Proof. Since v is solution of (3.4) note that ∂tv = if -i∇ • (c∇v). Therefore, we obtain the two following equalities.

(3.9)

τ κ Ω e -2sη f ϕ -1 ∂tv dx dy dt = -i τ κ Ω e -2sη f ϕ -1 ∇ • (c ∇v) dx dy dt , τ κ Ω c e -2sη ∂tv (-4sλ + 2λϕ -1 )∇β • ∇v dx dy dt (3.10) = i τ κ Ω c e -2sη f (-4sλ + 2λϕ -1 )∇β • ∇v dx dy dt - i τ κ Ω c e -2sη (-4sλ + 2λϕ -1 )∇ • (c∇v)∇β • ∇v dx dy dt .
We multiply the first equation of (3.4) by e -2sη ϕ -1 ∂tv and we integrate on (κ, τ )×Ω, where [κ, τ ] ⊂ [0, T ]. So, if we consider the real part of the obtained equality, we have

0 = i τ κ Ω e -2sη ϕ -1 |∂tv| 2 dx dy dt = τ κ Ω e -2sη f ϕ -1 ∂tv dx dy dt - τ κ Ω e -2sη ϕ -1 ∇ • (c∇v)∂tv dx dy dt .
Then by integration by parts, we obtain 0 = Note that

E(τ ) -E(κ) = Ω τ κ c ∂t(e -2sη ϕ -1 |∇v| 2 ) dx dy dt.
Therefore we have

0 = τ κ Ω e -2sη f ϕ -1 ∂tv dx dy dt -2s τ κ Ω c ϕ -1 e -2sη ∂tv∇v • ∇η dx dy dt -λ τ κ Ω c e -2sη ϕ -1 ∂tv∇v • ∇β dx dy dt + 1 2 E(τ ) - 1 2 E(κ) +s τ κ Ω c e -2sη ϕ -1 ∂tη|∇v| 2 dx dy dt - 1 2 τ κ ce -2sη ∂t(ϕ -1 )|∇v| 2 dx dy dt,
and the proof of Lemma 3.4 is complete.

Theorem 3.5. Let v be solution of (3.4) in the following class

v ∈ C([0, T ], H 1 (Ω)), ∂ν v ∈ L 2 (0, T, L 2 (Γ)).
We assume that Assumptions 2.1 and 2.2 are checked. Then there exists a positive constant

C = C(Ω, Γ, T, R1, R2) > 0 such that (3.11) E(0) ≤ C s 2 λ 2 T -T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt + sλ Q e -2sη |f | 2
for s and λ sufficiently large.

Proof. We apply Lemma 3.4 with κ = 0 and τ = T . Since E(T ) = 0, we obtain

E(0) = 2 T 0 Ω e -2sη f ϕ -1 ∂tv dx dy dt - T 0 Ω c e -2sη (-4sλ + 2λϕ -1 )∂tv ∇β • ∇v dx dy dt +2s T 0 Ω c e -2sη ϕ -1 ∂tη|∇v| 2 dx dy dt - T 0 Ω ce -2sη ∂t(ϕ -1 )|∇v| 2 .
We give now estimates of the four integrals in the previous equality.

First integral: B := 2 T 0 Ω e -2sη ϕ -1 f ∂tv dx dy dt . Using (3.9), we have :

(3.12) B = 2 T 0 Ω e -2sη ϕ -1 f ∂tv dx dy dt = T 0 Ω e -2sη ϕ -1 f ∂tv dx dy dt + -i T 0 Ω e -2sη ϕ -1 f ∇ • (c ∇v) dx dy dt .
Recall that if we set ψ = e -sη v, then M ψ = e -sη H(e sη ψ) = M1ψ + M2ψ for s > 0 with

M1ψ := i∂tψ + ∇ • (c∇ψ) + s 2 c|∇η| 2 ψ, M2ψ := is∂tηψ + 2cs∇η • ∇ψ + s∇ • (c∇η)ψ. So (3.12) becomes B = 2 T 0 Ω e -2sη ϕ -1 f ∂tv dx dy dt = T 0 Ω
e -2sη ϕ -1 f e sη (s∂tηψ + ∂tψ) dx dy dt

+ -i T 0 Ω e -2sη ϕ -1 f e sη (s∇ • (c∇η)ψ + c s 2 |∇η| 2 ψ + 2c s ∇η • ∇ψ + ∇ • (c∇ψ)) dx dy dt = -i T 0 Ω e -2sη ϕ -1 f e sη (i∂tψ + ∇ • (c∇ψ)) dx dy dt + T 0 Ω e -2sη ϕ -1 f e sη (s∂tη -i s∇ • (c∇η) -i c s 2 |∇η| 2 )ψ dx dy dt + -i T 0 Ω e -2sη ϕ -1 f e sη 2c s ∇η • ∇ψ dx dy dt Note that i∂tψ + ∇ • (c∇ψ) = M1ψ -s 2 c|∇η| 2 ψ.
Then, we obtain

B = -i T 0 Ω e -2sη ϕ -1 f e sη (M1ψ -s 2 c|∇η| 2 ψ) dx dy dt + T 0 Ω e -2sη ϕ -1 f e sη (s∂tη -i s∇ • (c∇η) -i c s 2 |∇η| 2 )ψ dx dy dt + -i T 0 Ω
e -2sη ϕ -1 f e sη 2c s ∇η • ∇ψ dx dy dt .

If we come back to the function v, the previous equality becomes :

B = -i T 0 Ω (f e -sη ϕ -1 M1(e -sη v) -s 2 c|∇η| 2 e -2sη ϕ -1 f v) dx dy dt + T 0 Ω e -2sη ϕ -1 f (s∂tη -i s∇ • (c∇η) + i c s 2 |∇η| 2 )v dx dy dt + -i T 0 Ω
e -2sη ϕ -1 f 2c s ∇η • ∇v dx dy dt .

Then there exists a positive constant C = C(Ω, Γ, T, R1, R2) such that: Using now the Carleman estimate of Theorem 2.3 and Lemma 3.4, from (3.9)-(3.12), we deduce the existence of a positive constant C = C(Ω, Γ, T, R1, R2) such that:

E(0) ≤ C s 2 λ 2 T -T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt + sλ Q e -2sη |f | 2 dx dy dt ,
and the proof is complete.

Stability Estimate

Now following an idea developed in [START_REF] Yu | An Inverse Problem for the Dynamical Lamé system with two set of boundary data[END_REF] for Lamé system in bounded domains, we give an underestimate for E(0). We adapt the proof of lemma 3.2 of [START_REF] Yu | An Inverse Problem for the Dynamical Lamé system with two set of boundary data[END_REF] to an unbounded domain.

Assumption 3.6.

• q0 and all its derivatives up to order three are in Λ(R2)

• |∇β • ∇q0| ∈ Λ(R1)
Lemma 3.7. We consider the first order partial differential operator (P0g)(x, y) = ∂xq0(x, y)∂xg(x, y) + ∂y(x, y)∂yg(x, y), P0g := ∇q0 • ∇g where q0 satisfies Assumptions 3.1, 3.6. Then there exist positive constants λ1 > 0, s1 > 0 and C = C(Ω, Γ, T, R1, R2) such that for all λ ≥ λ1 and s ≥ s1

s 2 λ 2 Ω ϕ0 e -2sη 0 |g| 2 dx dy ≤ C Ω ϕ -1 0 e -2sη 0 |P0g| 2 dx dy
with η0(x, y) := η(x, y, 0), ϕ0(x, y) := ϕ(x, y, 0) and for g ∈ H 1 0 (Ω).

Proof. Let g ∈ H 1 0 (Ω). We denote by w = e -sη 0 g with η0 := η(x, y, 0) and Q0w = e -sη 0 P0(e sη 0 w), so we get Q0w = swP0η0 + P0w. Therefore, we have:

Ω ϕ -1 0 Q0w Q0w dx dy = s 2 Ω ϕ -1 0 |w| 2 |P0η0| 2 dx dy + Ω ϕ -1 0 |P0w| 2 dx dy +2s Ω ϕ -1 0 w P0η0 P0w dx dy = s 2 λ 2 Ω ϕ0 |w| 2 (∇q0 • ∇β) 2 dx dy + Ω ϕ -1 0 |P0w| 2 dx dy -sλ Ω ∇q0 • ∇β ∇q0 • ∇(|w| 2 ) dx dy.

So, integrating by parts, we obtain

Ω ϕ -1 0 Q0w Q0w dx dy = s 2 λ 2 Ω ϕ0 |w| 2 (∇q0 • ∇β) 2 dx dy + Ω ϕ -1 0 |P0w| 2 dx dy +sλ Ω ∇ • (∇q0 • ∇β∇q0)|w| 2 dx dy. Thus Ω ϕ -1 0 e -2sη 0 |P0g| 2 dx dy ≥ s 2 λ 2 Ω ϕ0 |∇β •∇q0| 2 e -2sη 0 |g| 2 dx dy +sλ Ω ∇•(P0β ∇q0)e -2sη 0 |g| 2 dx dy.
Using Assumptions 3.1 and 3.6, we can conclude for s and λ sufficiently large.

Then, we deduce the following result.

Lemma 3.8. Let u be solution of (3.4). We assume that Assumptions 2.2, 3.1 and 3.6 are satisfied.

Then there exists a positive constant C = C(Ω, Γ, T, R1, R2) such that for s and λ sufficiently large, the two following estimates hold true Proof. We apply Lemma 3.7 to the first order partial differential equations satisfied by

(3.17) s 2 λ 2 Ω ϕ0 e -2sη 0 |γ| 2 dx dy ≤ C Ω ϕ -1 0 e -2sη 0 |∂tu(x, y, 0)| 2 dx dy, (3.18 
• γ given by the initial condition in (3.4)

P0γ := ∂xq0∂xγ + ∂yq0∂yγ = i∂tu(x, y, 0) -γ∆q0,

• ∂xγ given by the x-derivative of the initial condition in (3.4)

P0∂xγ := ∂xq0∂x(∂xγ) + ∂yq0∂y(∂xγ)

= i∂t(∂xu(x, y, 0)) -∂xγ(∆q0 + ∂xxq0) -∂yγ∂xyq0 -γ∂x(∆q0),

• ∂yγ given by the y-derivative of the initial condition in (3.4) P0∂yγ := ∂xq0∂x(∂yγ) + ∂yq0∂y(∂yγ)

= i∂t(∂yu(x, y, 0)) -∂yγ(∆q0 + ∂yyq0) -∂xγ∂xyq0 -γ∂y(∆q0).

Then using Lemma 3.7 and Assumptions 3.1, 3.6, the proof of Lemma 3.8 is complete.

Theorem 3.9. Let q and q be solutions of (3.1) and (3.2) such that c -c ∈ H 2 0 (Ω). We assume that Assumptions 2.1, 2. Then, for s and λ sufficiently large, the theorem is proved.

Remark 3.10. This result is also available for the heat equation in bounded or unbounded domains. Note that all the previous results proved in R × (-

d 2 , d 2 ) are available in R n × (-d 2 , d 2 )
for n ≥ 2 if we adapt the regularity properties of the initial and boundary conditions.

2 Tc

 2 dy dt) = I 11 + I 12 + I 13 + I 21 + I 22 + I 23 + I 31 + I 32 + I 33 . (-is∂tη ψ) dx dy dt = -s ∇η • ∇ψ ∂tψ dx dy dt -s T -T Ω c ∇η • ∇ψ ∂tψ dx dy dt .

|∇β| 4 |ψ| 2 dx dy dt or sλ 2 T -T Ω ϕc 2 2 T -T Ω ϕc 2

 2222 |∇β • ∇ψ| 2 dx dy dt, for s and λ sufficiently large. Using Assumption 2.2, we have 4sλ T -T Ω ϕD 2 β(∇ψ, ∇ψ)dx dy dt -2sλ T -T Ω ϕ c ∇c • ∇β|∇ψ| 2 dx dy dt +4sλ |∇β • ∇ψ| 2 dx dy dt ≥ Cpcsλ T -T Ω ϕ|∇ψ| 2 dx dy dt, so (2.16) becomes

|∇η| 2 ψ ψ dx dy dt = 2 0

 2 y, 0)| 2 dx dy = Ω e -2sη(x,y,0) |v(x, y, 0)| 2 dx dy. So, we have I = Ω e -2sη(x,y,0) |∂tu(x, y, 0)| 2 dx dy.

ϕ 3 |v| 2

 2 dx dy dt with C(T ) a positive constant which depends on T. Then with the Carleman estimate (2.5) proved in section 2 we have |I| ≤ Cs -3 2 λ -2 sλ T -T Γ + e -2sη ϕ∂ν β|∂nv| 2 dσ dt + T -T Ω e -2sη |∇ • (γ∇∂t q) dx dy dt , where C = C(Ω, Γ + , T, R1, R2) is a positive constant. Using Assumption 3.2, since

e

  -2sη f ϕ -1 ∂tv dx dy dt + τ κ Ω c∇v • ∇(e -2sη ϕ -1 ∂tv) dx dy dt 0 = τ κ Ω e -2sη f ϕ -1 ∂tv dx dy dt -2s τ κ Ω c ϕ -1 e -2sη ∂tv∇v • ∇η dx dy dt -λ τ κ Ω c e -2sη ϕ -1 ∂tv∇v • ∇β dx dy dt + τ κ Ω c e -2sη ϕ -1 ∇v • ∇(∂tv) dx dy dt .

e 2 L 2 (Q) +s 3 λ 4 Qe

 224 -2sη ϕ -1 f ∂tv dx dy dt| ≤ C sλ Q e -2sη |f | 2 dx dy dt + M1(e -sη v) -2sη ϕ 2 |v| 2 dx dy dt + sλ Q e -2sη |∇v| 2 dx dy dt . Second integral: D := T 0 Ω c (-4sλ + 2λϕ -1 ) e -2sη (1 + ϕ -1 )∂tv ∇β • ∇v dx dy dt . We denote by ρ := -4sλ + 2λϕ -1 . Using (3.10), we have 2D = T 0 Ω c e -2sη ρ∂tv ∇β • ∇v dx dy dt + i T 0 Ω c e -2sη f ρ∇β • ∇v dx dy dt i T 0 Ω c e -2sη ρ∇ • (c∇v)∇β • ∇v dx dy dt . If we introduce ψ = e -sη v, we get: ρ∇v • ∇β(s∂tηe sη ψ + e sη ∂tψ) dx dy dt + i ρ∇v • ∇β[s 2 cψ|∇η| 2 e sη + 2sce sη ∇ψ • ∇η + se sη ψ∇ • (c∇η) + e sη ∇ • (c∇ψ)] . ρ∇v • ∇β[M1ψ + M2ψ] dx dy dt + i T 0 Ω ce -2sη ρ∇v • ∇β f dx dy dt . Thus there exists a positive constant C = C(Ω, Γ, T, R1, R2) such that (3.14) |2D| ≤ C sλ Q [|M1(e -sη v)| 2 + |M2(e -sη v)| 2 ] dx dy dt +sλ Q e -2sη |∇v| 2 + sλ Q e -2sη |f | 2 dx dy dt . Two last integrals: There exists a positive constant C = C(Ω, Γ, T, R2) such that (3.15) | T 0 Ω ce -2sη ∂t(ϕ -1 )|∇v| 2 dx dy dt| ≤ C Q e -2sη |∇v| 2 dx dy dt, and (3.16) |s T 0 Ω c∂tηe -2sη ϕ -1 |∇v| 2 dx dy dt| ≤ C s Q ϕe -2sη |∇v| 2 dx dy dt.

) s 2 λ 2 Ωe- 1 0e

 21 -2sη 0 |∇γ| 2 dx dy ≤ C Ω ϕ -2sη 0 |∇(∂tu(x, y, 0))| 2 + |γ| 2 dx dy, for γ ∈ H 2 0 (Ω).

2 λ 2 Ω- 1 0e 1 Tλ 2 T 2 .we get s 2 λ 2 Ω 2 T

 22112222 2, 3.2, 3.1 and 3.6 are satisfied. Then there exists a positive constant C = C(Ω, Γ, T, R1, R2) such that for s and λ sufficiently large,Ω ϕ0 e -2sη 0 (|c -c| 2 + |∇(c -c)| 2 ) dx dy ≤ C T -T Γ + ϕ e -2sη ∂ν β |∂ν (∂tq -∂t q)| 2 dσ dt.Proof. Adding (3.17) and (3.18) we obtain using the estimate (3.7) for |I| and the energy estimate(3.11) for E(0)s ϕ0 e -2sη 0 |∇γ| 2 + |γ| 2 dx dy ≤ C Ω ϕ -2sη 0 |∇(∂tu(x, y, 0))| 2 + |∂tu(x, y, 0)| 2 dx dy ≤ C(|I| + E(0)) ≤ Cs -3/2 λ -2 Ω e -2sη 0 (|γ| 2 + |∇γ| 2 ) dx dy + Cs -1/2 λ --T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt +Cs 2 -T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt + Csλ Q e -2sη |f | So ϕ0 e -2sη 0 |∇γ| 2 + |γ| 2 dx dy ≤ Cs 2 λ -T Γ + e -2sη ϕ ∂ν β |∂ν v| 2 dσ dt +Csλ Q e -2sη |∇ • (γ∇∂t q)| 2 dx dy dt ≤ Cs 2 λ 2 T -T Γ + e -2sη ϕ∂ν β |∂ν v| 2 dσ dt + Csλ Q e -2sη |∇γ| 2 + |γ| 2 dx dy dt.