Random Germs and Stochastic Watershed for Unsupervised Multispectral Image Segmentation - Archive ouverte HAL Access content directly
Conference Papers Year : 2007

Random Germs and Stochastic Watershed for Unsupervised Multispectral Image Segmentation

Guillaume Noyel
Jesus Angulo
Dominique Jeulin

Abstract

This paper extends the use of stochastic watershed, recently introduced by Angulo and Jeulin [1], to unsupervised segmentation of multispectral images. Several probability density functions (pdf), derived from Monte Carlo simulations (M realizations of N random markers), are used as a gradient for segmentation: a weighted marginal pdf a vectorial pdf and a probabilistic gradient. These gradient-like functions are then segmented by a volume-based watershed algorithm to define the R largest regions. The various gradients are computed in multispectral image space and in factor image space, which gives the best segmentation. Results are presented on PLEIADES satellite simulated images.
Fichier principal
Vignette du fichier
stochastic_watershed_multispectral_final.pdf (5.75 Mo) Télécharger le fichier
Note_interne_N0907MM.pdf (5.8 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)

Dates and versions

hal-01263963 , version 1 (29-01-2016)

Licence

Copyright

Identifiers

Cite

Guillaume Noyel, Jesus Angulo, Dominique Jeulin. Random Germs and Stochastic Watershed for Unsupervised Multispectral Image Segmentation. 11th International Conference Knowledge-Based Intelligent Information and Engineering Systems (KES 2007), Sep 2007, Vietri sul Mare, Salerno, Italy. pp.17-24, ⟨10.1007/978-3-540-74829-8_3⟩. ⟨hal-01263963⟩
4763 View
104 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More