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Abstract

This supplementary material describes the numerical methods implemented to solve prob-

lems described in the article titled “Numerical investigation of a generalized Graetz prob-

lem in circular tube with a mass transfer coupling between the solid and the liquid”. In

section 1, a dedicated numerical tool to solve the conjugated problem with a difference

finite/pseudo spectral method has been developed. The numerical accuracy is also pro-

vided. The numerical method for the conjugated static migration is given in section

2.
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1. Numerical method of the conjugated dynamic migration problem

Notation used in this supplementary material is not recalled here. The reader is

referred to the article associated to this document.

Recall that in dynamic condition, the conjugated problem of migration is constituted

by the ordinary differential equation

d〈Cf 〉(z; t)

dz
=

2Sh(Gr, z)

Gr
[Cf (1, z; t)− 〈Cf 〉(z; t)] , (1)
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with the boundary condition

〈Cf 〉(0; t) = 0. (2)

Mass concentration Cp(ζ, t; z) in the solid tube verifies the unsteady diffusion equation

∂Cp

∂t
=

1

1 +∆rζ

∂

∂ζ

[

(1 + ∆rζ)
∂Cp

∂ζ

]

, (3)

with the following boundary conditions

∂Cp

∂ζ
(0, t; z) = α Sh(Gr, z) [Cp(0, t; z)− 〈Cf 〉(z; t)] , (4)

∂Cp

∂ζ
(1, t; z) = 0, (5)

and initial condition

Cp(ζ, 0; z) = 1. (6)

1.1. Numerical discretizations in space and time

To determine the plasticizer concentration in the tube and the average concentration

migrating in the liquid, the ordinary differential equation given by (1) and the partial

differential equation (3) have to be solved together numerically. For both concentrations,

〈Cf 〉(z; t) and Cp(ζ, t; z), the discretization over the axial position is achieved by using a

uniform grid where nodal points are given by

zi =
i

Nz

, for i = 0 to Nz. (7)

The size of the grid is consequently equal to δz = 1/Nz. Also, the time is discretized

using a constant time step, δt meaning that the time at n-th iteration is given by

tn = nδt. (8)

First the discretization of the ordinary differential equation of 〈Cf 〉(z; t) is considered.

Let 〈Cf 〉
n
i the average concentration of plasticizer in the liquid at the time step n for the

longitudinal position zi:

〈Cf 〉
n
i = 〈Cf 〉(zi; tn), (9)
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and Cn
p,i(ζ) the concentration of plasticizer in the PVC tube at the time step n and at

the discrete position zi:

Cn
p,i(ζ) = Cp(ζ, tn; zi), (10)

which is at this stage yet a continuous function of ζ.

To determine the first derivative respect to z of 〈Cf 〉(z; t), a backward differentiation

formula at the second order (BDF-2) in δz is used [1, 2]:

d〈Cf 〉(zi; tn)

dz
=

3〈Cf 〉
n
i − 4〈Cf 〉

n
i−1 + 〈Cf 〉

n
i−2

2δz
+O(δz2), (11)

when i is greater or equal to 2 otherwise an Euler scheme accurate at the first order is

used when i = 1:
d〈Cf 〉(z1; tn)

dz
=

〈Cf 〉
n
1 − 〈Cf 〉

n
0

δz
+O(δz). (12)

From these two relations, the average concentration of plasticizer in the liquid for each

grid point zi is given by

〈Cf 〉
n
1 =

2Gr−1 Sh(Gr, z1)δzC
n
p,1(0)− 〈Cf 〉

n
0

1 + 2Gr−1 Sh(Gr, z1)δz
(13a)

in i = 1 and

〈Cf 〉
n
i =

4Gr−1 Sh(Gr, zi)δzC
n
p,i(0) + 4〈Cf 〉

n
i−1 − 〈Cf 〉

n
i−2

3 + 4Gr−1 Sh(Gr, z1)δz
(13b)

for 2 ≤ i ≤ Nz.

Now turn on the discretization of the diffusion equation of Cn
p,i(ζ). First, the time

derivative of equation (3) is determined with the backward differentiation formula at the

second order in time, BDF-2 [1, 2]. In this way, the plasticizer concentration in the solid,

Cn
p,i(ζ), obeys an Helmholtz equation written as follows

3

2δt
Cn+1

p,i −
∆r

1 + ∆rζ

∂Cn+1
p,i

∂ζ
−

∂2Cn+1
p,i

∂ζ2
=

4Cn
p,i − Cn−1

p,i

2δt
, (14)
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for all i, n > 0 and for ζ ∈]0; 1[. The initial conditions are simply given by

C0
p,i(ζ) = 1, ∀ i. (15)

For the boundary conditions, the relations (13a) and (13b) are used to transform equation

(4) written in ζ = 0 in Robin condition as follows

∂Cn+1
p,1

∂ζ
−

α Sh(Gr, z1)

1 + 2Gr−1 Sh(Gr, z1)δz
Cn+1

p,1 = −
α Sh(Gr, z1)〈Cf 〉

n+1
1

1 + 2Gr−1 Sh(Gr, z1)δz
, (16a)

in i = 1 and

∂Cn+1
p,i

∂ζ
−

3α Sh(Gr, zi)

3 + 4Gr−1 Sh(Gr, z1)δz
Cn+1

p,i = −
α Sh(Gr, z1)(4〈Cf 〉

n+1
i−1 − 〈Cf 〉

n+1
i−2

3 + 4Gr−1 Sh(Gr, z1)δz
, (16b)

for 2 ≤ i ≤ Nz.

To solve the Helmholtz problem, a pseudo-spectral method is used based on Chebyshev

polynomial. A collocation method is used to evaluate the continuous Helmholtz equation

for which Nζ + 1 collocation points are distributed following the Gauss-Lobatto points

as follows

ζj =
1

2
[1− cos(jπ/Nζ)] , for j = 0 to Nζ . (17)

In the following Cn
p,i,j is the value of the plasticizer concentration in the solid tube in

zi and ζj at the step time n. The first and second derivatives in each collocation point

are given by [3]

∂Cn
p,i

∂ζ
(ζj) =

Nζ
∑

k=0

DjkC
n
p,i,k, (18)

∂2Cn
p,i

∂ζ2
(ζj) =

Nζ
∑

k=0

D2
jkC

n
p,i,k. (19)

The matrix D is given in the book [3] for collocation points spreading over an interval

between −1 to 1. In our case, the derivative matrix has to be multiplied by a factor 2 to

take into account that ζ ∈ [0; 1]. The matrix D
2 is obviously the square of the matrix

D.
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From these developments, the determination of Cn
p,i,j is achieved by solving the fol-

lowing linear problem:

For j = 0, i.e. ζ = 0, the Robin condition becomes if i = 1:

Nζ
∑

k=0

[

Djk −
α Sh(Gr, z1)

1 + 2Gr−1 Sh(Gr, z1)δz
δjk

]

Cn+1
p,1,k = −

α Sh(Gr, z1)〈Cf 〉
n+1
1

1 + 2Gr−1 Sh(Gr, z1)δz
, (20a)

else if 2 ≤ i ≤ Nz:

Nζ
∑

k=0

[

Djk −
3α Sh(Gr, zi)

3 + 4Gr−1 Sh(Gr, z1)δz
δjk

]

Cn+1
p,i,k = −

α Sh(Gr, z1)(4〈Cf 〉
n+1
i−1 − 〈Cf 〉

n+1
i−2

3 + 4Gr−1 Sh(Gr, z1)δz
.

(20b)

In these two last relations, δjk is the Kronecker symbol.

For 1 ≤ j ≤ Nζ − 1, the diffusion equation is written under a discrete form as follows

Nζ
∑

k=0

[

3

2δt
δjk −

∆r

1 + ∆rζj
Djk −D2

jk

]

Cn+1
p,i,k =

4Cn
p,i,j − Cn−1

p,i,j

2δt
. (20c)

Finally, the cancellation of the flux in ζ = 1, i.e. for j = Nζ , is given by

Nζ
∑

k=0

DjkC
n+1
p,i,k = 0. (20d)

This linear system is solved using a LU method for all grid points zi spreading over

the length of the tube. The solution of Cn+1
p,i,j is further used to determine 〈Cf 〉

n+1
i using

equations (13a) or (13b).

1.2. Numerical accuracy and truncation errors

In this subsection, the numerical consistency [4] and accuracy are tested by a compar-

ison with an exact solution and a mesh convergence.

In order to compare to an exact solution, we point out that the plasticizer concentration

in the solid tube at the entrance has a simple boundary conditions over the time leading

to the knowledge of the concentration exactly. Indeed, at any time, the concentration

Cp at the solid/liquid interface is always equal to zero and the flux is cancelled at the

exterior of the tube. The exact solution of this problem in an hollow tube with initial
5
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Figure 1: ||Cp−Cp,exact||L∞ as function of Nζ in z = 0 for a particular case for which K = 1, ∆r = 10−1

and Gr = 103.

concentration equal to one has been determined by Carslaw and Jaeger [5] (see also [6]).

It is given as a relation of Bessel functions as follows

C(r, t) = π

∞
∑

n=1

e−∆r2α2

ntJ2
1 [αn(1 + ∆r)] [J0(αnr)Y0(αn)− Y0(αnr)J0(αn)]

J2
1 [αn(1 + ∆r)] − J2

0 (αn)
, (21)

with αn solution of

J0(αn)Y1[αn(1 + ∆r)]− Y0(αn)J1[αn(1 + ∆r)] = 0. (22)

In order to control the accuracy for increasing number of collocation points in the

ζ−space, we perform numerical simulations for a partition coefficient equal to unity and

a Graetz number equal to 103. The time step has been taken equal to 10−5 and the

axial coordinate of the tube is discretized with a mesh size equal to 4 · 10−3. The error

between the exact and numerical solutions has been determined in term of L∞ norm and

plotted in Figure 1 for increasing Nζ . As expected for a spectral method, an exponential

decrease of the error is observed when Nζ rises up from 4 to 12. After, the error reaches

an asymptotic value due to the error due to discretizations in time and in z coordinate.

To study the accuracy and the consistency in time discretization, numerical simulations
6
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Figure 2: Time convergence test for a particular case for which K = 1, ∆r = 10−1 and Gr = 103: (a)
Mf vs. t and (b) 〈Cf 〉(1; t) vs. t.

have been done by decreasing time step over two orders of magnitude when the partition

coefficient is unity and the Graetz number is equal to 103. Figure 2 presents on the left

part the amount of plasticizer migrating in the liquid at the exit of the tube as a function

of time. The right part of Figure 2 depicts the average plasticizer concentration at the

exit of tube versus time. The number of collocation points has been taken equal to 64

and the mesh size in z coordinate is equal to 4 · 10−4. Starting with a time step equal

to 10−3, numerical simulations have been done twice more by divided the time step by

one order of magnitude. The example shows the numerical convergence. Remark a small

difference only for the first time step.

In order to be more quantitative in the time convergence, it is possible to use an

extrapolation method according to de Vahl Davis [7]. The order of truncation error can

be estimated easily from the numerical solution. Assuming that a generic quantity, f , is

given by

fi = f0 + Cδtnδt

i , (23)

in which fi is the solution with a time step δti and f0 is the solution when the time step

goes to zero, nδt is the truncation error and C, a factor, assumed independent of the time

step. It is possible by using three time steps such as δt1/δt2 = δt2/δt3 = λ to evaluate
7
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Figure 3: Exponent nδz of the truncation error as a function of t for K = 1, ∆r = 10−1 and Gr = 103.

the truncation error by using the relation

nδt = ln

(

f1 − f2
f2 − f3

)

/ lnλ. (24)

From the three numerical runs achieved for three decreasing time steps, we determine

the value ofMf and 〈Cf 〉(1; t) when t = 10−1. Using the previous relation, the truncation

error in time is around 1 which is lesser than the order of scheme which is equal to 2.

The result comes from that the first step can not evaluate as the second order which is

sufficient to decrease the truncation error of one order.

Finally, the numerical truncation error has been estimated for the space discretization

following z coordinate. For the same configuration, i.e. K = 1, ∆r = 10−1 and Gr = 103,

numerical simulations have been done for a time step equal to 10−5 and for 64 collocation

points for the spectral method and for three decreasing mesh size, δz, equal to 1/50,

1/100 and 1/200. In this way, the truncation error in z-space, nδz can be estimated by

an equivalent relation of (24). The exponent of the truncation error has been determined

on the amount of plasticizer concentration, Mf , as a function of time. It is plotted in

Figure 3 on which we remark that the truncation error decreases with time. At short

times, the truncation error exponent is not to far from 2 in agreement with the order of

discretization scheme. However, nδz decreases when the time increases to reach a value
8



close to 1.36 when t = 10−1.

This closes the study of the numerical accuracy. The various numerical tests prove

the consistency of the numerical method implemented to describe the coupled problem

of migration in dynamic condition even if it is difficult to find the order of discretization

schemes used in z-space and in time. In the application, the numerical simulations

have been done with 64 collocation points for the discretization in ζ, δt = 10−5 and

δz = 4 · 10−3.

2. Numerical method of the static migration problem

Recall that the static migration problem is described by the diffusion equations in the

solid and in the liquid as follows

∂Cp

∂t
=

1

1 +∆rζ

∂

∂ζ

[

(1 + ∆rζ)
∂Cp

∂ζ

]

, (25)

Fo
∂Cf

∂t
=

1

r

∂

∂r

(

r
∂Cf

∂r

)

. (26)

The initial conditions are given by

Cp(ζ, t) = 1, for t = 0, and ζ ∈]0; 1[, (27)

Cf (r, t) = 0, for t = 0, and r ∈]0; 1[, (28)

and the boundary conditions by

∂Cp(ζ, t)

∂ζ
= 0, ∀ t > 0, and ζ = 1, (29)

Cf = Cp,
∂Cp

∂ζ
= α

∂Cf

∂r
.











∀ t > 0, and ζ = 0, r = 1. (30)

Mathematically, this coupled equation system presented above can be solved exactly

using for instance the Laplace transform [6]. The solution is usually expended as Bessel

functions requiring the determination of the roots of relations of Bessel functions cumber-

some to manipulate in practice. Consequently, a numerical method has been developed

to solve the static migration problem. In order to do that, a pseudo-spectral method has
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been developed taking into account the two mediums with interface conditions accord-

ing to Guo et al. [3]. As already used to solve the conjugated dynamic problem, the

time derivatives of Cp(ζ, t) and Cf (r, t) are determined by the backward differentiation

formula at the second order (so-called BDF-2 scheme) in time for which δt is the time

step. The semi-discrete equations become

3Cn+1
p

2δt
−

∆r

1 + ∆rζ

∂Cn+1
p

∂ζ
−

∂2Cn+1
p

∂ζ2
=

4Cn
p − Cn−1

p

2δt
, (31)

Fo
3Cn+1

f

2δt
−

1

r

∂Cn+1
f

∂r
−

∂2Cn+1
f

∂r2
= Fo

4Cn
f − Cn−1

f

2δt
, (32)

for which Cn+1
p (ζ) = Cp(ζ, tn+1) and Cn+1

f (r) = Cf (r, tn+1).

As previously done in section 1, a discretization of ζ-space is achieved following the

Gauss-Lobatto distribution, see eq. (17). For the interior domain corresponding to the

liquid, the second derivative respect to r is singular in r = 0. In order to avoid this

singularity in discrete formulation and since only one boundary condition is required,

the Gauss-Radau distribution is used such as rp is given by [3]

rp =
1

2
(1 + xp), for p = 0, to Nr, (33)

with

xp = − cos

[

(2p+ 1)π

2Nr + 1

]

, for p = 0, to Nr, (34)

defined in the interval ]− 1; 1] leading that r ∈]0; 1].

The determination of the first and second derivatives respect to x needs the knowledge

of the differentiation matrix for the Gauss-Radau points, DGR. According to Guo et al.

[3], this matrix is given as a function of the pseudo-spectral matrices as follows

DGR = TGR · D̂ · T−1
GR, (35)

for which TGR and T
−1
GR are given page 17 and D̂ page 15 of [3].

The two semi-discrete balance equations, (31) and (32), are evaluated in each colloca-

tion points: in ζj for the solid domain and in rp for the liquid domain apart from points
10



localized on the boundaries. From this method, the full discrete form is the following

Nζ
∑

k=0

[

3

2δt
δjk −

∆r

1 + ∆rζj
Djk −D2

jk

]

Cn+1
p,k =

4Cn
p,j − Cn−1

p,j

2δt
for j = 1 to Nζ − 1, (36)

Nr
∑

l=0

[

Fo
3

2δt
δpl −D

(2)
r,pl

]

Cn+1
f,l = Fo

4Cn
f,p − Cn−1

f,p

2δt
, for p = 0 to Nr − 1, (37)

where D
(2)
r = 4

(

D
2
GR +

1

1 + x
DGR

)

. (38)

To close the discrete system of equations, the boundary conditions are invoked. First,

at the exterior boundary of the PVC tube, the cancellation of the mass flux is written

as follows
Nζ
∑

k=0

DNζkC
n+1
p,k = 0. (39)

The coupling the two domains is fully achieved by writing the boundary conditions in

ζ = 0 and r = 1 as follows

Cp,0 − Cf,Nr
= 0, (40)

Nζ
∑

k=0

D0kC
n+1
p,k − α

Nζ
∑

l=0

DNrlC
n+1
f,l = 0. (41)

In this way, the fully coupled linear system is wholly built and solved by LU method.

Once Cp and Cf have been computed at every time step, the average concentration of

Cf given by

〈Cf 〉(t) = 2

∫ 1

0

rCf (r, t)dr, (42)

is computed by an accurate quadrature using the Chebyshev decomposition as presented

in chap. 2 of [3].

Since the numerical procedure is close to the method used for the dynamic condition,

the numerical accuracy is not achieved a second time. In order to control the numerical

accuracy, we compare with an exact solution when ∆r is very small. Indeed, the problem

written in cylindrical domain becomes close to the Cartesian situation since the curvature

goes to zero. Furthermore, if the ratio of diffusion coefficients, Df/Dp, is large the liquid

domain could be considered as a perfect diffuser. This situation has been considered
11
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Figure 4: 〈Cf 〉(t)/〈Cf 〉∞ as a function of time for Df/Dp = 103, 104 and 105 when ∆r = 10−3 and
K = 1. The solid line is the Crank’s exact solution [8].

by Crank [8] for which only the diffusion process in the solid part is required. In this

framework, Crank established an exact solution.

Numerical simulations have been done for a partition coefficient equal to one. The

ratio ∆r is set equal to 10−3. Regarding the discretization in r and ζ, the numbers of

collocation points have been taken equal to Nr = 60 and Nζ = 100 which can seem

important. Nevertheless, since the value of α is very large, it is important to have a

high resolution close to the PVC/liquid interface in order to satisfy the balance of fluxes,

second relation of (30).

Figure 4 presents the profile of 〈Cf 〉(t)/〈Cf 〉∞ versus times for three values of Df/Dp

for which 〈Cf 〉∞ is the asymptotic concentration obtained when the time goes to infinity.

It is given by a simple mass balance between the PVC and the liquid and takes the

following form

〈Cf 〉∞ =
∆r(2 + ∆r)

K +∆r(2 + ∆r)
. (43)

The average concentration rises up quickly at short times behaving as a square root of

time. At large times, 〈Cf 〉(t)/〈Cf 〉∞ goes to the unity. The numerical solutions obtained

for increasing Df/Dp are more and more close to the exact solution provided by Crank

even if the numerical solution is achieved in cylindrical domain with small curvature.

This numerical example shows the accuracy of the numerical solution which can be
12



used to compare with solutions obtained in dynamic condition.
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