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Abstract

The unsteady diffusion equation in a tube and the advection/diffusion equation in laminar
flow in a liquid of a solute are theoretically established. The most important parameters
are the migration strength α and the so-called Graetz number Gr. The former dimen-
sionless number is the product of the partition coefficient of the solute at the solid/liquid
interface, the ratio of the tube thickness to the interior radius and the ratio of diffusion
coefficients of the solute in the liquid and in the solid. The Graetz number Gr is the
ratio of the diffusion time scale in the liquid based on the interior radius of the pipe
to the advection time over the tube length. The problem is applied to the plasticizer
migration from a polyvinyl chloride material to a liquid with the safety food applications
in mind. The migration of the plasticizer is solved numerically for various tube sizes,
flow conditions and partition coefficients of the plasticizer in the liquid. For comparison,
the numerical results obtained in static condition are also provided.

The average plasticizer concentration in the liquid behaves following two main regimes
as a function of the migration strength. When α is much smaller than one, the average
plasticizer concentration in the liquid is an algebraic function of the axial coordinate, z, at
the power two third and increases linearly with time. Conversely, when α is much larger
than one, the average plasticizer concentration is linear as a function of axial distance and
increases as a function of the square root of time. Moreover, the concentration is much
smaller of few orders of magnitude in dynamic condition than in static working showing
that in the context of food contamination the dynamic approach is more appropriate and
relevant for demonstration of compliance with the safety authorities requirements.
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1. Introduction

Heat transfer between a fluid flowing through a solid tube is commonly used to
design heat mass exchanger devices, see the recent book of Zhang [1]. Since the first
contributions of Graetz [2, 3], the heat transfer between a solid and a liquid has been
extensively studied and summarized in the book of Shah and London [4]. According to
[5, 6], the analogy between heat and mass transfer in the limit of mass diffusion of a
solute in weak concentration in a solvent can be invoked meaning that the same physics
can be applied to migration issues.

The last situation occurs in the food delivery through tubes made from thermoplastic
matrices involved in milk producing and transforming, vending machines among others.
The contact between food and its container leads to a release of additives in the food.
According to safety requirements, articles or materials in contact with food have to be
in compliance dictated by the food safety authorities. Two quantities have to be mainly
determined to prove the compliance: the former is the overall migration corresponding to
the total amount of material migrating in the food per unit of surface of the container in
contact with food, measured in mg/dm2. The latter is the specific migration correspond-
ing to the migration of particular substances by mass unit of food in the container. The
European Union (EU) regulation 10/2011 [7] sets the Overall Migration Limit (OML)
equal to 10 mg/dm2. For substances without Specific Migration Limit (SML), a generic
SML equal to 60 mg/kg shall apply. However, this value can be reduced for certain
substances like for polydimethylsiloxane, for which the SML is equal to 6 mg/kg, for
instance.

The compliance of a plastic material should be measured using food simulants under
specified test conditions. The specification of EU regulation has been based on static
conditions, for which food simulant is in contact with the container during a certain time.
Nevertheless, for deliveries through hoses, liquid food is in motion. Consequently, the
mass transfer with solid/liquid interfaces exhibits different behaviors in comparison with
the static situation. Additives are transported with the food limiting the accumulation.
Mass transfer involves mass diffusion in the tube and advection of the liquid food. Con-
sequently, the migration process in dynamic conditions has to be studied in more details,
which is the aim of this work. The important questions which arise are the following:
What are the main differences between migration without or with motion? What will be
the consequences in terms of safety requirements? In order to reply to those questions,
this article is devoted to the numerical modelling of the dynamic and static conjugated
migration problems. It is noteworthy to say that the problem addressed here is general
and can be also applied to the heating or the cooling of a tube.

The conjugated problem has been addressed for the first time for heat transfer appli-
cations by Mori et al. [8] and latter by Faghri and Sparrow [9] in the situation of high
conduction in the solid meaning that only the steady state regime has been studied. A
special attention to axial conduction has been investigated in [10, 11, 12] but once again
in steady state regime both in the liquid and in the solid. More recently, Zhang et al.
[13] achieved a numerical work of the conjugated problem by solving the Navier-Stokes
equations and the two energy equations. A parametric study was carried out on the
ratio of thermal diffusivity and on the ratio of the thickness of solid tube to the interior
diameter of the pipe.

In the framework of safety food requirements, numerical simulations are generally
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used with a simple 1-D geometry. The migration model is generally based on the devel-
opment provided by Crank [14] to determine the migration of a substance well stirred in
the solution (food simulant). The process is only limited by diffusion in the PVC sheet
since the solution is seen as a perfect diffuser. Begley et al. [15] summarized the main
steps to build up and validate a migration estimation model. They compiled a large
amount of data in order to determine the “worst-case” migration level. The method
requires the knowledge of diffusion coefficients of additives in the packaging material and
of the partition coefficients which define the chemical equilibrium at the food/container
interface. Vitrac et al. [16] described the migration model based on the local diffusion
process requiring the mass transfer coefficient in the food simulant depending on fluid mo-
tion of the simulant. They identified diffusion, partition, and mass transfer coefficients
by an optimized calculation. Brandsch et al. [17] summarized how the mathematical
modeling can be used to evaluate the migration limits.

The numerical simulation of migration process in a cylindrical tube has been sel-
dom investigated. Let us quote nevertheless, works achieved in the framework of water
distribution for which the diffusion of antioxidant from hoses to hot-water has been in-
vestigated by Smith et al. [18] and more recently by Dear and Mason [19]. The diffusion
of chlorine from water to the tube is also taken into account and reacts with the an-
tioxidant substance following an irreversible reaction. Nevertheless, the water motion is
not addressed in previous works. Mittelman et al. [20] studied the same problem for
which an exact solution was proposed when chemical reactions are neglected. Otherwise,
a numerical simulation was established with a finite difference technique.

The dynamic condition of migration of plasticizer requires a special attention which
is the main purpose of the present work. Indeed, apart from the flowing behavior, the
migration process is studied for hoses for which the dilution can be strongly limited for
small tube. Moreover, the diffusion process exhibits particular behaviors like for instance
the tube curvature. In order to study the migration, a theoretical model is developed
and solved numerically to describe the migration in dynamic conditions. Since the aim
of this present study is to compare the migration in static and dynamic conditions, the
conjugated problem of diffusion between two media at rest is also presented and solved
numerically. A special attention will be done on the amount of additive migrating in the
liquid at a function of time.

In the following, the problem statement of the dynamic migration is described in
the section 2 in which a dimensionless formulation is built pointing out the relevant
dimensionless numbers. Section 3 is devoted to the presentation of results and discussion
in which the effects of the geometry, flow rate and plasticizer solubility are addressed
before to conclude in § 4. Appendix A presents the conjugated static migration problem.
Details of the numerical methods both for the dynamic and static problems are provided
in supplementary material of this article.

2. Problem statement of the dynamic conjugated migration

Although the migration process is addressed both in static and dynamic conditions,
only the conjugated problem of mass diffusion in dynamic condition is presented below.
Since the static problem has been considered elsewhere, the presentation in this last
situation is reported in Appendix A.
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Only one substance is considered in the problem. In the solid tube, the mass concen-
tration of the plasticizer is written Cp and Cf in the liquid. The diffusion coefficients of
the plasticizer are denoted Dp and Df in the solid and in the liquid respectively. The
plasticizer concentration in the pipe is in large amount in order to increase the flexibility.

As it is well known in materials science, the diffusion of plasticizer in solid material
depends upon the plasticizer concentration [21]. A decrease of plasticizer concentration
changes the temperature of the glass transition of the PVC material, decreasing dras-
tically the diffusion coefficient [22]. It is worthy to note that all over this work, the
diffusion coefficients are assumed in first approximation constant over the time of mi-
gration process. This assumption means that the mass transfer will be limited to the
first times in order to avoid a large decrease of plasticizer in the PVC material. In fact,
the time scale of diffusion in the PVC material is inversely proportional to the diffusion
coefficient. The typical value of the time scale of diffusion for a tube of one millimeter
in thickness is larger than 2700 hours by taking a diffusion coefficient Dp equal to 10−13

m2/s which is a typical value for a plasticizer in flexible PVC tube [23]. The time is very
high in comparison with the typical times of migration experiments which do not exceed
few tens of minutes meaning that the decrease of plasticizer concentration stays low.
Note also that by assuming a constant value for the diffusion coefficient, the migration
process is treated in the worst situation, since when the diffusion coefficient decreases as
a function of time, a skin layer acting as a functional barrier against migration is cre-
ated. Moreover, the aim here is to compare with the static situation for which the same
assumption is used. The change of diffusion coefficient as a function of the plasticizer
concentration should not modify the main conclusions of the present investigation.

In the liquid, the diffusion coefficient is determined assuming that the additive con-
centration in the liquid is sufficiently small in order to apply the Wilke and Chang’s
correlation [24]. A numerical value will be provided at the beginning of section 3.

Figure 1 summarizes the problem statement where typical profiles of Cp and Cf are
sketched. The tube length is L, and interior and exterior radii are ri and re respectively.
The liquid flows with a volumetric flow rate equal to Q and has a constant density, ρ and
dynamic viscosity, µ. In the following, the flow regime is assumed laminar meaning that
the typical Reynolds number is less than 2100 [5]. In this regime, the velocity profile is
well known and given by the Hagen-Poiseuille solution [25]:

U =
2Q

πr2i

[

1−

(

r

ri

)2
]

. (1)

To describe the migration process, mass conservation has to be written both in the
solid and in the liquid. In the solid, the unsteady diffusion equation is

∂Cp

∂t
= Dp

[

1

r

∂

∂r

(

r
∂Cp

∂r

)

+
∂2Cp

∂z2

]

, (2)

in which t is the time. The cylindrical coordinate system is employed for which r is the
radial and z the axial coordinates as depicted in Figure 1. This last equation is written
in space (r, z) ∈]ri, re[×]0, L]. In the liquid, the mass conservation takes the following
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Figure 1: Geometry and description of the migration physics in a tube of length L, interior radius ri
and exterior radius re.

form
∂Cf

∂t
+ U(r)

∂Cf

∂z
= Df

[

1

r

∂

∂r

(

r
∂Cf

∂r

)

+
∂2Cf

∂z2

]

, (3)

written when (r, z) ∈ [0, ri[×]0, L].
These two last equations have to be completed by boundary and initial conditions.

First, the atmosphere outside the tube is assumed to be without plasticizer all the time.
Consequently, the mass flux from the tube is considered to be equal to zero at any time:

∂Cp

∂r
= 0, when r = re. (4)

At the interface between the solid tube and the liquid, two conditions have to be
written: one arises from the mass conservation and the second from the local thermo-
dynamic equilibrium. The former is obtained by the mass balance at the solid/liquid
interface which in absence of relative normal velocity is reduced to the balance of molec-
ular mass fluxes between the two matters. The latter comes from the equilibrium of
chemical potentials in the liquid and in the solid [26]. This condition is equivalent to the
Henry’s law [27]. The respective relations are

Dp
∂Cp(ri, z, t)

∂r
= Df

∂Cf (ri, z, t)

∂r
, (5)

Cf (ri, z, t) = KCp(ri, z, t). (6)

The quantityK is the partition coefficient which can be determined from the Flory theory
[28] as achieved by Vitrac and Gillet in [26]. Remark here that the partition coefficient
is defined as the ratio of the plasticizer concentration in the liquid to its concentration
in the solid, which is the contrary of the definition given in [17]. Moreover, the solution
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is symmetric with respect the z-axis meaning that Cf (0, z, t) verifies the relation:

∂Cf (0, z, t)

∂r
= 0. (7)

At the entrance of the tube, the concentration of plasticizer is equal to zero in the
fluid:

Cf (r, z = 0, t) = 0. (8)

Initially, the concentration of plasticizer in the tube is uniform:

Cp(r, z, 0) = Cp0, ∀r ∈]ri, re] and ∀z ∈ [0, L], (9)

and equal to zero in the liquid:

Cf (r, z, 0) = 0, ∀r ∈]0, ri] and ∀z ∈ [0, L]. (10)

2.1. Dimensionless equations

The normalization of the problem is now proceeded. First, due to the initial conditions
and the thermodynamic relation, Cp and Cf are respectively normalized as follows

Cp =
Cp

Cp0
, Cf =

Cf

KCp0
. (11)

The radial coordinate is reduced following two dimensionless forms. First, since the dif-
fusion process in the solid material occurs in an annular geometry, the relevant geometry
scale is ∆r = re − ri. Consequently, r is written for the annular region as follows

r = ri +∆rζ, (12)

for which ζ ∈ [0, 1]. Second, for the mass balance in the fluid, the radial coordinate is
obviously reduced like

r =
r

ri
= 1 +∆rζ, (13)

with

∆r =
∆r

ri
. (14)

The axial coordinate and the time are normalised by

z =
z

L
, t =

t

t0
, (15)

in which the time scale, t0, will be specified below. Finally, the velocity field U is
normalized by the average velocity written as follows

U =
Uπr2i
Q

. (16)
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The equations for the concentrations in the solid and in the fluid become

∆r2

Dpt0

∂Cp

∂t
=

1

1 +∆rζ

∂

∂ζ

[

(1 + ∆rζ)
∂Cp

∂ζ

]

+

(

∆r

L

)2
∂2Cp

∂z2
, (17)

πr2iL

Qt0

∂Cf

∂t
+ U(r)

∂Cf

∂z
=

1

Gr

[

1

r

∂

∂r

(

r
∂Cf

∂r

)

+
(ri
L

)2 ∂2Cf

∂z2

]

, (18)

for which

Gr =
Q

DfπL
, (19)

is the Graetz number measuring the ratio of the diffusion time scale over the radius ri
to the advection time scale over the tube length L.

In practical cases, the tube length is always much larger than the radial dimensions
meaning that ratios (∆r/L)2 and (ri/L)

2 are assumed much smaller than one. In this
limit, the derivatives respect to the longitudinal coordinates can be neglected. According
to equations (17) and (18), the time scale t0 must be taken as

t0 = max

(

∆r2

Dp
,
πr2iL

Q

)

. (20)

Since as already indicated at the beginning of this section, the typical time scale of
diffusion of the liquid is very high (larger than one thousand of hours) which is always
much larger than the time scale of advection. Consequently, the time scale t0 is taken
equal to ∆r2/Dp. From this scaling analysis, one observes that the time derivative of
Cf in Eq. (18) is multiplied by a factor equal to Dp/(Gr∆r2Df ) which can be seen
as a Strouhal number or an homochronous number according to Luna et al. [29] who
studied the conjugated heat transfer in circular ducts for a non-Newtonian fluids. Since
in the framework of our applications the diffusion coefficient in the solid is three order of
magnitude smaller than the diffusion coefficient in the liquid and that the Graetz number
is usually larger than one, Dp/(Gr∆r2Df) is expected to be much smaller than one. This
means that the time derivative of Cf can be neglected. This assumption provides a model
so-named Quasi-Steady State Approximation (QSSA). In this limit, the mass transfer
coefficient does not depend on time. The unsteady problem has been studied in the
framework of mass transfer around a spherical droplet by Juncu and Mihail [30]. They
show that the steady mass transfer coefficient is reached over a typical time scale around
r2i /Df which is very smaller than ∆r2/Dp meaning the QSSA model is relevant in our
case.

Consequently, two problems have to be addressed. In the following, in order to
lighten notations, we drop the bar over dimensionless variables. The first describing the
diffusion/advection problem in the liquid obeys the parabolic partial differential equation:

U(r)
∂Cf

∂z
=

1

Gr r

∂

∂r

(

r
∂Cf

∂r

)

, (21)

in which Gr is the Graetz number given by Eq. (19).
Here, Cf is a function of r, z and t is only a parameter resulting from the coupling

with the second problem. In order to separate independent variables to parameters, the
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semicolon is used as follows Cf (r, z; t).
The Graetz problem has been previously solved in various contributions summarized

for example in [31, 6]. According to these previous works and using the analogy between
heat and mass transfer, the mass flux of Cf at the solid/liquid interface is given by

∂Cf

∂r
(1, z; t) = Sh(Gr, z) [Cf (1, z; t)− 〈Cf 〉(z; t)] , (22)

in which Sh(Gr, z) is the Sherwood number which is a function of the Graetz number
and z given by [31]

Sh(Gr, z) = 1.8285 + 0.2323

(

Gr

z

)0.488

exp
(

−14.3
z

Gr

)

if
Gr

z
< 250, (23)

Sh(Gr, z) = 0.8548

(

Gr

z

)1/3

− 0.35, if
Gr

z
≥ 250. (24)

Remark that eq. (24) is singular in z = 0 meaning that the mass transfer is very efficient
at the entrance of the tube.

In equation (22), 〈Cf 〉(z; t) is the average concentration of the additive weighted by
the flow rate over the radial coordinate as follows

〈Cf 〉(z; t) =

∫ 1

0

rU(r)Cf (r, z; t)dr

∫ 1

0

rU(r)dr

. (25)

By integration of (21) over the radial coordinate, 〈Cf 〉(z; t) obeys to the following equa-
tion

d〈Cf 〉(z; t)

dz
=

2Sh(Gr, z)

Gr
[Cf (1, z; t)− 〈Cf 〉(z; t)] . (26)

Since in the last equation, Cf (1, z; t) is equal to the concentration of plasticizer in the
solid, equation (26) achieves the coupling between the mass fluxes in the liquid and in
the solid. At the entrance of the tube, the plasticizer concentration in the fluid is equal
to zero giving the following boundary condition

〈Cf 〉(0; t) = 0. (27)

The mass concentration, Cp, is the purpose of the second problem. It is a function
of (ζ, t; z) for which z is only seen as a parameter1, which verifies the partial differential
equation given in dimensionless form by

∂Cp

∂t
=

1

1 +∆rζ

∂

∂ζ

[

(1 + ∆rζ)
∂Cp

∂ζ

]

, (28)

1The semicolon is once again used to separate independent variables ζ, t to the parameter z.
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and associated to the following boundary conditions:

∂Cp

∂ζ
(0, t; z) = α Sh(Gr, z) [Cp(0, t; z)− 〈Cf 〉(z; t)] , (29)

∂Cp

∂ζ
(1, t; z) = 0, (30)

and initial condition
Cp(ζ, 0; z) = 1. (31)

The coefficient α measures the strength of migration between the solid and the fluid and
takes the following form

α =
KDf∆r

Dp
. (32)

The full problem is consequently the coupling of two Cauchy problems: the first is the
ordinary differential equation in space giving by Eq. (26) with initial condition (27) and
the second is the partial differential equation (28) completed by the boundary conditions
(29) and (30) and the initial condition (31). Three dimensionless groups are involved
given by the Graetz number, Gr, the relative thickness of the solid tube, ∆r, and the
strength of migration α taking into account of the ratio of the diffusion coefficient in the
liquid to the diffusion coefficient in the solid and the partition coefficient.

From the point of view of safety issues, the important quantity to know is the amount
of plasticizer migrating in the liquid over a certain time. The quantity defined by equa-
tion (25), 〈Cf 〉, determined at the exit (z = 1), represents the normalized mass flux of
plasticizer. To know the amount of additive in the liquid, the integration over the time
gives the amount of additive migration in the liquid which has flowed through the tube.
So, the quantity

Mf (t) =

∫ t

0

〈Cf 〉(1; t
′)dt′, (33)

representing the normalized amount of additive in the liquid over the time t is introduced.
The amount of additive over a time interval [t1; t2] is given by

Mf(t1, t2) =

∫ t2

t1

〈Cf 〉(1; t
′)dt′. (34)

The problem is solved numerically thanks to a Chebyshev-spectral method [32] to
discretize equation (28) over the ζ coordinate. A backward differentiation formula at
the second order [33] is used for the temporal derivative of the left hand side of (28).
The axial coordinate is discretized by a uniform grid over which equation (26) is solved
using a backward difference formula at the second order. The integrals (33) and (34)
are determined by using a trapezoidal quadrature. For more information, details of the
numerical method are given in supplementary material of this article. We provide also a
study about the consistency of the numerical method by comparing the numerical results
with exact solutions and using an extrapolation method to obtain the order of truncation
in space and time.
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3. Results and discussion

Before presenting results obtained with the numerical method, values of diffusion
coefficients have to be provided. The migration is investigated for an additive like a
glycerol monoester plasticizer for which the diffusion coefficient has been determined by
Lundsgaard et al. [23]. The typical PVC tube addressed in this work is composed with
a large amount of plasticizer, around 50 weight %. According to the previous work of
[23], the diffusion coefficient of a glycerol monoester plasticizer for a temperature equal
to 40◦C, is equal to 1.1 · 10−13 m2/s. According to the specifications of EU regulation, a
food simulant is a liquid. For milk application, the simulant is composed of ethanol and
water in the same proportion in volume. The diffusion coefficient, Df , of the glycerol
monoester plasticizer can be evaluated thanks to the Wilke and Chang’s correlation [24].
For a temperature equal to 40◦C and knowing that the molar volume of the plasticizer is
equal to 500 cm3/mol [23], Df is equal to 2.44·10−10 m2/s meaning that the ratioDf/Dp

is around 103. Consequently, the liquid can be seen as a perfect diffuser in comparison
with the solid. In the following, only one value of Df/Dp has been used taken at 103.
Various sizes of tube are investigated by changing ∆r over three decades and the Graetz
number over four decades.

In the procedure dictated in [17] in support of EU directive 2002/72/EC [34], two
situations have to be addressed: the former when the solubility of the plasticizer is small
by taking the partition coefficient equal to 10−3 and the latter when the solubility is high
corresponding to the “worst case” for which the partition coefficient is equal to 1. In the
following of this work, we will take these two limit values for K.

3.1. Plasticizer concentration as a function of space and time in solid domain

In this subsection, the behavior of Cp in space and time is investigated. Figure
2a and 2b depict profiles of Cp as a function of ζ in the middle of the tube for four
increasing times when the Graetz number is equal to 102 and for partition coefficients
equal to 10−3 and 1 respectively. Starting from a uniform concentration over the whole
plastic domain, Cp decreases from the solid/liquid interface when the time increases.
The value of Cp at the solid/liquid interface, i.e. for ζ = 0, changes strongly with ∆r,
underlining the coupling with the migration in the liquid. As shown in Figure 2a, the
range of Cp is very small when ∆r = 10−3, while this range is larger and larger when ∆r
increases. The partition coefficient plays also an important role in the migration. Figure
2b emphasizes that the gradient of Cp is more important when the partition coefficient
is unity. When ∆r = 10−3, the concentration profiles for increasing time present a slope
more pronounced a large partition coefficient. Since the value of Cp at the solid/liquid
interface is equal to the dimensionless plasticizer concentration in the liquid, the average
concentration of the plasticizer in the liquid is more important at low partition coefficient
which is not obvious in the first glance and will be explained latter.

In order to study the behavior of the plasticizer concentration as a function of the
axial coordinate, Cp is given in Figure 3a and 3b at t = 5 · 10−3 in five locations over
the tube length for four ∆r, when the Graetz number is moderate and equal to 10. For
small K and ∆r, apart from the entrance, Cp does not change strongly over the length of
the tube. As already mentioned previously, the plasticizer concentration decreases at the
solid/liquid interface when ∆r increases as it is shown in Figure 3a when ∆r is equal to
10−1 or 1. The value at the solid/liquid interface increases with z due to the enrichment

10



(a) K = 10−3

0.999

0.9995

1

0.99

0.995

1

0 0.2 0.4 0.6 0.8 1

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

t = 5 · 10−4

t = 1.5 · 10−3

t = 2.5 · 10−3

t = 3.5 · 10−3

∆r = 10−3 ∆r = 10−2

∆r = 10−1 ∆r = 1

Cp

Cp

ζζ
(b) K = 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t = 5 · 10−4

t = 1.5 · 10−3

t = 2.5 · 10−3

t = 3.5 · 10−3

∆r = 10−3 ∆r = 10−2

∆r = 10−1 ∆r = 1

Cp

Cp

ζζ

Figure 2: Cp(ζ, t; z) as a function of ζ in the middle of the tube, z = 1/2, when t = 5 · 10−4, 1.5 · 10−3,
2.5 · 10−3 and 3.5 · 10−3 and Gr = 102 and for (a) K = 10−3 and (b) K = 1.
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in plasticizer in the liquid phase which is clearly seen when ∆r = 1. The migration
enhances when the partition coefficient increases (see Figure 3b). With increasing ∆r,
the Cp profiles are closer and closer such as for ∆r = 1 the plasticizer concentrations is
quasi-homogeneous over the tube length with a gradient more important.

The behavior of the plasticizer concentration in the solid shows that the influence
of the tube geometry and the partition coefficient are very important in the migration
process. The strength of migration is more important when the tube thickness is large
due to the increase of the time scale of diffusion in the solid.

In order to study the role played by the flowing liquid, Figure 4a and 4b present
the Cp profiles at the same time as the previous figures, i.e. t = 5 · 10−3, and for
the same locations but with a Graetz number equal to 105. The partition coefficients
are K = 10−3 in Figure 4a and K = 1 in Figure 4b. With the increase of Gr, the
plasticizer concentration at the solid/liquid interface decreases significantly. Inversely
to the previous case where the Graetz number was equal to 10, the influence of ∆r is
least. Here, we pointed out the strong influence of the advection process in the migration
dynamics. Indeed, as it is can be seen on the equation describing the behaviour of 〈Cf 〉 as
a function of z, eq. (26), we expect a decrease of 〈Cf 〉 when the Graetz number increases
even if the Sherwood number rises up with Gr. These results point out that when the flow
rate increases the concentration in the liquid decreases limiting the migration process.

The partition coefficient plays a significant role as it is shown in Figure 4b. Even
for a small ∆r, the plasticizer concentration is quasi-homogeneous over the length of the
tube, which is not the case when the partition coefficient is small, see Figure 4a when
∆r = 10−3. The comparison of Figure 4a and 4b emphasizes also that the migration
dynamics is driven by the partition coefficient. When the partition coefficient is small,
the plasticizer concentration in the solid domain stays uniformly equal to one in a large
part of the thickness. Conversely, for a partition coefficient equal to one, Cp varies over
the whole range of ζ at the same time.

Note that the role played by K and ∆r are quite similar. Numerical results show that
the plasticizer concentration in the tube is more and more homogeneous over the length of
the tube for both large values of K and ∆r. This similarity in the behavior played by K
and ∆r comes from the fact that these two quantities are both factors of the coefficient
α given by equation (32). When α is large, the boundary condition (29) shows that
Cp(ζ = 0, t; z) should be close to the average concentration of plasticizer in the liquid.
Conversely, in the limit of small α, the flux of Cp at the solid/liquid interface decreases
as it is clearly shown in Figures 3a when ∆r is equal to 10−3 or 10−2. In conclusion, the
larger α, the larger the migration, meaning that the concentration of plasticizer in the
liquid increases when both K and ∆r increase. This result seems realizable for large ∆r
since the dilution decreases with the radius ratio. The role of the partition coefficient
is less obvious. It is understandable that when K is large, the gradient of plasticizer
concentration should be more pronounced.

It is noteworthy that Cp versus ζ behaves equivalently in the entrance of the hose
whatever values of K and ∆r. The plasticizer concentration at the solid/liquid interface
is equal to zero due to the fact that the Sherwood number has a singular behavior at the
entrance where Sh diverges to infinity. Since the fluid enters the tube with an average
concentration of plasticizer equal to zero, the boundary condition (29) implies that the
concentration at the solid/liquid interface is equal to zero. This fact has been used to
control the numerical accuracy since in this particular case, an exact solution can be
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Figure 3: Cp(ζ, t; z) as a function of ζ when t = 5 · 10−3 and for five positions in the tube such as z = 0,
1/4, 1/2, 3/4 and 1 when the Graetz number is equal to 10 and for (a) K = 10−3 and (b) K = 1.
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Figure 4: Cp(ζ, t; z) as a function of ζ when t = 5 · 10−3 and for five positions in the tube such as z = 0,
1/4, 1/2, 3/4 and 1 when the Graetz number is equal to 105 and for (a) K = 10−3 and (b) K = 1.
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easily established (see supplementary material).

3.2. Plasticizer concentration as a function of z and time in liquid domain

Now let us turn to the behavior of the plasticizer concentration in the liquid. As
previously done, the combined roles of the tube dimension, the partition coefficient and
the Graetz number are provided. Figure 5a presents profiles of 〈Cf 〉 as a function of z
for four values of ∆r and for five times increasing with a time step equal to 2.5 · 10−3

and for a Graetz number equal to 10. The partition coefficient is taken at a small value
equal to 10−3. Remark that at the initial time, 〈Cf 〉 is not a uniform profile over the
tube length because, at the time zero, the liquid is instantaneous in motion throughout
the tube. At first glance, this result is questionable. It is due to the fact that in
Quasi-Steady State Approximation, the average of plasticizer concentration in the liquid
does not depend on the time. We point out in problem statement (§2) that t is only a
parameter of the problem in the liquid domain. Concentration 〈Cf 〉 depends only upon
the axial coordinate. It is a solution of the Cauchy problem for which an initial condition
is set at the entrance of the tube. Consequently, profiles plotting at t = 0 correspond
to the solution obtained in steady state regime established over a time proportional to
the residence time of the liquid in the tube which is always very small in comparison
with the diffusion time scale of the plasticizer in the solid domain. The behavior of 〈Cf 〉
versus z reflects the change of the Sherwood number when z increases. Close to the
entrance, Sh is important leading to a strong increase of 〈Cf 〉 which is attenuated with
the increasing location in the tube. The average concentration of plasticizer decreases
with time due to the drop of the plasticizer concentration at the solid/liquid interface.
The decrease of 〈Cf 〉 with time enhances with ∆r. Since the amplitude of 〈Cf 〉 decreases
with the coefficient α, the increase of ∆r leads to the decrease of 〈Cf 〉. Nevertheless, for
this particular Graetz number, the decrease is slight.

In Figure 5b, the average concentration of plasticizer in the liquid is plotted as a
function of z for five times increasing with a time step equal to 2.5 · 10−3 when the
partition coefficient is taken equal to 1 and Gr = 10. In comparison with the previous
results obtained for K equal to 10−3, the influence of the variation of the Sherwood
number seems less important.

As it is shown in the behavior of Cp, the thickness of the tube plays an important role
on the plasticizer concentration in the liquid. Figure 5b shows that 〈Cf 〉 decreases more
and more when ∆r increases. Moreover, it is noteworthy that the slope of the profile
of 〈Cf 〉 which is important for small ∆r close to the tube entrance becomes practically
constant over the tube length for large values of ∆r giving linear profiles of 〈Cf 〉 as a
function of z. The comparison of results at ∆r = 10−1 and ∆r = 1 underlines that the
average plasticizer concentration in the liquid loses one order of magnitude while ∆r is
multiplied by 10.

To see the influence of the advection, Figures 6a and 6b present the average plasticizer
concentration in the liquid as a function of z when the Graetz number is equal to 105 and
for K = 10−3 and 1 respectively. The effect of liquid motion is clearly established since
the additive concentration in the liquid decreases significantly when the Graetz number
increases for four orders of magnitude. In Figure 6b for which K = 1, 〈Cf 〉 behaves
linearly with z. As already pointed out above, the increase of one order of magnitude of
∆r leads to a decrease of one order of magnitude of 〈Cf 〉 showing that 〈Cf 〉 is inversely
proportional to the α coefficient.
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Figure 5: 〈Cf (z; t)〉 as a function of z when the Graetz number is equal to 10 at the times equal to t = 0,
2.5 · 10−3, 5 · 10−3, 7.5 · 10−3 and 10−2 and for (a) K = 10−3 and (b) K = 1.
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Figure 6: 〈Cf (z; t)〉 as a function of z when the Graetz number is equal to 105 at the times t = 0,
2.5 · 10−3, 5 · 10−3, 7.5 · 10−3 and 10−2 and for (a) K = 10−3 and (b) K = 1.
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The decrease of the partition coefficient plays an important role in the behavior of
〈Cf 〉 even if the Graetz number is important as it is seen in Figure 6a. At small ∆r,
the average plasticizer concentration in the liquid is larger than for K = 1. Moreover,
the curvature of the profile is more important. We point out that 〈Cf 〉 does not change
significantly over the time chosen to represent the various profiles. As already pointed
out, when the radius ratio ∆r increases, the 〈Cf 〉 profiles are quasi-linear as a function
of z. The proportionality with the inverse of α is very well verified when ∆r = 1 since
the comparison of Figures 6b and 6a shows that the 〈Cf 〉 profiles are very similar as a
function of z and decrease equivalently when the time increases apart from the amplitude
of 〈Cf 〉 obtained for K = 10−3 is three orders of magnitude larger than for K = 1.

The linear behavior of 〈Cf 〉 as a function of z when α is larger than one can be easily
demonstrated. Indeed, from the boundary condition on Cp written at the solid/liquid
interface, i.e. ζ = 0 (eq. 29), the difference Cp(0, t; z)− 〈Cf 〉(z; t) behaves like

Cp(0, t; z)− 〈Cf 〉(z; t) =
1

α Sh(Gr, z)

∂Cp

∂ζ
(0, t). (35)

Reporting this relation in the ordinary differential equation describing the behavior of
〈Cf 〉(z; t), Eq. (26), gives us the following relation

d〈Cf 〉

dz
=

2

Grα

∂Cp

∂ζ
(0, t) (36)

showing that the slope of 〈Cf 〉(z; t) is independent of z since the Sherwood number does
not appear in the previous relation. It is noteworthy that the slope of 〈Cf 〉 obtained
from the previous relation is inversely proportional to α.

In the opposite situation when α is much smaller than one, the difference Cp(0, t; z)−
〈Cf 〉(z; t) should be finite in order to avoid the simplest solution of 〈Cf 〉(z; t) independent
of z. So, the boundary condition written in ζ = 0, Eq. (29), implies that the normal
derivative of Cp should be proportional to α Sh(Gr, z). Consequently, the difference
Cp(0, t; z)− 〈Cf 〉(z; t) is constant and independent of z. Since when the Graetz number
is larger than one, the Sherwood number is inversely proportional to z1/3. The integration
of Eq. (26) with z shows that 〈Cf 〉(z; t) is proportional to z2/3. This behavior is very well
verified in Figure 6a obtained numerically for K = 10−3 and Gr = 105 for ∆r = 10−3 for
which an approximate solution proportional to z2/3 has been plotted in blue solid line.

The behavior of 〈Cf 〉 underlines two important results. Firstly, the average concen-
tration of plasticizer in the liquid decreases with time meaning that there is not accu-
mulation in the liquid phase. This decrease of 〈Cf 〉 stems from the decrease of Cp at the
solid/liquid interface. Secondly, when the Graetz number increases, 〈Cf 〉 decreases due
to the reduction of residence time of the liquid over the tube length even if the Sherwood
number increases with the Graetz number.

3.3. Behavior of Mf versus of time and comparison with static condition

The amount of plasticizer migrating in the liquid over a certain time is given by the
quantity Mf defined by equation (33), and is important to know for safety issues. In
order to compare with the static condition, the conjugated migration problem has been
stated and solved numerically thanks to a coupled spectral method both used for the
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liquid and solid domains. Details about the problem statement in static condition are
given in Appendix A.

Figure 7a represents Mf (t) versus time both in static and dynamic conditions when
the partition coefficient is equal to 10−3 for ∆r equal to 10−3, 10−2, 10−1 and 1 and
Graetz numbers equal to 10, 102, 103, 104 and 105. The solid lines represent the solution
obtained in static condition, which is determined by equation (A.8) in Appendix A. As
expected from the previous analysis on 〈Cf 〉, the larger the Graetz number, the smaller
the amount of plasticizer in the liquid. It is noteworthy that for small radius ratio, the
migration into the liquid in a static condition is smaller than in dynamic condition when
the Graetz number is smaller than 10 at long times. However, when ∆r is greater or
equal to 10−2, the amount of plasticizer in the liquid in dynamic condition is always
smaller than in static condition for any Graetz number. In the static condition, the level
of migration is more important so that the steady state is reached when the radius ratios
are equal to 10−1 and 1.

An algebraic behavior is observed for both static and dynamic conditions far away
from the equilibrium state when the partition coefficient is equal to 10−3. In this par-
ticular situation and when the radius ratio stays small, i.e. lesser or equal to 10−1, Mf

behaves linearly with time. However, remark that for the largest ∆r, the exponent of
the power law decreases as a function of the Graetz number.

Figure 7b presents the profiles of Mf (t) as a function of t for same ∆r and Gr when
K = 1. In static condition, the level of migration is smaller than this one observed when
the partition coefficient is equal to 10−3. As already seen in Figure 7a, an algebraic
law arises from the numerical results depending of the radius ratio both for the static
and dynamic conditions. For small value of ∆r, Mf grows up as a square root of time
in static situation while in dynamic condition, Mf behaves linearly with time. Remark
that the behavior in square root of time is observed whatever the radius ratio in static
condition. Conversely, the exponent of the algebraic law changes as a function of ∆r in
dynamic condition. Indeed, when ∆r = 10−1 or 1, Mf behaves as a square root of time
whatever the Graetz number. Profiles obtained for various values of Gr form a parallel
network of curves for which an increase of one order of magnitude of the Graetz number
leads to a decrease of one order of magnitude of Mf .

3.4. Specific migration for periodic working

In practical applications, the liquid flows through tubes intermittently. For instance
in milk production, the milking takes around 10 minutes a cow for an amount of milk
around 10 litres. Consequently, the typical flow rates are around 1 l/min. The tube sizes
used for this kind of application are an interior and exterior radii equal to 7.9375·10−3 and
1.27 · 10−2 m respectively corresponding to 5/8 and 1 inch in diameter. In the following,
the migration has been determined for periodic working with a time period equal to
T = 10 min and a flow rate of 1 l/min. The amount of plasticizer migrating through the
liquid is determined thanks to the relation (34). The specific migration of the plasticizer
corresponds to the amount of plasticizer in the liquid after one period of contact divided
by the total mass of liquid. In dynamic conditions, the specific migration, given in mg/kg,
for a period p can be determined from the dimensionless quantity Mf(t1, t2) as follows

SMdyn(p) =
KCp,0

Tρliq

∆r2

Dp
Mf [(p− 1)T, pT ] · 106, (37)
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Figure 7: Mf (t) as a function of time for four ∆r and five Graetz numbers for (a) K = 10−3 and (b)
K = 1. The solid lines depict the solution in static condition.
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(a) Liquid properties

ρliq (kg/m3) Df (m2/s) µ (Pa·s)
914 2.44 · 10−10 1.59 · 10−3

(b) Plasticizer properties

Cp,0 (kg/m3) Dp (m2/s)
605 1.1 · 10−13

Table 1: Physical properties of the plasticizer and the liquid used in the numerical computations of
periodic working in static and dynamic conditions.

L (m) 2 4 8
Gr, Eq. (19) 10871 5435.6 2717.8

Table 2: Graetz numbers determined by equation (19) for the three hose lengths taken to compute the
specific migrations.

in which ρliq is the liquid density. Note that in the last equation ∆r is written in
physical dimension. The flow rate does not appear in the last relation because the
plasticizer migration is a quantity normalized by the flow rate and the amount of liquid
is proportional to Q.

The dynamic working is once again compared to the static working for which the
specific migration is given by

SMstat(p) =
KCp,0

ρliq
{〈Cf 〉(pT )− 〈Cf 〉[(p− 1)T ]} · 106. (38)

The numerical applications have been done for a PVC tube with 50% of a glycerol
monoester plasticizer and a liquid corresponding to a mixing of 50% of ethanol in water.
The physical properties taken for the numerical computations are summarized in Table
1. The diffusion coefficient of the plasticizer in the liquid has been determined as previ-
ously from the Wilke and Chang’s correlation [24]. The properties for the water/ethanol
mixture have been taken from the reference [35]. With the flow rate of 1 l/min and the
interior diameter of 1.5875 · 10−2 m, the Reynolds number is equal to 767.17 meaning
that the flow regime is laminar.

The numerical computations have been achieved for three hose lengths equal to 2,
4, and 8 m which gives Graetz numbers given in Table 2. As previously, two partition
coefficients have been taken: the former is a small value equal to 10−3 and the latter is
K = 1 which can be considered as the “worst case”. The specific migration has been
computed for ten periods. Figure 8a depicts the specific migrations in static and dynamic
conditions for K = 10−3 and Figure 8b for K = 1. The specific migration limit (SML)
for the plasticizer is set equal to 60 mg/kg. This threshold has been plotted in solid line
in Figures 8a and 8b.

When the partition coefficient is small, the level of the specific migration is close to
the SML. Apart from the first value obtained in static condition, specific migration both
in static and dynamic conditions is below the SML. Nevertheless, the specific migration
in dynamic condition is much smaller than this obtained in static condition. For the
largest Graetz number, the order of magnitude of the specific migration is around 3
mg/kg which is smaller than one order of magnitude of the SML. Moreover, remark that
the specific migration decreases with the period slowly in dynamic condition while the
decrease is more pronounced in static condition.
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Figure 8: Specific migration of glycerol monoester plasticizer as a function of number of period p with
T = 10 min for three tube lengths and a flow rate of 1 l/min when (a) K = 10−3 and (b) K = 1.
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The situation where the partition coefficient is equal to 1 shows that the magnitude of
specific migration changes strongly between static and dynamic conditions, see Figure 8b.
Around one order of magnitude is observed in the numerical data between the static and
dynamic workings. While in the static condition it is impossible to be in compliance with
the legislation over the ten periods simulated, the specific migration is below the SML
for the longest tube (Gr = 2717.8) after four periods. Specific migration for Gr = 5435.5
is below the SML after one period and for all periods when Gr = 10871.

These results point out the importance of the working conditions of the hoses. Due
to the dilution effect and the renewing of liquid, the dynamic conditions are more ap-
propriate and accurate to demonstrate compliance. Of course, the tube length plays on
important role since the migration is a function of L via the Graetz number which is
inversely proportional to L. From the numerical results, a division by 2 of the length
leads to a decrease of specific migration in the same proportion.

4. Conclusion

With the safety food applications in mind, a theoretical model to describe the mi-
gration of a plasticizer added in a polyvinyl chloride (PVC) material used to make hoses
is developed. The aim is to compute the amount of plasticizer migrating in the liquid
over a certain time. The migration of the plasticizer is a conjugated problem of trans-
port phenomena between the diffusion of the plasticizer in solid tube to the diffusion
and advection of the same substance in liquid. The final model is the coupled diffusion
equation in the solid tube and the average plasticizer concentration in the liquid where
the mass transfer between the two media is determined with the classical Graetz problem
providing the Sherwood number.

A dedicated numerical tool to solve the conjugated problem has been developed and
detailed in supplementary material of the current article. The numerical computations
have been done to study the influence of the tube geometry and the flowing conditions.
We point out that the average concentration of plasticizer in the liquid behaves as a
function of axial coordinate with two different scalings as a function of the migration
strength, α, product of the partition coefficient (ratio of the plasticizer concentration in
the liquid to this one in the solid at the PVC/liquid interface), the ratio of the PVC
thickness to the interior radius and the diffusion coefficient ratio between the liquid and
the solid. When α is smaller than one, the non-uniformity of the Sherwood number along
the axial direction has a strong influence on the plasticizer concentration. Conversely,
when α is much larger than one, the slope of the plasticizer concentration does not depend
on the Sherwood number which is inversely proportional to α and the Graetz number.
As a consequence, the plasticizer concentration is a linear function of the axial distance.

For safety issue, the amount of plasticizer migrating into the food is an important
quantity to know. So, the normalized amount of plasticizer has been determined in
dynamic condition and compared with the static situation. It is noteworthy that the
amount of plasticizer concentration behaves as a linear function of time while in the static
condition, a square root behavior is observed for small strength of migration. Conversely,
when α is large, the amount of plasticizer concentration in the liquid scales as a square
root of time but the order of magnitude is much smaller than in static condition.

The numerical computations have been used to determine the specific migration for
periodic working with a relevant parameters for milk production. From the practical
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point of view, the extreme importance of the working condition is drawn. The food
safety authorities requirements are fulfilled in dynamic condition for a tube dedicated
to the transport of liquid with a certain flow rate. As mentioned in regulation 10/2011
[7], the conditions used to test the compliance should be the closest of the real working
conditions.

These developments giving the migration in flowing conditions for the first time have
to be extended in near future in threefold. First, only laminar flows have been consid-
ered although it is easy to have a Reynolds number larger than 2100 in practice. So,
the model has to be extended for turbulent flow. Second, experimental works must be
developed to provide values of the physical parameters such as the partition and diffusion
coefficients. Finally, experimental investigations to determine specific migrations have to
be undertaken.
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Appendix A. Static conjugated problem of migration

In this section, the static conjugated migration problem is presented. Figure A.9
sketches the two domains. The liquid is localized in the tube for a radial coordinate,
r lesser than ri. The solid tube is described by the annular area such as r ∈ [ri; re].
Typical profiles of plasticizer concentrations have been sketched in the two domains
where the discontinuity at the interface is mathematically defined by the balance of the
concentrations weighted by the partition coefficient.

Concentrations in the solid tube and in the liquid are normalized in the same way
as previously done, i.e. using equations (11). The same coordinates, ζ for Cp and r
for Cf are taken to describe the radial variation with space. The boundary conditions
stay unchanged and are homogeneous over the length of the tube. Consequently, the
mass concentrations in the liquid and solid domains do not depend on z. Finally, as it is
already done for the dynamic conditions, the time is reduced by the characteristic time
of diffusion in the solid tube since it is the limited phenomena.

The diffusion equations in the solid hose and in the liquid are respectively given by

∂Cp

∂t
=

1

1 +∆rζ

∂

∂ζ

[

(1 + ∆rζ)
∂Cp

∂ζ

]

, (A.1)

Fo
∂Cf

∂t
=

1

r

∂

∂r

(

r
∂Cf

∂r

)

, (A.2)

where Fo is the ratio of the characteristic time of diffusion in the liquid, r2i /Df , to the
characteristic time of diffusion in the PVC, ∆r2/Dp, which can be parented to a Fourier
number and written as follows

Fo =
Dp

Df∆r2
. (A.3)
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Figure A.9: Geometry and typical profiles of Cf and Cp in a tube of interior and exterior radii ri and
re, respectively.

The initial conditions are given by

Cp(ζ, t) = 1, for t = 0, and ζ ∈]0; 1[, (A.4)

Cf (r, t) = 0, for t = 0, and r ∈]0; 1[, (A.5)

and the boundary conditions by

∂Cp(ζ, t)

∂ζ
= 0, ∀ t > 0, and ζ = 1, (A.6)

Cf = Cp,
∂Cp

∂ζ
= α

∂Cf

∂r
.







∀ t > 0, and ζ = 0, r = 1. (A.7)

The average of the plasticizer concentration in the liquid is determined by using the
following integral

〈Cf 〉(t) = 2

∫ 1

0

rCf (r, t)dr. (A.8)

This quantity which is a function of time will be used to compare to the amount of
average plasticizer concentration at the exit of the tube in dynamic condition defined by
(33).

A specific numerical method has been developped to solve the static problem which
is detailed in supplementary material of this article.
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