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Abstract. We build a coding of the trajectories of billiards in regular 2n-gons, similar
but different from the one in [16], by applying the self-dual induction [9] to the underlying
one-parameter family of n-interval exchange transformations. This allows us to show that,
in that family, for n = 3 non-periodicity is enough to guarantee weak mixing, and in some
cases minimal self-joinings, and for every n we can build examples of n-interval exchange
transformations with weak mixing, which are the first known explicitly for n > 6.

In [16], see also [15], John Smillie and Corinna Ulcigrai develop a rich and original theory
of billiards in the regular octagons, and more generally of billiards in the regular 2n-gons,
first studied by Veech [17]: their aim is to build explicitly the symbolic trajectories, which
generalize the famous Sturmian sequences (see for example [1] among a huge literature), and
they achieve it through a new renormalization process which generalizes the usual continued
fraction algorithm. In the present shorter paper, we show that similar results, with new
consequences, can be obtained by using an existing, though recent, theory, the self-dual in-
duction on interval exchange transformations.

As in [16], we define a trajectory of a billiard in a regular 2n-gon as a path which starts
in the interior of the polygon, and moves with constant velocity until it hits the boundary,
then it re-enters the polygon at the corresponding point of the parallel side, and continues
travelling with the same velocity; we label each pair of parallel sides with a letter of the
alphabet (A1, ...An), and read the labels of the pairs of parallel sides crossed by the trajectory
as time increases; studying these trajectories is known to be equivalent to studying the
trajectories of a one-parameter family of n-interval exchange transformations, and to this
family we apply a slightly modified version of the self-dual induction defined in [9]. Now, the
self-dual induction is in general not easy to manipulate, as its states are a family of graphs,
and its typical itineraries, or paths in the so-called graph of graphs, are quite complicated
to describe; but in our main Theorem 7 below, we show that for any non-periodic n-interval
exchange in this particular family, after at most 2n − 2 steps our self-dual induction goes
back, up to small modifications, to the initial state of another member of the family. This
gives us a renormalization process, which differs from the one in [16] essentially because it is
applied to lengths of intervals instead of angles, and allows us to compute the whole itinerary
of the original interval exchange transformation under the self-dual induction in function of
a single sequence of integers between 1 and 2n − 1, which act as the partial quotients of a
continued fraction algorithm applied to initial lengths of subintervals.
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As a consequence we achieve the building of symbolic trajectories in a different way from
[16], as we do not use our renormalization on lengths to get a renormalization of the trajec-
tories, but rather use the full knowledge of the self-dual induction to build the trajectories
by families of nested words, giving at once all the bispecial words and the names of a family
of Rokhlin towers spanning the dynamical system. This in turn gives us original results
on the weak mixing problem: namely for n = 3 we show that all non-periodic members of
our family are weakly mixing, and that the boundedness of the partial quotients mentioned
above implies the once famed property of minimal self-joinings, while for general n we build
some sequences of partial quotients implying weak mixing, which give, as far as we know,
the first construction of weakly mixing n-interval exchange transformations for n > 6; this
last family of examples is built by using Rokhlin towers in a way which is innovating in
comparison with the existing constructions such as those in [10].

The present paper stems from an idea of Pascal Hubert, to whom the author is very much
indebted; though the paper owes its very existence to [15][16], it does not use any result of
those papers, and in this respect it is self-contained, though of course it relies heavily on [9],
and on [7][8] for one theorem. We choose to focus on the word-combinatorial point of view:
the geometry underlying the self-dual induction, and thus a full comparison between the
methods of the present paper and those of [15][16], will be treated in a forthcoming paper
of Vincent Delecroix and Corinna Ulcigrai [4].

1. A short presentation of the self-dual inductions

Definition 1. An n-interval exchange transformation I with probability vector (α1, α2, . . . , αn),
and permutation π is defined by

Ix = x+
∑

π−1(j)<π−1(i)

αj −
∑
j<i

αj.

when x is in the interval

∆i =

[∑
j<i

αj,
∑
j≤i

αj

[
.

We denote by βi, 1 ≤ i ≤ n− 1, the i-th discontinuity of I−1, namely βi =
∑

π−1(j)≤π−1(i) αj,

while γi is the i-th discontinuity of I, namely γi =
∑

j≤i αj. Then ∆i is the interval [γi−1, γi[

if 2 ≤ i ≤ n− 1, while ∆1 = [0, γ1[ and ∆n = [γn−1, 1[.
I satisfies the infinite distinct orbit condition or i.d.o.c. of Michael Keane [12] if the n− 1
negative orbits {I−mγi}m≥0 ,1 ≤ i ≤ n − 1, of the discontinuities of I are infinite disjoint
sets.

The self-dual induction is a process defined in [9] for any n-interval exchange transforma-
tions which satisfies the i.d.o.c. condition, is symmetric, i.e. the permutation π is defined by
πj = n+1−j, 1 ≤ i ≤ n, and has alternate discontinuities, i.e. βi < γi for each 1 ≤ i ≤ n−1
and γi < βi+1 for each 1 ≤ i ≤ n − 2. It aims to build the points where the negative orbits
of the discontinuities of I approximate the discontinuities of I−1. Indeed, we want to build
n− 1 nested families of subintervals Ei,k = [βi − li,k, βi + ri,k[, 1 ≤ i ≤ n− 1, starting from
Ei,0 = ∆i, so that the Ei,k are the intervals containing βi, and whose endpoints are the
successive I−mγj which fall closest to βi, where for any j and j′, I−m′γj′ is after I−mγj if



BILLIARDS IN REGULAR 2n-GONS AND THE SELF-DUAL INDUCTION 3

m′ > m. Let γi,k be the first element I−mγj, m > 0, 1 ≤ j ≤ n−1, which falls in the interior
of Ei,k; it exists by minimality. Thus we could tentatively define Ei,k+1 by partitioning Ei,k
into two subintervals [βi − li,k, γi,k[ and [γi,k, βi + ri,k[, and setting Ei,k+1 to be the one of
these two subinbtervals which contains βi; it is well defined because of the i.d.o.c. condition,
see Proposition 1 below.

However, it may very well happen that, for example, γ1,k = I−5γ1 while γ2,k = I−2γ1 and
γ2kn+1 = I−3γ1, which creates a desynchronisation between the tentatives E1,k+1 and E2,k+1;
then it seems natural to wait before cutting E1,k, that is to put E1,k+1 = E1,k.

Thus, for each i and k, we decide either to put Ei,k+1 = Ei,k or to define Ei,k+1 as the
subinterval [βi − li,k, γi,k[ or [γi,k, βi + ri,k[ which contains βi.

There are many possible decisions of cutting or not at each stage, and thus a priori many
self-dual inductions; however, for a given interval E = Ei,k, the first strict subinterval of E to
be generated by any self-dual induction is the same, independently of the decisions; thus all
sequences of decisions for which Ei,k+1 6= Ei,k for infinitely many k yield the same sequences
of different intervals, though not numbered in the same way.

Throughout this paper, we say that i chooses −, resp. takes −, if βi is in [βi − li,k, γi,k[,
resp. Ei,k+1 = [βi − li,k, γi,k[; i chooses +, resp. takes +, if βi is in [γi,k, βi + ri,k[, resp.
Ei,k+1 = [γi,k, βi + ri,k[; i is modified if Ei,k+1 6= Ei,k, not modified otherwise. Note that
the choice of i at stage k depends only on the interval E = Ei,k, and not on the particular
sequence of decisions we have taken or of the exact value of k, though the fact that i takes or
not at stage k does depend on these last elements. The li,k and ri,k are called the half-lengths
at stage k.

[9] describes a way of making self-dual inductions without the desynchronization problem
mentioned above, with the added bonus that it yields a complete description of the tra-
jectories, see Section 3 below. It uses combinatorial objects called trees of relations, which
describe the states of the induction, in the same way as permutations describe the states of
the classical Rauzy or Zorich induction. Numerous examples of trees of relations appear in
Section 2 below, while the reader is referred to [9] for more details and all proofs: we just
recall that at each stage the tree of relations is the key to a description of the induced map
of I on E1,k ∪ ...En−1,k (see the discussion after Definition 5 in Section 4 below), hence the
use of the term “induction”.

Definition 2. A tree of relations G is a (non-oriented) graph with n− 1 vertices i, 1 ≤ i ≤
n− 1, and n− 2 edges labelled +̂, −̂, or =̂, such that G is connected, and two adjacent edges
never have the same label.

For a tree of relations G, we define its map s: s(i) is the only j such that there is an =̂
edge between i and j, or s(i) = i if there is no such edge.

Each tree can be written in several ways, for example 1−̂2=̂3 and 3=̂2−̂1 define the same
object. Note that we use hats to avoid writing formulas such as 1 = 2.

Now we define an operation on trees of relations.

Definition 3. Let G be a tree of relations; a positive induction branch is a maximal connected
subtree of G without −̂ edges. A negative induction branch is a maximal connected subtree
of G without +̂ edges.
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An instruction on G is an application ι from {1, ...n− 1} to {−,+}, invariant by the map
s. An accepted induction branch for the instruction ι is a positive induction branch for
which ιi = + on all vertices, or a negative induction branch for which ιi = − on all vertices.
Let B the set of the vertices of a union of accepted induction branches for ι; the tree of
relations JB(G) is defined by the vertices i, 1 ≤ i ≤ n− 1, and the following edges

• if i ∈ B, j ∈ B, ιi = ιj = +, and i+̂j in G, then s(i)=̂s(j) in JB(G),
• if i ∈ B, j ∈ B, ιi = ιj = −, and i−̂j in G, then s(i)=̂s(j) in JB(G),
• if i ∈ B, j ∈ B, ιi = ιj = +, and i=̂j in G, then i+̂j in JB(G),
• if i ∈ B, j ∈ B, ιi = ιj = −, and i=̂j in G, then i−̂j in JB(G),
• if i 6∈ B or j 6∈ B, the edge between i and j in G stays in JB(G) with the same label.

We can now describe the algorithm defined in [9]: we start from Ei,0 = ∆i, 1 ≤ i ≤ n− 1.
We can then make a self-dual induction such that at each stage k, there is a tree of relations

Gk, whose map s is denoted by sk, such that

• lj,k + rj,k = li,k + ri,k if there is an edge i=̂j in Gk,
• li,k = lj,k if there is an edge i+̂j in Gk,
• ri,k = rj,k if there is an edge i−̂j in Gk.

At stage 0, the tree of relations is 1−̂(n − 1)+̂2−̂(n − 2)+̂3... whenever that expression
makes sense; for small n it is just 1 for n = 2, 1−̂2 for n = 3, 1−̂3+̂2 for n = 4.

At stage k, i chooses +, resp. − if and only if ιk(i) = +, resp. −, where the instruction ιk(i)
is the sign of li,k − rsk(i),k = lsk(i),k − ri,k, this quantity being nonzero because of Proposition
1 below.

To go from stage k to stage k + 1, we choose a union of accepted induction branches for
ιk, whose vertices form the set Bk, and we decide to modify i for every i ∈ Bk, and not to
modify i for i 6∈ Bk; we say that we induce on the union of induction branches whose vertices
form Bk. Then at stage k + 1, Gk+1 = JBk(Gk).

This process can be iterated indefinitely. The decisions defined in [9], when at each stage
we induce on the union of all accepted induction branches, do not block the process: namely,
in an infinite sequence of such inductions, each i has to be modified infinitely many times.
In Section 2 below we shall use a modification of this algorithm, which is shown in Corol-
lary 8 to be only slightly slower (some modifications are delayed by at most 4n− 4 stages),
thus the process will not be blocked either, and gives all the nested intervals we aim to build.

The various results of [9] will be quoted when we are ready to use them in Sections 2, 3,
4, but we state here a result which is not explicitly written in [9]:

Proposition 1. Let I be a symmetric n-interval exchange with alternate discontinuities.
Then, if I satisfies the i.d.o.c. condition, in every self-dual induction βi 6= γi,k for every i
and k. If we can iterate indefinitely a self-dual induction with the decisions described above,
such that every i is modified at infinitely many stages and βi 6= γi,k for every i and k, then
I satisfies the i.d.o.c. condition.

Proof
The first assertion comes immediately from the definition of the i.d.o.c. condition. Under
the hypotheses of the second assertion, we can follow the proof of Theorem 2.9 of [9], and
show that the language of I satisfies the hypotheses of Proposition 7 or Theorem 2 of [11],
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and this implies the i.d.o.c. condition. �

2. A self-dual induction on 2n-gon type interval exchange transformation

The trajectories we defined in the introduction can also be generated by interval exchange
transformations in the following way.

Definition 4. A 2n-gon-type n-interval exchange transformation I is a symmetric n-interval
exchange transformation with alternate discontinuities, such that in the initial stage of the
self-dual induction described above, the half-lengths are lj,0 = lj, rj,0 = rj, where for some
l > 0, r > 0,

rj = r cos π
n− 2j

2n
, lj = l

cos π n−2j+1
2n

cos π
2n

,

with the normalisation relation l1 + r1 + ...ln−1 + rn−1 + l1 = 1.
For every point x in [0, 1[, its trajectory is the infinite sequence (xk, k ∈ IN) defined by xk = i
if Ikx falls into ∆i, 1 ≤ i ≤ n.

For such an interval exchange transformation, it will be useful to define rn and ln by the
same formulas, thus ln = l1, rn = 0.

Proposition 2. Every trajectory of the billiard in a regular 2n-gon is coded by a trajectory
of a 2n-gon type n-interval exchange transformation, with

r = | tan θ|, l =
1

2

(
sin

π

n
− | tan θ|

(
1 + cos

π

n

))
for some −π

2n
< θ < π

2n
.

Proof
The sides of the 2n-gon are labelled A1, ..., An from top to bottom on the right, and two
parallel sides have the same label. We draw the diagonal from the right end of the side
labelled Ai on the right to the left end of the side labelled Ai on the left. There always exists
i such that the angle θ between the billiard direction and the orthogonal of this diagonal is
between −π

2n
and π

2n
.

We put on the circle the points −ie ijπn from j = 0 to j = n, which are the vertices of
the 2n-gon; our diagonal is the vertical line from −i to i, we project on it the sides of the
polygon which are to the right of the diagonal, partitioning it into intervals I1, ... In, and
the sides of the polygon which are to the left of the diagonal, partitioning it into intervals
J1, ... Jn. The transformation which exchanges the intervals (I1, ...In) with the (J1, ...Jn)
is identified with the interval exchange transformation I on [−1, 1[ whose discontinuities
are γj = − cos jπ

n
+ tan θ sin jπ

n
, 1 ≤ j ≤ n − 1, while the discontinuities of I−1 are βj =

−γn−j, composed with the map x → −x if θ < 0. I is a symmetric n-interval exchange
transformation with alternate discontinuities.

And if θ > 0, the trajectories are generated by I with the coding 1 → Ai, 2 → Ai−1,
... i → A1, i + 1 → An, ....n → Ai+1. In the initial state rj = γj − βj = 2 tan θ cosπ n−2j

2n
,

lj = βj − γj−1 = 2 cos π n−2j+1
2n

(
cos π(n−1)

2n
− tan θ sin π(n−1)

2n

)
. If θ < 0, the trajectories are

generated by I with the coding 1 → Ai+1, 2 → Ai+2, ... n − i → An, n − i + 1 → A1,
....n → Ai. In the initial state rj = βn−j − γn−j = −2 tan θ cosπ n−2j

2n
, lj = γn−j+1 − βn−j =
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2 cosπ n−2j+1
2n

(
− cos π(n+1)

2n
+ tan θ sin π(n+1)

2n

)
. Thus in both cases we have the claimed re-

sult, after normalizing to get total length one. �

Thus we have a one-parameter family of interval exchange transformations, depending on
the parameter θ, or, equivalently, l

r
. Note that r = 0 when θ = 0, l = 0 when θ = π

2n
or

θ = − π
2n

. The following well-known and deep result is a consequence of the Veech alternative,
see [17] and [18].

Proposition 3. Let I be a 2n-gon-type n-interval exchange transformation: either every
orbit is periodic, or I satisfies the i.d.o.c. condition and is uniquely ergodic (i.e. has one
invariant probability measure).

We shall now prove our main result, Theorem 8 below: if we apply the self-dual induction to
this family, after a bounded number of steps we come back to this family (after renormalizing,
making a permutation φ on the letters {1, ..., n − 1}, and possibly exchanging the left and
right half-lengths). The following technical lemmas will be needed for the proof:

Lemma 4. For any 1 ≤ i ≤ n such that 2i is an integer, let

λi =
cos π

2n
cos π n−2i

2n

cosπ n−2i+1
2n

.

Then, for integer 1 ≤ i ≤ n − 1, λilir = lri, and λi+ 1
2
(li + li+1)r = l(ri + ri+1). The λi

are positive and strictly decreasing in i, with λ1 = 2 cos2 π
2n

= 1 + cos π
n

, λn
2

= 1, λn− 1
2

= 1
2
,

λn = 0.

Proof
The formulas either are immediate or come from trigonometric equalities, which imply also
λi = 1

2

(
1 + cos π

n
+ sin π

n
tanπ n−2i+1

2n

)
, thus the λi are indeed decreasing. �

Note that the same formulas would give an infinite λ 1
2
.

Lemma 5. We define for 1 ≤ t ≤ n− 1,1 ≤ j ≤ n− 1,

x(j, t) =

j∑
u=j−t+1

lu −
j∑

u=j−t

ru if j > t+ 1,

x(j, t) = x(t− j + 1, t) =

t−j+1∑
u=j

lu −
t−j+1∑
u=j

ru if j ≤ [
t

2
]′.

then for every j ≥ s+ 1

x(j, 2s+ 1) =
(

1− λs+1
r

l

) ls+1

l1
lj−s,

x(j, 2s) =

(
1

λs+ 1
2

l

r
− 1

)
rs + rs+1

r1

rj−s =
(
λs+ 1

2

r

l
− 1
) ls + ls+1

r1

rj−s,

while for j ≤ s we have x(j, 2s+ 1) = x(2s+ 2− j, 2s+ 1), x(j, 2s) = x(2s+ 1− j, 2s).
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Proof
Trigonometric equalities imply rj + rj−1 = clj, lj + lj−1 = c′rj−1, rj−u + rj+u = curj, lj−u +
lj+u = c′ulj, for constants independent of j; these are satisfied for all values of j provided we
extend the defining formulas to get (virtual) lj and rj when j is not between 1 and n.

Inputting these relations into the expression of x(j, 2s + 1), we get x(j, 2s + 1) = c′′s lj−s,
immediately for j ≥ 2s+2, and taking into account the fact that r0 = 0 for s+1 ≤ j ≤ 2s+1;
thus we can identify the constant c′′s from the formula when j = s + 1. A similar reasoning

works for x(j, 2s). Thus we have x(j, 2s + 1) = ls+1−rs+1

l1
lj−s, x(j, 2s) = ls+ls+1−rs−rs+1

r1
rj−s,

which give the final formulas because of Lemma 4. �

Lemma 6. We define for 1 ≤ t ≤ n− 1,1 ≤ j ≤ n− 1,

y(j, t) =

j+t∑
u=j

lu −
j+t−1∑
u=j

ru if j ≤ n− t,

y(n− j, t) = x(n− t+ j, t) =

n−j∑
u=n−t+j

lu −
tn−j∑

u=n−t+j

ru if j ≤ [
t

2
].

then for every j ≤ n− s
y(j, 2s) =

(
1− λn−s

r

l

) ln−s
l1
lj+s,

for every j ≤ n− s− 1,

y(j, 2s+ 1) =

(
1

λn−s− 1
2

l

r
− 1

)
rn−s−1 + rn−s

r1

rj+s =
(
λn−s− 1

2

r

l
− 1
) ln−s−1 + ln−s

r1

rj+s,

while for other value of j we use y(n− j, t) = x(n− t+ j, t).

Proof
The proof is similar to the proof of Lemma 5. Note that (virtually) ln+1 + ln = rn = 0, thus

we get y(j, 2s) = ln−s−rn−s
l1

lj+s, y(j, 2s+ 1) = ln−s−1+ln−s−rn−s−1−rn−s
r1

rj+s, and we conclude by
Lemma 4. �

Theorem 7. Given any 2n-gon type n-interval exchange transformation I, satisfying the
i.d.o.c. condition, there exists an algorithm of self-dual induction following the rules of
Section 1, an integer 2 ≤ m ≤ 2n− 2, and d = ±1, such that after m steps the half-lengths

(lφ(j),m, rφ(j),m), 1 ≤ j ≤ n− 1, are proportional to (l′
cosπ n−2j+1

2n

cos π
2n

, r′ cosπ n−2j
2n

) if d = +1 and

to (r′ cosπ n−2j
2n

, l′
cosπ n−2j+1

2n

cos π
2n

) if d = −1, where l′

r′
= g( l

r
) and

• in Case 1 defined by l
r
> λ1, d = 1, φ = Id and

g(y) = y − λ1;

• in Case 2i defined by λi >
l
r
> λi+ 1

2
, 1 ≤ i ≤ n − 1, d = −1, φ(j) = i − j + 1 for

1 ≤ j ≤ i, φ(j) = n− j + i for i+ 1 ≤ j ≤ n− 1, and

g(y) =
λ1

2λi

λi − y
y − λi+ 1

2

;
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• in Case 2i + 1 defined by λi+ 1
2
> l

r
> λi+1, 1 ≤ i ≤ n − 1, d = 1, φ(j) = i + j for

1 ≤ j ≤ n− i− 1, φ(j) = 1− n+ j + i for n− i ≤ j ≤ n− 1, and

g(y) = λi+ 1
2

y − λi+1

λi+ 1
2
− y

.

Proof
We fix an n ≥ 3.

Case 1
Step 1 In the initial stage, lj,0 = lj, rj,0 = rj, 1 ≤ j ≤ n− 1, the tree of relations is

1−̂(n− 1)+̂2− ...,

and its map s is the identity; here we have lj > rj for all j and 1, 2, ...(n − 1) all choose
+; we induce on the union of all positive induction branches in the tree of relations, which
are all accepted: these are 1, (n− j)+̂(j + 1), 1 ≤ j ≤ p− 1, if n = 2p, or (n− j)+̂(j + 1),
1 ≤ j ≤ p − 1, and (p + 1), if n = 2p + 1. After this induction, we arrive in stage 1 with
half-lengths

1 ≤ j ≤ n− 1 lj,1 = lj − rj rj,1 = rj

and tree of relations

1−̂(n− 1)=̂...=̂i−̂(n− i)=̂(i+ 1)−̂(n− i− 1)=̂(i+ 2)−̂...

Step 2 In stage 1, the map s is defined by s(1) = 1, s(n− j) = j+ 1 and s(j+ 1) = n− j,
1 ≤ j ≤ p − 1 if n = 2p or n = 2p + 1, and s(p + 1) = p + 1 if n = 2p + 1. We check that,
for j > 1, lj,1 − rs()j,1 = x(j, 1) and thus is positive by Lemma 5; 2, ..., (n − 1) choose +
and we induce on the union of all positive induction branches to the right of (and including)
(n− 1)=̂2, all of them being accepted; these are (n− j)=̂(j + 1), 1 ≤ j ≤ p− 1, if n = 2p,
or (n− j)=̂(j + 1), 1 ≤ j ≤ p− 1, and (p+ 1), if n = 2p+ 1. After this induction, we arrive
in stage 2, with the same tree of relations as in stage 0, and half-lengths

lj,2 = x(j, 1) rj,2 = rj.

Thus, by Lemma 5, if we put l′j = lj,2 and r′j = rj,2, we get the required formulas, computing
l′

r′
from l′1 = x(1, 1), r′1 = r1.
Note that in stage 1, we did not know a priori the sign of l1,1 − r1,1, which will be deter-

mined by the value of l′

r′
, thus at this stage the instruction ι is not fully known, and indeed

not the same for all values of l
r

of Case 1; but this value has no influence on the admitted
induction branches (strictly) right of 1, so our choice not to modify 1 is permitted whether 1
chooses + or −, but this choice is different from the one defined in [9] if l1,1 − r1,1 > 0, as in
that case we should have induced on the union of all positive induction branches, including
the branch 1.

We shall check that throughout the process, either the parameters determining the choices
of j are quantities x(j, t) or (in the second half of cases) y(j, t), whose sign is known by Lemma
5 or Lemma 6, or the rules of the self-dual induction defined in Section 1 above allow us not
to modify j, such as for j = 1 in Step 2 of Case 1 above.
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Case 2i for 1 ≤ i < n
2

Step 1 In the initial stage 1,... i choose −, (i + 1)... (n − 1) choose +; we induce on the
union of positive induction branches in the tree of relations which are to the right of (and
including) (n−i)+̂(i+1): these are (n−j)+̂(j+1), i ≤ j ≤ p−1, if n = 2p, or (n−j)+̂(j+1),
i ≤ j ≤ p − 1, and (p + 1), if n = 2p + 1. After this induction, we arrive in stage 1 with
half-lengths

1 ≤ j ≤ i lj,1 = lj rj,1 = rj
i+ 1 ≤ j ≤ n− i lj,1 = lj − rj rj,1 = rj

n− i+ 1 ≤ j ≤ n− 1 lj,1 = lj rj,1 = rj
and tree of relations

1−̂(n− 1)+̂...+̂i−̂(n− i)=̂(i+ 1)−̂(n− i− 1)=̂(i+ 2)−̂...
Step 2. In stage 1, we check that i, (n − i), (i + 1), (n − i − 1), (i + 2), and everything

to the right, choose −; we induce on the negative induction branch which is to the right of
(and including) i. After this induction, we arrive in stage 2 with half-lengths

1 ≤ j ≤ i− 1 lj,2 = lj rj,2 = rj
j = i lj,2 = lj rj,2 = rj − lj

i+ 1 ≤ j ≤ n− i lj,2 = lj − rj rj,2 = −x(j, 1)
n− i+ 1 ≤ j ≤ n− 1 lj,2 = lj rj,2 = rj

and tree of relations

1−̂(n− 1)+̂...+̂i=̂(i+ 1)−̂(n− i)=̂(i+ 2)−̂(n− i− 1)=̂(i+ 3)−̂...

We make now the recursion hypothesis that in stage 3a− 1 we have the half-lengths

1 ≤ j ≤ i− a lj,3a−1 = lj rj,3a−1 = rj
j = i− a+ 1 lj,3a−1 = lj rj,3a−1 = −x(j, 2i− 1)

i− a+ 2 ≤ j ≤ i+ a− 1 lj,3a−1 = x(j, 2i) rj,3a−1 = −x(j, 2i− 1)
i+ a ≤ j ≤ n− i+ a− 1 lj,3a−1 = lj − rj rj,3a−1 = −x(j, 2a− 1)
n− i+ a ≤ j ≤ n− 1 lj,3a−1 = lj rj,3a−1 = rj

and tree of relations made of the main branch

1−̂(n−1)+̂..(i−a)−̂(n−i+a)+̂(i−a+1)=̂(i+a)−̂(n−i+a−1)=̂(i+a+1)−̂(n−i+a−2)=̂(i+a+2)−̂...
and of the secondary branch

i+̂(i+ 1)−̂(i− 1)...+̂(i+ a− 2)−̂(i− a+ 2)+̂(i+ a− 1)−̂
arriving at the vertex (i− a+ 1).

This hypothesis is satisfied for a = 1. Then
Step 3a. In stage 3a− 1, (n− i+ a), (i+ a− 1) and (i+ a) choose +, and we induce on

this positive induction branch with three vertices. We get the tree of relations made of the
main branch

1−̂(n−1)+̂...(i−a)−̂(n−i+a)=̂(i+a)−̂(n−i+a−1)=̂(i+a+1)−̂(n−i+a−2)=̂(i+a+2)−̂...
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and of the secondary branch

i+̂(i+ 1)−̂(i− 1)...+̂(i+ a− 2)−̂(i− a+ 2)+̂(i+ a− 1)−̂(i− a+ 1)+̂

arriving at the vertex (i+ a).
Step 3a+ 1. In stage 3a, (i− a), (n− i+ a), (i+ a), (n− i+ a− 1), and everything to the

right, choose −; we induce on the negative induction branch which is in the main branch to
the right of (and including) i− a. We get the tree of relations made of the main branch

1−̂(n− 1)+̂...(i− a)=̂(i+ a)−̂(n− i+ a)=̂(i+ a+ 1)−̂(n− i+ a− 1)=̂(i+ a+ 2)−̂...
and of the secondary branch

i+̂(i+ 1)−̂(i− 1)...+̂(i+ a− 2)−̂(i− a+ 2)+̂(i+ a− 1)−̂(i− a+ 1)+̂

arriving at the vertex (i+ a).
Step 3a+2. In stage 3a+1, (i−a), (i+a), (n− i+a), and everything to the right, choose
−; we induce on the negative induction branch which is in the main branch to the right of
(and including) (i− a). We get the recursion hypothesis for a+ 1.

The recursion continues as far as stage 3i − 1. At step 3i − 2, we have a (last) negative
induction on the negative induction branch which is in the main branch to the right of (and
including) 1=̂(2i− 1)−̂..., and in stage 3i− 1 we get the (straight) tree of relations

i+̂(i+ 1)−̂(i− 1)...+̂(2i− 1)−̂1=̂(2i)−̂(n− 1)=̂(2i+ 1)−̂(n− 2)=̂(2i+ 2)....

Step 3i In stage 3i− 1, 1, 2i, (n− 1), (2i+ 1), and everything to the right, choose +; we
induce on the union of positive induction branches which are to the right of (and including)
1=̂2i: they are of the form b=̂c except for the rightmost one which may be reduced to a
single vertex. We get the tree of relations

i+̂(i+ 1)−̂(i− 1)...+̂(2i− 1)−̂1+̂2i−̂(n− 1)+̂(2i+ 1)−̂(n− 2)+̂(2i+ 2)....

and the half-lengths
lj,3i = x(j, 2i) rj,3i = −x(j, 2i− 1).

By Lemma 5 we get constants K and K ′ such that that

lj,3i = Krn−j+i rj,3i = K ′ln−j+i if j ≥ i+ 1,

lj,3i = Kri−j+1 rj,3i = K ′li−j+1 if j ≤ i.

Thus if we put l′j = ri−j+1,3i and r′j = li−j+1,3i for j ≤ i, l′j = rn−j+i,3i and r′j = ln−j+i,3i for

j > i, we get the required formulas, computing l′

r′
from l′1 = −x(i, 2i − 1), r′1 = x(i, 2i) =

x(i+ 1, 2i).
Each induction has been on a union of accepted union branches which are all positive or all

negative, so we can speak of positive induction or negative induction. With this convention,
the sequence of inductions has the signs +− (+−−)i−1+, where the positive inductions are
on three-vertices induction branches, except the first and last ones which are on unions of
two (or one)-vertices induction branches, and the negative inductions are on an induction
branch which is absorbing more and more vertices on its left during the process. Note that
each j for 2 ≤ j ≤ 2i− 1 is not modified in the later stages of the process, though we do not
know if it chooses − or +; as in Case 1, this is allowed by the rules as these choices do not
modify the fact that we induce on unions of accepted induction branches, but the resulting
self-dual induction is possibly slower than the one defined in [9].
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Case 2i+ 1 for 1 ≤ i < n−1
2

Then steps 1 and 2 are as in case 2i, but in stage 3 we induce on the negative branch which
is to the right of i. The recursion hypothesis becomes that in stage 3a we have the tree of
relations made of the main branch

1−̂(n−1)+̂..(i−a)−̂(n−i+a)+̂(i−a+1)=̂(i+a+1)−̂(n−i+a−1)=̂(i+a+2)−̂(n−i+a−2)=̂(i+a+3)−̂...

and of the secondary branch

(i+ 1)−̂i+̂(i+ 2)−̂(i− 1)...+̂(i+ a− 1)−̂(i− a+ 2)+̂(i+ a)−̂

arriving at the vertex (i− a+ 1).
The recursion continues as far as stage 3i.We end after step 3i+1 with the tree of relations

(i+ 1)−̂i+̂(i+ 2)−̂(i− 1)....+̂2i−̂1+̂(2i+ 1)−̂(n− 1)+̂(2i+ 2)−̂(n− 2)+̂(2i+ 3)....

and the half-lengths

lj,3i+1 = x(j, 2i+ 1) rj,3i+1 = −x(j, 2i).

Thus if we put l′j = l3i+1,i+j and r′j = r3i+1,i+j for j ≤ n − i − 1, l′j = l3i+1,j−n+i+1 and

r′j = r3i+1,j−n+i+1 for j ≥ n − i, we get the required formulas, computing l′

r′
from l′1 =

x(i+ 1, 2i+ 1), r′1 = −x(i+ 1, 2i).
The sequence of inductions has the signs (+−−)i+, where the positive inductions are on

three-vertices induction branches, except the first and last ones which are on unions of two
(or one)-vertices induction branches, and the negative inductions are on an induction branch
which is absorbing more and more vertices on its left during the process.

Case n when n = 2p
In step 1 we can only induce on the negative induction branch p; then in step 4a − 2 we
induce on the positive induction branch (p + a)+̂(p − a + 1), in step 4a − 1 we induce on
the positive induction branch (p + a)=̂(p − a + 1), in step 4a we induce on the negative
induction branch (p− a)−̂(p+ a), in step 4a+ 1 we induce on the negative induction branch
(p−a)=̂(p+a), for 1 ≤ a ≤ p−1. In step 4p−2 we induce on the positive induction branch
1.

The sequence of inductions has the signs −(+ + −−)p−1+, where every induction is on
a two-vertices induction branch, except the first and last ones which are on a one-vertex
induction branch. In stage 4p− 2 the tree of relations is the initial one and the half-lengths
are

lj,4p−2 = y(j, 2p− 1) rj,4p−2 = −x(j, 2p− 1).

If we put l′j = rp−j+1,4p−2 and r′j = lp−j+1,4p−2 for j ≤ p, l′j = r3p−j,4p−2 and r′j = l3p−j,4p−2 for

j > p, we get the required formula, computing l′

r′
from l′1 = −x(p, 2p− 1), r′1 = y(p, 2p− 1).

Case n when n = 2p+ 1
The sequence of inductions has the signs +−−(++−−)p−1+, starting from an induction on
the positive induction branch p+ 1 and ending with an induction on the positive induction
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branch 1. All the other inductions are on two-vertices induction branches as in the previous
case. In stage 4p+ 2 the tree of relations is the initial one and the half-lengths are

lj,4p+2 = y(j, 2p) rj,4p+2 = −x(j, 2p).

if we put l′j = lj+p,4p and r′j = rj+p,4p for j ≤ p, l′j = rj−p,4p and r′j = lj−p,4p for j > p, we get

the required formulas, computing l′

r′
from l′1 = y(p+ 1, 2p) = y(p, 2p), r′1 = −x(p+ 1, 2p).

Case 2n− 2i for 1 ≤ i < n
2

This case is roughly symmetric with case 2i. The sequence of inductions has the signs
(− + +)i−1 − +−, where the negative inductions are on three-vertices induction branches,
except the first and last ones which are on unions of two (or one)-vertices induction branches,
and the positive inductions are on an induction branch which is absorbing more and more
vertices on its left during the process. We arrive in stage 3i, where the half-lengths are

lj,3i = y(j, 2i− 1) rj,3i = −y(j, 2i).

If we put l′j = rn−i+1−j,3i and r′j = ln−i+1−j,3i for 1 ≤ j ≤ n − i, l′j = r2n−i−j,3i and

r′j = l2n−i−j,3i for n − i + 1 ≤ j ≤ n − 1, we get the required formulas, computing l′

r′
from

l′1 = −y(n− i, 2i), r′1 = y(n− i, 2i− 1).

Case 2n− 2i+ 1 for 1 ≤ i < n−1
2

This case is roughly symmetric with case 2i + 1. The sequence of inductions has the signs
−+(−++)i−2−+−, where the negative inductions are on three-vertices induction branches,
except the first and last ones which are on unions of two (or one)-vertices induction branches,
and the positive inductions are on an induction branch which is absorbing more and more
vertices on its left during the process. We arrive in stage 3i− 1, where the half-lengths are

lj,3i−1 = y(j, 2i− 2) rj,3i−1 = −y(j, 2i− 1).

If we put l′j = lj+n−i,3i−1 and r′j = rj+n−i,3i−1 for 1 ≤ j ≤ i − 1, l′j = lj−i+1,3i−1 and

r′j = rj−i+1,3i−1 for i ≤ j ≤ n − 1, we get the required formulas, computing l′

r′
from

l′1 = y(n− i+ 1, 2i− 2), r′1 = −y(n− i+ 1, 2i− 1) = −y(n− i, 2i− 1).

Case 2n− 1: λn− 1
2
> l

r
> 0

This case is roughly symmetric with case 1: we make only two negative inductions on unions
of two (or one)-vertices induction branches; note that when n = 2p we make two inductions
on the one-vertex negative induction branch p, in contrast with case 1 where we always make
only one induction on the one-vertex positive induction branch 1. At the end the half-lengths
are

lj,2 = lj rj,2 = −y(j, 1).

If we put l′j = lj,2 and r′j = rj,2, we get the required formulas, computing l′

r′
from l′1 = l1,

r′1 = −y(1, 1).
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It remains to check that we have to be in one of the Cases 1 to 2n − 1. But otherwise,
for some integer i, l

r
= λi and thus li = ri, or l

r
= λi+ 1

2
and thus li + li+1 = ri + ri+1; as

results of the analysis of every case below, this implies βi = γi,k at the first or second stage
of a self-dual induction, and thus contradicts the i.d.o.c. condition as stated in Proposition
1 above.

The previous analysis is still valid for n = 2, with the obvious modifications needed be-
cause this is a degenerate situation, for example in the first case Step 2 is void, and we stop
in stage 1. �

Corollary 8. Under the i.d.o.c. condition (for the interval exchange I), the renormalization
process (l, r)→ (l′, r′) can be iterated infinitely many times. The knowledge of the itinerary
under this renormalization, as an infinite sequence of Cases numbered by 1, ... 2n−1, yields
a full description of the infinite iteration of a self-dual induction process for I as described
in Section 1 above, differing from the one in [9] only by the postponing of some modifications
by at most 4n− 4 stages.

Proof
The i.d.o.c. condition for the initial parameters li, ri ensures (by Proposition 1) that l′

r′

cannot be equal to any of the λi, thus we can iterate the process, and the same will be true
after each iteration thus we can do it infinitely many times.

Let φk, resp. dk, be the permutation φ, resp. the number d, used for the k-th renormal-
ization, k ≥ 1; ek = d1...dk with e0 = +1, gk = g if ek−1 = +1, gk(y) = 1

g( 1
y

)
if ek−1 = −1,

Φk = φk ◦ ...φ1, Gk = gk ◦ ...g1.
Immediately after the k-th renormalization, we arrive in some stage mk of the self-dual

induction:

• if ek = +1, the lΦk(j),mk , rΦk(j),mk , 1 ≤ j ≤ n − 1, are proportional to l(k) cosπ n−2j+1
2n

cos π
2n

,

r(k) cos π n−2j
2n

, where l(k)

r(k)
= Gk(

l
r
). Then, if the conditions defining Case i are satisfied

with l replaced by l(k), r replaced by r(k), we say that after the k-th renormalization
we are in Case i, and get stages mk +1, ... mk+1 of the variant of the self-dual induc-
tion defined in Theorem 7, by following exactly the steps described in the relevant
paragraph of the proof of Theorem 7, but after replacing each j by Φk(j);

• if ek = −1, the lΦk(j),mk , rΦk(j),mk , 1 ≤ j ≤ n − 1, are proportional to r(k) cosπ n−2j+1
2n

cos π
2n

,

l(k) cosπ n−2j
2n

, where l(k)

r(k)
= Gk(

l
r
). Then, if the conditions defining Case i are satisfied

with r replaced by l(k), l replaced by r(k), we say that after the k-th renormalization
we are in Case i, and get stages mk + 1, ... mk+1 of the variant of the self-dual
induction defined in Theorem 7, by following exactly the steps described in the rele-
vant paragraph of the proof of Theorem 7, but after replacing each j by Φk(j), and
exchanging the right and left half-lengths, thus the + and − in the trees of relations.

The difference with the algorithm described in [9] is that some modifications of i, which
in the algorithm of [9] would have been made between the k − 1-th and the k-th renormal-
ization, are postponed to after the k-th renormalization; but every i is modified at least
once between two renormalizations, thus the postponed modifications will be made before
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the k + 1-th renormalization, and thus are postponed by at most 4n− 4 stages.. �

Thus, for an n-interval exchange transformation in our one-parameter family, from the
itinerary under the renormalization we get its infinite itinerary under the self-dual induc-
tion, which is a path in the n-th graph of graphs defined in Definition 2.8 of [9] and described
in the remark following that definition and in [3]. We remark that this path has a quite
special form, compared to the possibilities realized by general n-interval exchange transfor-
mations; indeed, because of Theorem 7 above and Lemma 7.3 of [3] it stays in a subgraph
comprising at most 4n3 trees of relations, while the cardinality of the full graph of graphs is
exponential in n by Proposition 7.5 of [3]; in particular the trees of relations in this subgraph
have at most two branches, while, by [3], for n ≥ 7 there are trees of relations with more
branches, namely up to [n−1

2
] branches. Then, for n ≥ 4 there exist accepted induction

branches B with q ≥ 3 vertices, and in general it is possible to make up to q consecutive
inductions on B and its successive images before coming back to B, and to iterate that
process as in the first family of examples in [10], while in the present family we can make at
most two consecutive inductions on such a branch and its successive images. Even for n = 3,
the proof of Theorem 12 below shows that only some particular paths are possible.

When we do not suppose I satisfies the i.d.o.c. condition, the algorithm of Theorem 7
may be undefined because l

r
= λi; these cases are completely characterized by the following

result, which makes full use of two heavy machineries, the self-dual induction and the Veech
alternative.

Proposition 9. Let I be a 2n-gon type n-interval exchange transformation. The following
properties are equivalent

• I does not satisfy the i.d.o.c. condition,
• all the trajectories of I are periodic,
• the algorithm of Theorem 7 cannot be iterated infinitely many times.

Proof
The equivalence between the first two assertions is a consequence of Proposition 3 above.
The equivalence between the first and the third is a consequence of Proposition 1 above. �

Note that for n = 3, resp. n = 4, the three conditions of the above proposition are equiv-
alent to tan θ ∈ IQ(

√
3), resp. tan θ ∈ IQ(

√
2), see Theorem 2.3.3 of [16], and this could be

reproved by using the renormalization algorithm of Theorem 7, but no such characterization
holds for general n, see Remark 6.2.3 of [16].

When I satisfies the i.d.o.c. condition, or equivalently is non-periodic, we can characterize
the possible infinite sequences of Cases:

Proposition 10. In the algorithm of Corollary 8, the possible infinite sequences of Cases
are all the sequences on {1, ..., 2n− 1} which do not take the value 1 ultimately or the value
2n− 1 ultimately.

Proof
The condition is necessary because of the form of the map g, as given in Theorem 7 in Case
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1, and written r′

l′
= r

l
− 1

λ
n− 1

2

in Case 2n− 1, and because during a run of Case 1 or 2n− 1

d is always +1.
And when it is satisfied, we can find a corresponding initial l

r
as an intersection of nested

compact sets. �

3. Coding of the trajectories

We are now ready to reap the results of the extensive theory developped in [9].

First, we get a coding of the symbolic trajectories, which is different from the one in
[16], and is relatively simple to state even for general values of n. Note that we do not
use our renormalization algorithm to get a renormalization of the trajectories, though this
could be possible also; we just use Corollary 8 to describe completely the path of the self-
dual induction in the graph of graphs of [9]; then, using again the full machinery of [9], we
generate the trajectories, not by renormalization as in [16], but by families of words which
are built inductively.

Theorem 11. Let I be a non-periodic 2n-gon type interval exchange transformation. We
apply to it the algorithm of Corollary 8; let Φk and ek be as defined in the proof of Corollary
8. We build inductively three families of words, consisting, at each stage of each iteration,
of n − 1 words w whose first letters are 1, ... n − 1, n − 1 words M whose first letters are
1, ... n − 1 and last letters are 1, ... n − 1 (independently) and n − 1 words P whose first
letters are 2, ... n and last letters are 1, ... n− 1 (independently), in the following way:

• at the beginning the words w and the words M are 1,..., n− 1, the words P are n1,
2, ... n− 1;
• at any step between the k-th and k + 1-th renormalization, if ek = +1: for every
j which takes +, the word w, resp. the word M , ending with the letter Φk(j), is
replaced by wP , resp. MP , for the word P beginning with the letter n+1−Φk(j); for
every j which takes −, the word w, resp. the word P , ending with the letter Φk(j),
is replaced by wM , resp. PM , for the word M beginning with the letter n − Φk(j);
all the other words are left unchanged;
• at any step between the k-th and k + 1-th renormalization, if ek = −1: for every
j which takes −, the word w, resp. the word M , ending with the letter Φk(j), is
replaced by wP , resp. MP , for the word P beginning with the letter n+1−Φk(j); for
every j which takes +, the word w, resp. the word P , ending with the letter Φk(j),
is replaced by wM , resp. PM , for the word M beginning with the letter n − Φk(j);
all the other words are left unchanged.

Then the words w, taken after every step of every iteration, constitute all the bispecial words
of the trajectories of I, i.e. the words w such that aw, bw, wc and wd appear also in the
trajectories for letters a 6= b, c 6= d.

Proof
This is a translation, through Corollary 8, of Theorem 2.8 of [9]. �
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4. Dynamical results

The coding of trajectories gives precious informations on the dynamical behaviour of the
system, and allows us to consider the problem of weak mixing; We recall that (X,T, µ)
is weakly mixing if µ is ergodic and the operator f ◦ T in L2(X, IR/ZZ) has no nonzero
eigenvalue (denoted additively, f ◦ T = f + ζ). Artur Avila and Giovanni Forni [2] have
proved that almost every symmetric interval exchange is weakly mixing; the same authors
(private communication) can prove that, at least for n = 4, almost every interval exchange
in our one-parameter family is weakly mixing. We do not attempt to prove such a result,
but shall prove a little more in the (admittedly easier) case n = 3: here every non-periodic I
in our family is weakly mixing (for the unique invariant probability), and in an explicit sub-
family we have the very strong property of minimal self-joinings: an ergodic system (X,T, µ)
has minimal self-joinings if any ergodic measure ν on X × X, invariant under T × T , for
which both marginals are µ, is either the product measure µ × µ or a diagonal measure
defined by ν(A×B) = µ(A∩T iB) for an integer i; we refer the reader to [8] for every detail
on the theory of self-joinings.

Theorem 12. A non-periodic hexagon type 3-interval exchange transformation I is always
weakly mixing for its unique invariant probability measure.
Whenever in the algorithm of Corollary 8 the lengths of the runs of successive Case 1 and
the lengths of the runs of successive Case 5 are bounded, I has minimal self-joinings, and its
trajectories are linearly recurrent, i.e. each word of length n occurring in a trajectory occurs
in every word of length at least Kn occurring in any trajectory.
Otherwise I is rigid, i. e. µ(T snA∆A) → 0 for any measurable set on a common sequence
sn.

Proof
We apply the criteria of [7] and [8]. These involve the infinite iteration of a self-dual induc-
tion which defines quantities (mk, nk, εk+1), k ≥ 1. We can retrieve this self-dual induction
from the algorithm of Corollary 8, where the three possible trees of relations are 1−̂2, 1=̂2,
1+̂2, and use it to compute the quantities (mk, nk, εk+1): namely, we notice that we must
have the tree of relations 1=̂2 infinitely many times, but we cannot have it in two consecutive
stages, and look at what happens between the k-th and k + 1-th time we have that tree: if
during these stages we have the tree of relations 1−̂2, mk, resp. nk, is the number of times
1, resp. 2 takes +, while if during these stages we have the tree of relations 1+̂2, mk, resp.
nk, is the number of times 1, resp. 2 takes −; εk+1 is −1 if, between the k-th and k + 1-th
time we have the tree 1=̂2, we have the same tree of relations as between the k − 1-th and
k-th time, εk+1 is +1 otherwise.

By Theorem 3.1 of [7], we have weak mixing if mk
nk

is bounded above and below. This is
always the case here as mk and nk are bounded by 4 unless there is a run of Q ≥ 1 consec-
utive Case 1, and during such a run either we have the tree 1−̂2, 1 takes + 2Q times and 2
takes + Q times, or we have the tree 1+̂2, 1 takes − 2Q times and 2 takes − Q times, or
the same with 1 and 2 exchanged; thus, because in the other cases we see 1=̂2 at most one
step after the beginning and at most one step before the end, mk∨nk ≤ 2Q+2, mk∧nk ≥ Q.
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The linear recurrence implies minimal self-joinings by Theorem 4.1 of [8], and its absence
implies rigidity by Theorem 5.1 of [8]; by Proposition 3.1 of [8] it is equivalent to the bound-
edness of the mk, nk, and the lengths of runs of consecutive (mk = 1, εk+1 = −1) or of
consecutive (nk = 1, εk+1 = −1). Now, unbounded runs of Case 1 give unbounded mk and
nk, unbounded runs of Case 5 give unbounded runs of (mk = nk = 1, εk+1 = −1) and thus
prevent linear recurrence. Conversely, suppose we have bounded runs of Case 1 and of Case
5: then the mk and nk are bounded as they can grow beyond 4 only with a run of Case
1; as an occurrence of Case 2 or 4 gives an εk+1 = +1, and an occurrence of Case 5 gives
mk−1 = nk = 2 or nk−1 = mk = 2, the other conditions for linear recurrence are satisfied
because the runs of Case 5 are bounded. �

Theorem 12 above is just a translation, through Corollary 8 above, of the extensive theory
developped in [5][6][7][8]. At the root of this theory is a fundmental property of the self-dual
induction that we shall use again now: namely, the words M and P defined in Theorem 11
above are not mere auxiliaries for building the bispecial words, they also span the trajectories
and thus determine an explicit construction of Rokhlin towers.

Definition 5. In (X,T ), a Rokhlin tower of base F is a collection of disjoint measurable
sets called levels F , TF , . . . , T h−1F . If X is equipped with a partition P such that each level
T rF is contained in one atom Pw(r), the name of the tower is the word w(0) . . . w(h− 1).

We recall that the induced map of any transformation T on a set Y is the map y → T r(y)y
where, for y ∈ Y , r(y) is the smallest r ≥ 1 such that T ry. As is noticed in [9], p. 300-301,
at stage k of a self-dual induction, the induced map of I on E1,k ∪ ...En−1,k determines in a
standard way 2n − 2 disjoint Rokhlin towers (for I) of bases [βi − li,k, γi,k[, 1 ≤ i ≤ n − 1,
and [γi,k, βi + ri,k[, 1 ≤ i ≤ n − 1, filling the whole space. As is noticed in [9], p. 309,
each level Ir[γi,k, βi + ri,k[ is contained in one interval ∆z(r,i,k), z(r, i, k) ∈ {1, ...n}; each
level Ir[βi − li,k, γi,k[ is contained in one interval ∆z′(r,i,k), z

′(r, i, k) ∈ {1, ...n}.This gives
two words zi = z(0, i, k)...z(hi − 1, i, k) and z′i = z′(0, i, k)...z′(h′i − 1, i, k), and the zi, resp.
z′i, are identified with the words P , resp. M , at the k-th stage of the induction, but read
backwards. Thus we can build inductively, for each k, 2n−2 disjoint Rokhlin towers for I−1,
filling the whole space, whose names (for the partition into ∆i) are these 2n − 2 words M
and P . Moreover, the towers at stage k + 1 are made by cutting and stacking following the
recursion rules giving their names by concatenating names of towers at stage k. We must
warn the reader of a technicality: in [9] and the present paper, the words M and P are built
in order to extend the bispecial words to the right, and yield Rokhlin towers for I−1, while
in [10] the words P and M are those in the present paper read backwards, yielding Rokhlin
towers for I and extending the bispecial words to the left.

Thus in the present paper we have 2n− 2 Rokhlin towers for I−1; but this is not optimal:
indeed, by a further induction operation, we could use them to build n Rokhlin towers filling
all the space, with the further property that the n bases are sub-intervals of a small interval.
This further step is carried out for low values of n, for n = 4 in [10], while for n = 3 it gives
in [7][8] the general results which we have used in Theorem 12.

For general values of n, however, the n Rokhlin towers become very complicated to build
explicitly. Thus the following result is quite different from all the results in [7][8][10], as it
makes use of the 2n − 2 towers M and P , whose bases are not close to one another, to get
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dynamical results. Moreover, it gives, as far as we know, the first explicit construction (as
opposed to existence theorems) of a weakly mixing n-interval exchange transformation for
every value of n, the only constructions we have been able to find in the literature being for
n = 3 [13][7], n = 4 [10][14], and n = 6 [14]. The idea of the proof is to kill any possible
eigenvalue ζ by the usual Chacon trick, i.e. have both uζ and (u + 1)ζ close to an integer;
this is achieved by ensuring first that the heights of two of the towers are coprime, then that
these towers are cycled for a large enough number of times to permit using Bezout’s relation;
we conclude by checking that these two towers appear at least as a fixed proportion of all
the towers at a further stage.

Theorem 13. For any n, one can construct recursively two sequences mk and qk such that
the 2n-gon type n-interval exchange transformation I for which the algorithm of Corollary
8 is made with successive runs of mk Case 1 and qk Case 2n − 1, k ≥ 1, is weakly mixing
for its unique invariant probability measure.

Proof
At the beginning of the run of mk Case 1, let Mk,i,j be the word M beginning with the letter
n− i and ending with the letter j, Pk,i,j be the word P beginning with the letter n + 1− i
and ending with the letter j. Then, by Theorem 11, at the beginning of the run of qk Case
2n− 1 the words M and P are the Mk+1,i,j and Pk,i,j, with

Mk+1,i,n−i = Mk,i,n−i(Pk,n−i,i+1Pk,i+1,n−i)
mk for 1 ≤ i ≤ n− 2,

Mk+1,n−1,1 = Mk,n−1,1P
mk
k,1,1.

Then after this run we get

Pk+1,i,n+1−i = Pk,i,n+1−i(Mk+1,n+1−i,i−1Mk+1,i−1,n+1−i)
qk for 2 ≤ i ≤ n− 1,

Pk+1,1,1 = Pk,1,1(Mk+1,1,n−1Mk+1,n−1,1)qk .

Take n = 2p; we make the recursion hypothesis that the word lengths xk = |Mk,p,p| and
yk = |Mk,p−1,p+1Mk,p+1,p−1| are coprime. The hypothesis is satisfied for k = 1 where x1 = 1
and y1 = 2, we suppose now that it is satisfied for k and choose mk such that it will be
satisfied for k + 1.

Namely, xk+1 = xk +mk|Pk,p,p+1Pk,p+1,p| = xk +mkXk, yk+1 = yk +mk(|Pk,p+1,pPk,p,p+1|+
|Pk,p−1,p+2Pk,p+2,p−1|) = yk + mkYk. Any common factor of xk+1 and yk+1 has to divide
Ykxk+1 − Xkyk+1 = Ykxk − Xkyk = Z, which is independent of mk. Let D be the set
of all prime factors of Z, D1 the set of those factors which divide also xk, D2 the set of
the other factors. If d is in D2 and divides Xk, any choice of mk ensures that d does not
divide xk+1; if d is in D2 and does not divide Xk, d does not divide xk+1 for any mk such
that mk ≡ X−1

k (u − xk) modulo d, for any u 6≡ 0 modulo d. Similarly if d is in D1, and
therefore does not divide yk, either d does not divide yk+1 for any value of mk, or this can
be ensured by a congruence condition modulo d. Thus, by the Chinese remainder theorem,
we can find infinitely many values of mk such that no prime number d divides the three
numbers Z, xk+1 and yk+1, and this ensures that xk+1 and yk+1 are coprime. We also ask
that |Mk,i,n−i| < εkmk(|Pk,n−i,i+1|+|Pk,i+1,n−i)| for 1 ≤ i ≤ n−2 and |Mk,n−1,1| < εkmk|Pk,1,1|
for some prescribed εk. Note that mk depends only on the parameters m1, ... mk−1, q1, ...
qk−1.

Thus for any k there exist positive integers Uk and Vk such that |Ukxk−Vkyk| = 1. As the
value of xk+1 and yk+1 depend only on the parameters m1, ... mk, q1, ... qk−1, we can then
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choose qk larger than 2(Uk+1 ∨ Vk+1). We also ask that |Pk,i,n+1−i| < εkqk(|Mk+1,n+1−i,i−1|+
|Mk+1,i−1,n+1−i|) for 2 ≤ i ≤ n − 1 and |Pk,1,1| < εkqk(|Mk+1,1,n−1| + |Mk+1,n−1,1|). We shall
now prove that, with this choice of the mk and qk, I is weakly mixing.

We build the Rokhlin towers for I−1 whose names are the words P and M . At stage k, the
space is filled by 2n−2 towers, whose names are the Mk,i,j and Pk,i,j. The towers at stage k+1
are made by cutting and stacking following the recursion rules above, thus in the name of
Pk,p+1,p we see M

2qk−1

k,p,p , from level |Pk−1,p+1,p| to level |Pk−1,p+1,p|+2qk−1|Mk,p,p|−1. Let τk be
the union of all the levels of Pk,p+1,p from level |Pk−1,p+1,p| to level |Pk−1,p+1,p|+qk−1|Mk,p,p|−1.
For any point ω in τk, I−xkω, I−2xkω,.... I−Ukxkω are in the same level of the tower Mk,p,p as
ω. Similarly, in the name of Pk,p,p+1 we see (Mk,p−1,p+1Mk,p+1,p−1)qk−1 from level |Pk−1,p,p+1|
to level |Pk−1,p,p+1| + qk−1|Mk,p−1,p+1Mk,p+1,p−1| − 1; let τ ′k be the union of all the levels of
Pk,p,p+1 from level |Pk−1,p,p+1| to level |Pk−1,p,p+1| + [ qk−1

2
]|Mk,p−1,p+1Mk,p+1,p−1| − 1. For any

point ω in τ ′k, I−ykω, I−2ykω,.... I−Vkykω are in the same level of a tower Mk,i,j as ω.

Let µ be the invariant probability for I, f be an eigenfunction for the eigenvalue ζ; the
σ-algebras generated by the levels of the k-towers converge to the full σ-algebra when k tends
to infinity, thus for each ε > 0 there exists N(ε) such that for all k > N(ε) there exists fk,
which satisfies

∫
||f − fk||dµ < ε and is constant on each level of each k-tower (where ||x||

denotes its distance to the nearest integer).
Thus for µ-almost every ω in τk, fk(I−Ukxkω) = fk(ω) while f(I−Ukxkω) = −ζUkxk+f(ω);

we have ∫
τk

||fk ◦ I−Ukxk + ζUkxk − fk||dµ =

∫
τk

||ζUkxk||dµ = ||ζUkxk||µ(τk)

and∫
τk

||fk ◦ I−Ukxk + ζUkxk − fk||dµ ≤
∫
τk

||fk ◦ I−Ukxk − f ◦ I−Ukxk ||dµ+

∫
τk

||fk − f ||dµ < 2ε.

Thus µ(τk)||ζUkxk|| < 2ε, and similarly µ(τ ′k)||ζVkyk|| < 2ε; as Ukxk−Vkyk = ±1, we shall
conclude that ζ = 0, and thus get the weak mixing, if we can prove that µ(τk) and µ(τ ′k) are
bounded away from 0.

For this, we need first to check that all the lengths of the Mk,i,j, resp. Pk,i,j, are com-
parable for constant k; they are not equal, even approximately, because in one of the re-
cursion formulas there is a lone term Pmk

k,1,1 where the others have (Pk,i,jPk,j,i)
mk . Up to

εk which is chosen much smaller than all the other parameters: for k ≥ 2 we have, fol-
lowing the tree of relations from left to right, |Mk,n−1,1| ≤ |Mk,n−2,2| ≤ ...|Mk,p,p|, while
|Mk,i−1,n−i+1| = |Mk,n−i,i| for 2 ≤ i ≤ p, and |Pk,2,n−1| ≤ |Pk,3,n−2| ≤ ...|Pk,p+1,p|, while
|Pk,n−i+2,i−1| = |Pk,i,n−i+1| for 3 ≤ i ≤ p, and |Pk,1,1| = |Pk,2,n−1|. Then we check by induc-
tion that |Mk,n−i,i| ≥ 2−1|Mk,n−i−1,i+1| for 1 ≤ i ≤ p− 1, and |Pk,i,n−i+1| ≥ 2−1|Pk,i+1,n−i| for
2 ≤ i ≤ p.

Thus the strings M
2qk−1

k,p,p fill (about) all the length of Pk,p+1,p, thus (because of the recur-
sion formulas and the comparability of the lengths of Pk,p+1,p and Pk,p,p+1) at least a fixed
proportion c of the lengths of Mk+1,p−1,p+1 and Mk+1,p,p, thus, in the same way, a proportion
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at least c2 of the lengths of Pk+1,i,n+1−i for p − 1 ≤ i ≤ p + 1, thus a proportion at least
c3 of the lengths of Mk+2,i,n+1−i for p − 2 ≤ i ≤ p + 1, .... and finally a proportion at
least c2n−1 of the lengths of all the Mk+n,i,j and Pk+n,i,j, which define 2n− 2 Rokhlin towers
filling all the space. This implies that µ(τk) ≥ 1

2
c2n−1, and a similar reasoning works for µ(τ ′k).

If n = 2p + 1 we choose succesively the qk such that |Pk,p+1,p+1| and |Pk,p,p+2Pk,p+2,p| are
coprime, the mk to ensure that these strings are cycled enough times, and make a similar
reasoning.

�
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