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Sébastien Ferenczi
IMPA

CNRS — UMI 2924
Estrada Dona Castorina 110
Rio de Janeiro, RJ 22460-32

Brazil
ferenczi sebastien@yahoo.fr

Luca Q. Zamboni
Institut Camille Jordan
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Abstract

We characterize words which cluster under the Burrows-Wheeler transform as those

words w such that ww occurs in a trajectory of an interval exchange transformation,

and build examples of clustering words.
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1 Introduction

In 1994 Michael Burrows and David Wheeler [1] introduced a transformation on words which
proved very powerful in data compression. The aim of the present note is to characterize
those words which cluster under the Burrows-Wheeler transform, that is to say, those words
that are transformed into expressions such as 4a3b2c1d or 2a5b3c1d4e. Clustering words on
a binary alphabet have already been extensively studied (see, for instance, [8, 11]) and
identified as particular factors of the Sturmian words. Some generalizations and partial
characterizations to r letters appear in Restivo and Rosone [14], but it had not yet been
observed that clustering words are intrinsically related to a dynamical object called interval
exchange transformations introduced in Oseledets [12]: we shall define them in Definitions
1 and 2 below, and refer the reader to [16] which constitutes a classical course on general
interval exchange transformations and contains many of the technical terms found in Section
4 below. This link comes essentially from the fact that the array of conjugates used to define
the Burrows-Wheeler transform gives rise to a discrete interval exchange transformation
sending its first column to its last column. It turns out that the converse is also true: interval
exchange transformations generate clustering words. Indeed we prove that clustering words
are exactly those words w such that ww occurs in a trajectory of an interval exchange
transformation. On a binary letter alphabet, this condition amounts to saying that ww is a
factor of an infinite Sturmian word. We end the paper by some examples and questions on
how to generate clustering words.

This paper began during a workshop on board Via Rail Canada train number 2. We
are grateful to Laboratoire International Franco-Québécois de Recherche en Combinatoire
(LIRCO) for funding and Via for providing optimal working conditions. The second author
is partially supported by a FiDiPro grant from the Academy of Finland.

The authors owe much to Jean-Paul Allouche, the first mathematician who revealed to
both of them the beauty of combinatorics on words, and who taught the first author that
not every paper needs to begin with “Let (X,T, µ) be a system ...”.

2 Definitions

Let A = {a1 < a2 < · · · < ar} be an ordered alphabet and w = w1 · · ·wn a primitive word
on the alphabet A, i.e., w is not a power of another word. For simplification we suppose
that each letter of A occurs in w.

The Parikh vector of w is the integer vector (n1, . . . , nk) where ni is the number of
occurrences of ai in w. The (cyclic) conjugates of w are the words wi · · ·wnw1 · · ·wi−1,
1 ≤ i ≤ n. As w is primitive, w has precisely n-cyclic conjugates. Let wi,1 · · ·wi,n denote the i-
th conjugate of w where the n-conjugates of w are ordered by ascending lexicographical order.
Then the Burrows-Wheeler transform of w, denoted by B(w), is the word w1,nw2,n · · ·wn,n.

In other words, B(w) is obtained from w by first ordering its cyclic conjugates in ascending
order in a rectangular array, and then reading off the last column. For instance B(2314132) =
4332211. We say w is π-clustering if B(w) = anπ1

π1 · · · anπr

πr , where π 6= Id is a permutation
on {1, . . . , r}. We say w is perfectly clustering if it is π-clustering for πi = r + 1 − i,
1 ≤ i ≤ r. For instance 2314132 is perfectly clustering. Restivo and Rosone [14] showed that
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if w perfectly clusters, then w is strongly (or circularly) rich, i.e., w2 has |w2| + 1 distinct
palindromic factors. But this condition is not a characterization of perfectly clustering words
(see Example 6.4 in Restivo and Rosone[14]).

Definition 1. A (continuous) r-interval exchange transformation T with probability vector
(α1, α2, . . . , αr), and permutation π is defined on the interval [0, 1[, partitioned into r intervals

∆i =

[

∑

j<i

αj,
∑

j≤i

αj

[

,

by
Tx = x + τi when x ∈ ∆i,

where τi =
∑

π−1(j)<π−1(i) αj −
∑

j<i αj.

Intuitively this means that the intervals ∆i are re-ordered by T following the permutation
π. Note that our use of the word “continuous” does not imply that T is a continuous map
on [0, 1[ (though it can be modified to be made so); it is there to emphasize the difference
with its discrete analogue.

Definition 2. A discrete r-interval exchange transformation T with length vector

(n1, n2, . . . , nr),

and permutation π is defined on a set of n1 + · · · + nr points x1, . . . , xn1+···+nr
partitioned

into r intervals
∆i = {xk,

∑

j<i

nj < k ≤
∑

j≤i

nj}

by
Txk = xk+si

when xk ∈ ∆i,

where si =
∑

π−1(j)<π−1(i) nj −
∑

j<i nj.

We recall the following notions, defined for any transformation T on a set X equipped
with a partition ∆i, 1 ≤ i ≤ r.

Definition 3. The trajectory of a point x under T is the infinite sequence (xn)n∈IN defined
by xn = i if T nx belongs to ∆i, 1 ≤ i ≤ r. The mapping T is minimal if whenever E is a
nonempty closed subset of X and T−1E = E, then E = X.

3 Main result

Theorem 4. Let w = w1 · · ·wn be a primitive word on A = {1, . . . , r}, such that every letter
of A occurs in w. The following are equivalent:

1. w is π-clustering,
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2. ww occurs in a trajectory of a minimal discrete r-interval exchange transformation
with permutation π,

3. ww occurs in a trajectory of a discrete r-interval exchange transformation with permu-
tation π,

4. ww occurs in a trajectory of a continuous r-interval exchange transformation with
permutation π.

Proof. ((2), (3) or (4) implies (1)) By assumption there exists a point x whose initial trajec-
tory of length 2n is the word ww. Consider the set E = {Tx, T 2x, . . . , T nx}. Then for each
y ∈ E, the initial trajectory of y of length n, denoted O(y), is a cyclic conjugate of w.

Suppose y and z are in E, and y is to the left of z (meaning y < z.). Let j be the
smallest nonnegative integer such that T jy and T jz are not in the same ∆i. Then T jy is to
the left of T jz, either because j = 0 or because T is increasing on each ∆i. Thus O(y) is
lexicographically smaller that O(z).

Thus B(w) is obtained from the last letter l(y) of O(y) where the points y are ordered
from left to right. But l(y) is the label of the interval ∆i where T n−1y, or equivalently T−1y,
falls. Thus by definition of T , if y is to the left of z then π−1(l(y)) ≤ π−1(l(z)), and if y′ is
between y and z with l(y) = l(z), then l(y′) = l(y) = l(z), hence the claimed result.

Proof. ((2) implies (3) implies (4)) The first implication is trivial. The second follows from
the fact that the trajectories of the discrete r-interval exchange transformation with length
vector (n1, n2, . . . , nr), and permutation π, and of the continous r-interval exchange trans-
formation with probability vector ( n1

n1+···+nr

, . . . , nr

n1+···+nr

) and permutation π are the same.
We note that this continuous interval exchange transformation is never minimal, while the
discrete one may be.

We now turn to the proof of the converse, which uses a succession of lemmas. Throughout
this proof, unless otherwise stated, a given word w is a primitive word on {1, . . . , r}, and
every letter of {1, . . . , r} occurs in w; (n1, . . . , nr) is its Parikh vector, the wi,1 · · ·wi,n are its
conjugates.

The first lemma states that B is injective on the conjugacy classes, which is proved
for example in Crochemore, Désarménien, and Perrin [2] or Mantaci, Restivo, Rosone and
Sciortino citerr1; we give here a short proof for sake of completeness.

Lemma 5. If w and w′ are words such that B(w) = B(w′), then w and w′ are cyclically
conjugate

Proof. In the array of the conjugates of w, each column word w1,j · · ·wn,j has the same
Parikh vector as w, so we retrieve this vector from B(w); thus we know the first column
word, which is 1n1 . . . rnr , and the last column word which is B(w). Then the words wn,jw1,j

are precisely all words of length 2 occurring in the conjugates of w, and by ordering them
we get the first two columns of the array. Then wn,jw1,jw2,j constitute all words of length 3
occurring in the conjugates of w, and we get also the subsequent column, and so on until we
have retrieved the whole array, thus w up to conjugacy.
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It is easy to see that B, viewed as a mapping from words to words, is not surjective (see
for instance [10]). A more precise result will be proved in Corollary 7 below.

Lemma 6. If w is π-clustering, the mapping w1,j 7→ wn,j defines a discrete r-interval ex-
change transformation with length vector (n1, n2, . . . , nr), and permutation π.

Proof. We order the occurrences of each letter in w by putting wi < wj if the conjugate
wi · · ·wnw1 · · ·wi−1 is lexicographically smaller than wj · · ·wnw1 · · ·wj−1. By primitivity, the
n letters of w are uniquely ordered as

11 < · · · < 1n1
< 21 < · · · < 2n2

< · · · < r1 < · · · < rnr
,

and the first column word is 11 · · · 1n1
21 · · · 2n2

· · · r1 · · · rnr
. We look at the last column word:

if wn,j and wn,j+1 are both some letter k, the order between these two occurrences of k is
given by the next letter in the conjugates of w, and these are respectively w1,j and w1,j+1.

Thus wn,j < wn,j+1. Together with the hypothesis, this implies that the last column word is

(π1)1 · · · (π1)nπ1
· · · (πr)1 · · · (πr)nπr

.

Thus, if we regard the rule w1,j 7→ wn,j as a mapping on the n1 + . . . + nr points

{11, . . . , 1n1
, 21, . . . 2n2

, . . . , r1, . . . , rnr
},

and put ∆i = {i1, . . . , ini
}, we get the claimed result.

Corollary 7. If the discrete r-interval exchange transformation T with length vector (n1, n2, . . . , nr),
and permutation π is not minimal, the word (π1)nπ1 . . . (πr)nπr has no primitive pre-image
by the Burrows-Wheeler transform.

Proof. Let w be such an antecedent. By the previous lemma, the map w1,j 7→ wn,j corre-
sponds to T . If T is not minimal, there is a proper subset E of

{11, . . . , 1n1
, 21, . . . 2n2

, . . . , r1, . . . , rnr
}

which is invariant under w1,j 7→ wn,j. Thus in the conjugates of w, preceding any occurrence
of a letter of E is another occurrence of a letter of E. This implies that w is made up entirely
of letters of E, a contradiction.

Proof. ((1) implies (2)) Let w be as in the hypothesis. Then B(w) = (π1)nπ1 · · · (πr)nπr .
Thus the transformation T of Lemma 7 is minimal, and thus has a periodic trajectory
w′w′w′ . . ., where w′ has Parikh vector (n1, . . . , nr). If w′ = uk, then ni = kn′

i for all i, and
the set made with the n′

i leftmost points of each ∆i is T -invariant, thus w′ must be primitive.
By the proof, made above, that (2) implies (1), w′ is π-clustering. Hence B(w′) = B(w)

and, by Lemma 5, w is conjugate to w′, hence ww occurs also in a trajectory of T .

Some of the hypotheses of Theorem 4 may be weakened.

Alphabet. {1, . . . , r} can be replaced by any ordered set A = {a1 < a2 < · · · < ar} by
using a letter-to-letter morphism. Thus for a given word w, we can restrict the alphabet to
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the letters occurring in w. Note that if ww occurs in a trajectory of an r-interval exchange
transformation, but only the letters j1, . . . , jd occur in w, then, by the reasoning of the proof
that (4) implies (1), w is π′-clustering, where π′ is the unique permutation on {1, . . . , d}
such that (π′)−1(y) < (π′)′−1(z) iff π−1(jy) < π−1(jz). If π is a permutation defining perfect
clustering, then so is π′.

Primitivity. The Burrows-Wheeler transformation can be extended to a non-primitive word
w1 · · ·wn, by ordering its n (non necessarily different) conjugates wi · · ·wnw1 · · ·wi−1 by non-
strictly increasing lexicographical order and taking the word made by their last letters.

In this case the result of Lemma 7 does not extend: For example B(1322313223) =
3333222211 though the discrete 3-interval exchange transformation with length vector (2, 2, 4),
and permutation π1 = 3, π2 = 2, π3 = 1 is not minimal. Note that if (π1)nπ1 · · · (πr)nπr has
a non-primitive antecedent by the Burrows-Wheeler transform, then the ni have a common
factor k. There exist (see below) non-minimal discrete interval exchange transformations
which do not satisfy that condition, and thus words such as 32221 which have no antecedent
at all by the Burrows-Wheeler transformation.

But our Theorem 4 is still valid for non-primitive words: the proof in the first direction
does not use the primitivity, while in the reverse direction we write w = uk, apply our proof
to the primitive u, and check that u2k occurs also in a trajectory.

Two permutations. An extension of Theorem 4 which fails is to consider, as the dy-
namicians do [16], interval exchange transformations defined by permutations π and π′; this
amounts to coding the interval ∆i by π′i instead of i. A simple counter-example will be
clearer than a long definition: take points x1, . . . , x9 labelled 223331111 and send them to
111133322 by a (minimal) discrete 3-interval exchange transformation, but where the points
are not labelled as in Definition 3 (namely Tx1 = x8, Tx3 = x5 etc...). Then w = 123131312
is such that ww occurs in trajectories of T but B(w) = 323311112.

4 Building clustering words

Theorem 4 provides two different ways to build clustering words, from infinite trajectories
either of discrete (or rational) interval exchange transformations or of continuous aperiodic
interval exchange transformations. For r = 2 and the permutation π1 = 2, π2 = 1, the
first way gives all the periodic balanced words, and the second way gives (by Proposition 10
below) all infinite Sturmian words: both ways of building clustering words on two letters are
used, explicitly or implicitly, in Jenkinson and Zamboni [8].

The use of discrete interval exchange transformations leads naturally to the question of
characterizing all minimal discrete r-interval exchange transformations through their length
vector; this has been solved by Pak and Redlich [13] for n = 3 and π1 = 3, π2 = 2, π3 = 1:
if the length vector is (n1, n2, n3), minimality is equivalent to (n1 + n2) and (n2 + n3) being
coprime. Thus

Example 8. With the discrete interval exchange 11223333 → 333322111, we get the per-
fectly clustering word 313131223.
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The same reasoning can be extended to other permutations: for π1 = 2, π2 = 3, π3 = 1,
minimality is equivalent to n1 and (n2 + n3) being coprime; for π1 = 3, π2 = 1, π3 = 2,
minimality is equivalent to n3 and (n2 + n1) being coprime; for other permutation on these
three letters, T is never minimal.

For r ≥ 4 intervals, the question is still open. An immediate equivalent condition for
non-minimality is

∑m

i=1 swi
= 0 for m < n1 + · · · + nr and w1 · · ·wm a word occurring in a

trajectory. It is easy to build non-minimal examples satisfying such an equality for simple
words w, for example for r = 4 and π1 = 4, π2 = 3, π3 = 2, π4 = 1, n1 = n2 = n3 = 1
gives non-minimal examples for any value of n4, the equality being satisfied for w = 24q if
n4 = 3q, w = 14q+1 if n4 = 3q + 1, w = 34q if n4 = 3q + 2. Similarly, the following example
shows how we still do get clustering words, but they may be somewhat trivial.

Example 9. The discrete interval exchange 111233444 → 444332111 satisfies the above
equality for w = 14; it is non-minimal and gives two perfectly clustering words on smaller
alphabets, 41 and 323.

To study continuous aperiodic interval exchange transformations we need a technical
condition called i.d.o.c. [9] which states that the orbits of the discontinuities of T are
infinite and disjoint. It is proved in Keane [9] or in Viana [16] that this condition implies
aperiodicity and minimality, and that, if π is primitive, i.e., π{1, . . . , d} 6= {1, . . . , d} for
d < r, then the r-interval exchange transformation with probability vector (α1, . . . , αr) and
permutation π satisfies the i.d.o.c. condition if α1, . . . , αr and 1 are rationally independent.
We can now prove

Proposition 10. Let w = w1 · · ·wn be a primitive word on A = {1, . . . , r}, such that every
letter of A occurs in w. Then w is π-clustering if and only if ww occurs in a trajectory of
a continuous r-interval exchange transformation with permutation π, satisfying the i.d.o.c.
condition.

Proof. The “if” direction is as in Theorem 4. To get the “only if”, we generate w by a
minimal discrete interval exchange transformation as in (2) of Theorem 4, and thus π is
primitive. Then we replace it by a continuous periodic interval exchange transformation as
in the proof that (3) implies (4). But, because cylinders are always semi-open intervals, if
a given word ww occurs in a trajectory of a continuous r-interval exchange transformation
with permutation π and probability vector (α1, . . . , αr), it occurs also in trajectories of every
r-interval exchange transformation with the same permutation whose probability vector is
close enough to (α1, . . . , αr). Thus we can change the αi to get the irrationality condition
which implies the i.d.o.c. condition.

Trajectories of interval exchange transformations satisfying the i.d.o.c. condition may be
explicitly constructed via the self-dual induction algorithms of [5] for r = 3 and π1 = 3, π2 =
2, π3 = 1, [6] for all r and πi = r + 1 − i, and the forthcoming [4] in the most general case.
More precisely, Proposition 4.1 of [6] shows that if the permutation is πi = r + 1 − i (or
more generally if the permutation is in the Rauzy class of πi = r + 1 − i), then there exist
infinitely many words ww in the trajectories. It also gives a sufficient condition for building
such words: if a bispecial word w, a suffix s and a prefix p of w are such that pw = ws, then
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both pp and ss occur in the trajectories. In turn, a recipe to achieve that relation is given in
(i) of Theorem 2.8 of [6]: we just need that in the underlying algorithm described in Section
2.6 of [6], either pn(i) = i or mn(i) = i (except for some initial values of n, where, for i = 1,
p and s are longer than w). Many explicit examples of ww have been built in this way.

• For r = 3, w = Ak, w = Bk (see Ferenczi, Holton and Zamboni [5, Prop. 2.10]),

Example 11. 13131312222 and 131312221312213122 are perfectly clustering.

• For r = 4, w = M2(k), w = P3(k)M1(k) (see Ferenczi and Zamboni [7, Lemmas 4.1
and 5.1]),

Example 12. 2m(3141)n32 are perfectly clustering for any m and n.

• For all r = n , w = Pk,1,1, w = Pk,n−i,i+1Pk,i+1,n−i, w = Mk,n+1−i,i−1Mk,i−1,n+1−i (see
Ferenczi [3, Theorem 12]);

Example 13. 5252434252516152516161525161 is perfectly clustering.

For other permutations, we describe in Ferenczi [4] an algorithm generalizing the one in
Ferenczi and Zamboni [6], but we do not know if every interval exchange transformation
produces infinitely many ww. For the permutation π1 = 4, π2 = 3, π3 = 1, π4 = 2, examples
can be found in Theorem 5.2 of [6], with w = P1,qn

M2,qn
, w = P2,qn

M3,qn
, w = P3,qn

M1,qn
,

Example 14. 4123231312412 is π-clustering,

We remark that our self-dual induction algorithms for aperiodic interval exchange trans-
formations generate families of nested clustering words with increasing length, and thus may
be more efficient in producing very long clustering words than the more immediate algorithm
using discrete interval exchange transformations.
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