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N. Champagnat, T. Lelièvre, A. Nouy, Editors

INTRODUCTION TO VECTOR QUANTIZATION AND ITS APPLICATIONS

FOR NUMERICS ∗

Gilles Pagès1

Abstract. We present an introductory survey to optimal vector quantization and its first applications
to Numerical Probability and, to a lesser extent to Information Theory and Data Mining. Both
theoretical results on the quantization rate of a random vector taking values in Rd (equipped with the
canonical Euclidean norm) and the learning procedures that allow to design optimal quantizers (CLV Q
and Lloyd’s procedures) are presented. We also introduce and investigate the more recent notion of
greedy quantization which may be seen as a sequential optimal quantization. A rate optimal result is
established. A brief comparison with Quasi-Monte Carlo method is also carried out.

1. Introduction to vector quantization

1.1. Signal transmission, information

The history of optimal vector quantization theory goes back to the 1950’s in the Bell laboratories where
researches were carried out to optimize signal transmission by appropriate discretization procedures. Two kinds
of “stationary” signal can be naturally considered: either a deterministic – more or less periodic – signal, denoted
by (xt)t≥0, or a stochastic signal, denoted by (Xt)t≥0, considered under its stationary regime and supposed to be
ergodic. In both cases, these signals share an averaging property as will be seen further on. Vector quantization
can be briefly introduced as follows.

∗ The author thanks B. Jourdain and the referee for their careful reading of the manuscript and S. Graf for fruitful comments
on source coding. All errors are mine.
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Figure 1. Quantization of a scalar (periodic) signal (B. Wilbertz)
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Let Γ = {x1, . . . , xN } be a subset of Rd (d ≥ 1) of size (at most) N ≥ 1, called a quantization grid or simply
a quantizer at level N if Γ has exactly cardinality N i.e. if the elementary quantizers xi are pairwise distinct.
When d = 1 the numbering of the elementary quantizers xi is a priori made consistent with the natural order
on the real line so that i 7→ xi is non-decreasing.

In what follows, except specific mention, | . | will denote the canonical Euclidean norm on Rd (although many
of the stated results remain true or admit variants for more general norms).

A Γ-valued quantization function (also called quantizer) is simply a Borel function q : Rd → Γ. A naive idea
is to transmit at time t the stochastic signal q(Xt) instead of Xt itself inducing a resulting pointwise error

|Xt − q(Xt)|.

One proceeds likewise for a deterministic signal with a resulting error |xt − q(xt)|.

B Deterministic signal : Let p∈ (0,+∞). Assume that the empirical measure
1

t

∫ t

0

δx(s)ds weakly converges as

t→ +∞ toward a distribution µ on (Rd,Bor(Rd)) such that

∫
Rd
|ξ|pµ(dξ) < +∞. If the quantization function

q is µ-a.s. continuous and, e.g., lim sup
t→+∞

1

t

∫ t

0

|x(s)|rds < +∞ for some r > p, then

lim
t→+∞

(
1

t

∫ t

0

|x(s)− q(x(s))|pds
) 1
p

=

(∫
Rd
|ξ − q(ξ)|pµ(dξ)

) 1
p

= ‖ξ − q(ξ)‖Lp(µ) < +∞.

B Stationary ergodic stochastic signal : We consider again p∈ (0,+∞). Assume the process (Xt)t≥0 is stationary.
Then, Xt has the same marginal distribution, say µ, for every t∈ R+. Moreover, if E |Xt|p =

∫
Rd |ξ|

pµ(dξ) <
+∞, then

‖Xt − q(Xt)‖Lp(P) = ‖X0 − q(X0)‖Lp(P) = ‖ξ − q(ξ)‖Lp(µ) < +∞.
Moreover, if the process (Xt)t≥0 is ergodic, ergodic pointwise Birkhoff’s Theorem ensures that

P-a.s. lim
t→+∞

(
1

t

∫ t

0

|Xs − q(Xs)|pds
) 1
p

= ‖ξ − q(ξ)‖Lp(µ) < +∞.

At this stage, several questions arise to optimize the transmission. Based on what precedes, we will mainly
adopt from now on the static point of view of an Rd-valued random vector X, defined on a probability space
(Ω,A,P), with distribution µ. It corresponds to the value of Xt at any time t or to the asymptotic behavior
of the signal (x(t))t≥0. More general situations of quantization or coding can be investigated in Information
Theory which take into account the dynamics of the (ergodic) process leading to the most general Shannon’s
source coding theorem. For these deeper aspects from Information Theory, we refer to the general distortion
theory as analyzed by large deviation methods in [23] and the references therein.

Question 1 How to optimally choose the Γ-valued quantization function q (Geometric optimization)?

It is clear that, whatever the quantization function q : Rd → Γ is, one has

|ξ − q(ξ)| ≥ dist(ξ,Γ)

where dist(ξ, A) = infa∈A |ξ − a| denotes the distance of ξ to the set A ⊂ Rd (with respect to the current
norm). One easily checks that equality holds in the above inequality if and only if q is a Borel nearest neighbour
projection i.e. q = πΓ defined for every ξ∈ Rd by

π
Γ
(ξ) =

N∑
i=1

xi1Ci(Γ)(ξ)
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where the N -tuple of subsets
(
Ci(Γ)

)
1≤i≤N is a Borel partition of (Rd,Bor(Rd)) satisfying

∀ i = 1, . . . , N, Ci(Γ) ⊂
{
ξ∈ Rd : |ξ − xi| = min

1≤j≤N
|ξ − xj |

}
.

Such a partition of Rd is called a Voronoi partition (or sometimes tessellation) induced by Γ. When the norm
| . | is Euclidean, the closures Ci(Γ) of the cells are non-empty polyhedral closed convex sets (intersection of
finitely many half-spaces defined by median hyperplanes of the couples of points (xi, xj), i 6= j). One easily
shows that{

ξ∈ Rd : |ξ − xi| < min
1≤j≤N, j 6=i

|ξ − xj |
}
⊂
◦
Ci (Γ) ⊂ Ci(Γ) ⊂

{
ξ∈ Rd : |ξ − xi| = min

1≤j≤N
|ξ − xj |

}
.

The inclusions at both ends of the inclusion chain can be replaced by equalities in an Euclidean framework.
Then, for a given (static) random vector having values in Rd, one defines a Voronoi Γ-quantization of X by

Γ as

X̂Γ = π
Γ
(X).

Remark. For more developments on the non-Euclidean framework, like e.g. the `r-norms defined by |ξ|r =(
|ξ1|r + · · ·+ |ξd|r

) 1
r , r∈ [1,+∞), or |ξ|∞ = max1≤j≤d |ξj |, ξ = (ξ1, . . . , ξd)∈ Rd, we refer to [33], Chapter 1.

This leads us to define for every p∈ (0,+∞) the Lp-mean quantization error induced by a grid Γ as

ep(Γ, X) =
∥∥X − π

Γ
(X)

∥∥
Lp(P)

=
∥∥dist(X,Γ)

∥∥
Lp(P)

=
∥∥ min

1≤i≤N
|X − xi|

∥∥
Lp(P)

(1.1)

=
∥∥ min

1≤i≤N
|ξ − xi|

∥∥
Lp(µ)

=

(∫
Rd

min
1≤i≤N

|ξ − xi|pµ(dξ)

) 1
p

. (1.2)

Note that, from a computational point of view, the computation of πΓ(ξ) is very demanding when the size N
is large since it amounts to a nearest neighbour search. We will come back to that point further on in Section 3
devoted to numerical aspects of (optimal) quantization grid computation.

Question 2 How to choose Γ in order to improve the transmission?

The underlying idea is to try selecting (or designing) a grid Γ with size at most N which optimally “fits”
to the distribution µ of X, with in mind an approximation in the Lp-sense when X ∈ LpRd(P). To this end, we
introduce the Lp-distortion function.

Definition 1.1. Let p∈ (0,+∞) and X∈ LpRd(P). The R+-valued function Gp,N defined on (Rd)N by

Gp,N : (x1, . . . , xN ) 7−→ E
(

min
1≤i≤N

|X − xi|p
)

= ep(Γ, X)p =
∥∥dist(X,Γ)

∥∥p
Lp(P)

is called the Lp-distortion function.

It is clear that, if we define the optimal Lp-mean quantization problem by

ep,N (X) = inf
Γ, card(Γ)≤N

ep(Γ, X) (1.3)

where card(Γ) denotes the cardinality of the grid Γ ⊂ Rd, then

ep,N (X) = inf
(x1,...,xN )∈(Rd)N

(
Gp,N (x1, . . . , xN )

) 1
p .
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Note that, in fact, ep,N (X) only depends on the distribution µ of X. So we will occasionally write ep,N (µ)
instead of ep,N (X). This follows from the easy remark that a grid Γ with less than N elements can always be
represented by an N -tuple in which each element of the grid appears as a component at least once.

Proposition 1.1. Let p∈ (0,+∞). Assume that X ∈ LpRd(P) i.e.

∫
Rd
|ξ|pµ(dξ) < +∞ so that the distortion

function Gp,N is finite everywhere on (Rd)N .

(a) The distortion function Gp,N attains a minimum at an N -tuple x(N,p) = (x
(N,p)
1 , . . . , x(N,p)

N
).

(b) If card
(
supp(µ)

)
≥ N , then the corresponding grid Γ(N,p) =

{
x

(N,p)
1 , . . . , x(N,p)

N

}
has full size N and for

every Voronoi partition
(
Ci(Γ

(N))
)

1≤i≤N of Rd induced by Γ(N), P(X∈ Ci(Γ(N)) > 0.

(c) The sequence N 7→ ep,N (X) (strictly) decreases as long as N ≤ cardsupp(µ)| and

lim
N
ep,N (X) = 0.

The proof of this proposition is postponed to Section 2.1. The grid Γ(N,p), the corresponding N -tuples x(N,p)

(there are N ! N -tuples obtained by permutations of the components if the grid has full size N) as well as the
(Borel) nearest neighbour projections πΓ(N,p) are all called Lp-optimal quantizers.

Of course a crucial question in view of possible applications is to compute such Lp-optimal quantizers at level
N , especially in higher dimension.

When d = 1 and µ = U([0, 1]), then, for any p∈ (0,+∞), the mid-point grid Γ(N,p) =
{

2i−1
2N , i = 1, . . . , N

}
is the unique optimal Lp-quantizer at level N . The attached weights are all equal to w

(p,N)
i = 1

N , i = 1, . . . , N ,
and the resulting optimal Lp-quantization error is given for every N ≥ 1 by

ep,N
(
U([0, 1])

)
=

1

2(1 + p)1/pN
. (1.4)

More generally the question of the rate of decay of ep,N (X) is the central question of optimal vector quanti-
zation theory. It will be investigated further on in Section 2.3.

1.2. Application to signal transmission (source coding)

As mentioned in the introduction, this application of (optimal) quantization goes back to the very origin
of quantization theory in the 1950’s. Imagine one has access to an Lp-optimal quantization grid, say for
p = 2 (quadratic case in an Euclidean setting). For convenience, we assume that Γ = {x1, . . . , xN } is a grid
(possibly optimal) such that P

(
X ∈

⋃
1≤i≤N ∂Ci(Γ)

)
= µ

(⋃
1≤i≤N ∂Ci(Γ)

)
= 0 e.g. because µ assigns no mass

to hyperplanes.

What is the information “contained” in X̂Γ = πΓ(X)? Or equivalently, in probabilistic terms, what are the

characteristics of the distribution of X̂Γ?

(1) Its state space Γ = {x1, . . . , xN },
(2) Its “companion” weights wi = w

(Γ)
i = P(X̂Γ = xi) = P(X∈ Ci(Γ)) = µ(Ci(Γ)), i = 1, . . . , N .

If X is a random vector with a known simulatable distribution µ, one can pre-compute these weights wi with
an arbitrary accuracy by a large scale Monte Carlo simulation since, owing to the Strong Law of large Numbers,

wi = P-a.s. lim
M→+∞

card
{

1 ≤ m ≤M : |Xm − xi| < minj 6=i |Xm − xj
}

M
, i = 1, . . . ,M,

where (Xm)m≥1 is a sequence of i.i.d. random vectors with distribution µ. In case of a not too large dataset (a
situation commonly met in signal transmission) one computes the weights wi by assigning its Voronoi class to
each data (when the dataset is too large a statistical approach is adopted).
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1.2.1. Coding the (quantized) signal

Let Γ = {x1 . . . , xN } ⊂ Rd be a grid of size N , possibly sub-optimal at this stage, and let P(Γ) be the set of
distributions whose support is exactly Γ. In order to transmit a Γ-valued signal from a sender A to a receiver
B, A will transmit a codeword Ci = C(xi) representative of xi instead of (an accurate enough approximation
of) xi itself. For simplicity we will assume that the coding function C maps Γ into the set {0, 1}(N) of finite
{0, 1}-valued sequences. This means that we adopt a dyadic coding procedures. The set {0, 1} is called a
2-alphabet (1). Our first request on the function C is identifiability i.e. that B can always recover xi from
Ci or equivalently that C is injective. To design the codewords (Ci)1≤i≤N , one aims at minimizing the mean
transmission cost κ, also known as the mean length of the message. This is in fact a very old problem which
goes back to the origins of Information Theory introduced by Claude Shannon in [71].

Let us focus for a while on this coding problem. The mean transmission cost κ(N) for a grid of size N is
clearly defined by

κ(N) =

N∑
i=1

wi × length(Ci).

A first (not so) naive idea is to re-index the points xi by a permutation σ so that i 7→ wσ(i) is non-increasing.
Without loss of generality, we may assume from now on that σ is identity (though, for one-dimensional dis-
tributions, it is not consistent in general with the natural order of the points xi on the real line). Then, it is
intuitive (but in fact not mandatory) to devise the coding function C so that i 7→ length(Ci) is non-decreasing
since, doing so, the more often a code is transmitted, the shorter it will be. In case of equality, like for the
uniform distribution over Γ, assignment conventions have to be made.

The naive approach is to simply code xi through the regular dyadic expression ī2 of i which needs 1+blog2 ic
digits (where bξc denotes the lower integer part of ξ∈ R). This yields

κ(N) =

N∑
i=1

wi
(
1 + blog2 ic

)
= 1 +

N∑
i=1

wiblog2 ic ≤ 1 + blog2Nc.

The transmission relies on the fact that both A and B share the codebook i.e. a one-to-one correspondence

xi ←→ ī
2

. (1.5)

A toy example. Imagine that, to transmit a uniformly distributed signal over the unit interval [0, 1], we first

optimally quantize it using the mid-point grid Γ(N) =
{2i− 1

2N
, i = 1, . . . , N

}
. This is equivalent to transmit a

uniformly distributed signal over {1, . . . , N} thanks to the codebook so that, as far as transmission is concerned,
the grid Γ(N) itself plays no role. The resulting mean transmission cost κ(N) is equal to

κ(N) = 1 +
1

N

N∑
i=1

blog2 ic ∼ log2

(
N/e

)
as N → +∞.

To be more precise, once noted that the dyadic entropy H2

(
µ̂Unif
N

)
of the uniform distribution µ̂Unif

N
over

{1, . . . , N} (or equivalently on Γ(N)) is equal to log2N , we can show that

c− = lim inf
N

(
κ(N)−H2

(
µ̂Unif
N

))
≤ lim sup

N

(
κ(N)−H2

(
µ̂Unif
N

)
)
)

= c+

where c− ≈ −2, 8792 and c+ ≈ −0.9139.

1 More generally, if C is X (N)-valued, then X is called a card(X )-alphabet.
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1.2.2. Instantaneous coding.

However, this approach is definitely too naive. In practice, A does not send one isolated codeword but
a sequence of codewords. Such a coding is not satisfactory, mainly because it is not self-punctuated. To be
decodable, an extra symbol (space, comma, etc) is needed to isolate the codewords. Doing so amounts to adding
one symbol to the alphabet (with a special status since it cannot be repeated, like the large space in Morse
coding). But this lowers the global performance of the coding system since it induces de facto switching from
a 2-alphabet to a 3-alphabet coding function C, the third symbol having moreover a lower status of “under-
symbol”. To overcome this problem, the idea, again due to Shannon in his seminal 1948 paper [71], is to devise
self-punctuated codes. This relies on two conditions. First we ask the coding process to be uniquely decodable
in the sense that the concatenation of codewords C(x1) · · ·C(x

N
) uniquely characterizes the concatenation

x1 · · ·xN . The additional condition which defines an instantaneous coding system is that a codeword can
never be the prefix of another or, equivalently, no codeword can be obtained as the concatenation of another
codeword and further symbols of the alphabet (here 0 and 1 digits). One easily checks that an instantaneous
coding procedure is always self-punctuated.

Unfortunately, it is also straightforward to check that the naive dyadic coding (1.5) formerly mentioned

which consists in writing in base 2 every index i is not an instantaneous coding system since, e.g., 2̄
2

= 10 and

5̄
2

= 101.
Let us illustrate on a simple example how an instantaneous coding procedure look. We consider the following

coding procedure of the set of indices {1, 2, 3, 4}:

C(1) = 0, C(2) = 10, C(3) = 110, C(4) = 111.

Such a code is uniquely decodable (e.g. 0110111100110 can be uniquely decoded as the string 134213). Further-
more it is clearly instantaneous (thus 010111110010 can be parsed on line as 0, 10, 111, 110, 10 i.e. the string
12432).

If we consider the uniform distribution µ̂Unif
4

over {1, 2, 3, 4}, the resulting mean transmission cost is equal

to κ
(
µ̂Unif

4

)
:=

1

4
(1 + 2 + 3 + 3) =

9

4
whereas the naive dyadic coding of the indices seemingly yields 8

4 = 2.

However, the implementable version of this naive dyadic coding (1.5), i.e. including an extra symbol like “,”, has
a mean length equal to 3 > 9

4 . This can be up to 30% more symbol consuming than the above instantaneous
code!

Now, let us consider a general distribution µ̂
N

exactly supported by {1, . . . , N} (or equivalently by a grid
Γ
N

of size N) and a priori not uniform. Assume we have access to the distribution µ̂ itself i.e. to the weights
wi = µ̂

N

(
{i}
)
. We define the dyadic entropy H2(µ̂) of µ̂ by

H2(µ̂) = −
N∑
i=1

wi log2 wi.

Then, the following classical theorem from Information Theory holds (see [20], Chapter 5, Theorem 5.3.1 and
Section 5.4).

Theorem 1.1. For any instantaneous dyadic coding procedure C : {1, . . . , N} → {0, 1}(N) of the distribution µ̂,
its mean transmission cost κµ̂(N) satisfies

κ(µ̂
N

) ≥ H2(µ̂
N

). (1.6)

Furthermore, there exists (at least) one instantaneous coding procedure such that

κµ̂(N) < H2(µ̂
N

) + 1. (1.7)
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For a proof of this result based on Kraft’s inequality, which is too far from the scope of this paper, we refer
to [20]. Furthermore, when a sequence (Yn)n≥0 of {1, . . . , N}-valued signals to be transmitted is stationary with
marginal invariant distribution µ̂

N
and ergodic, it is possible by aggregating n of them to show (with obvious

notations, see again [20]) that

κ(Y1, . . . , Yn)→ H2(µ̂) a.s. as n→ +∞. (1.8)

Examples. (a) The Huffman code: It was the first optimal instantaneous code – devised in Huffman’s PhD
thesis (see also [38]). Its length sequence (`∗i )1≤i≤N can be obtained as the solution to the integer optimization
problem (`i denotes the length of a code Ci):

`∗ = argmin∑
2−`i≤1

∑
wi`i

so that H2(µ̂
N

) ≤ κHuf (µ̂
N

) =
∑
wi`
∗
i ≤ H2(µ̂

N
) + 1. For an explicit construction of the Huffman code – and

not only of its length sequence!) – we refer again to [20], Chapter 5. Let us simply mention that the codes are
obtained by the concatenation of labels given to the edges, say 1 for “right” edges, 0 for “left edges” starting
from the root, of successive trees built from the increasing monotony of the weights wi. The successive trees
are obtained by summing up the lower probabilities, starting from w̃

N−1
:= wN + wN−1, with appropriate

conventions in case of equality like with uniform distributions.

(b) The Shannon coding (see exercise 5.28 in [20]): Still assume that the weights of the distribution µ̂
N

satisfy
0 < w

N
≤ · · · ≤ w1 < 1. Let F µ̂N denote the strict-cumulative distribution function of µ̂

N
defined by

F
µ̂
N

i =
∑
j<i

wj .

Set

`i = d− log2 wie and Ci = b2`iF µ̂i c, i = 1, . . . , N,

where dξe denotes the upper integer part of the real number ξ. Elementary computations show that Shannon’s
code is instantaneous and that its mean transmission cost κShanS(µ̂

N
) also satisfies

H2(µ̂
N

) ≤ κShanS(µ̂
N

) < H2(µ̂
N

) + 1.

1.2.3. Global error induced by the transmission of a quantized signal

Let us bring back quantization into the game by considering a continuous signal which needs to be quantized
in order to reduce its transmission cost. Let us briefly compare from a quantitative viewpoint two modes of
transmission for a signal.

B Direct transmission. Let (Xt)t≥0 be a stochastic stationary signal with marginal distribution µ defined on

a probability space (Ω,A,P) and Γ = {x1, . . . , xN }. To transmit the Γ-quantization X̂Γ of the random signal
X = Xt0 at time t0, the resulting quadratic mean quantization error is equal to∥∥X − X̂Γ

∥∥
L2(P)

+ 2−r = e2(Γ, µ) + 2−r

where 2−r is the dyadic transmission accuracy of any of the elementary quantizers xi. In fact this corresponds
to a fixed transmission cost κ = r + 1 i.e. the number of dyadic digits used to transmit these values. Common
values for r lie between 10 and 20 (having in mind that 2−10 = 1

1024 ≈ 10−3).
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B Signal transmission using the codebook. If the receiver B uses the codebook (Ci ←→ xi)1≤i≤N for the
decoding phase (2), the resulting mean quadratic transmission error will be equal to∥∥X − X̂Γ

∥∥
L2(P)

= e2(Γ, µ)

whereas the mean unitary transmission cost is κµ̂(N) where µ̂ is the distribution of the quantized signal X̂Γ.
In this second case, there is a connection between the transmission error and the transmission cost that will be
made more precise in Section 2.3 when the grid Γ is L2-optimal at level N for µ.

However, in the very simple case of the uniform distribution U([0, 1]) over the unit interval, we can establish
a direct relation between quadratic mean transmission error and mean transmission cost κ when both the
quantization and the instantaneous coding are optimal. The optimal quadratic quantization of U([0, 1]) is
the uniform distribution µ̂Unif

N
over the N -mid-point whose dyadic entropy is exactly H2(µ̂Unif

N
) = log2N .

Plugging this equality in (1.7) yields κµ̂
N
≤ log2(N). In turn, plugging this inequality in the quantization error

bound (1.4) yields that the lowest achievable mean transmission error, for a prescribed mean transmission cost
κ, approximately satisfies

2−(κ+1)

√
3
≤ L2-Mean transmission error(κ) ≤ 2−κ√

3
.

A less sharp (reverse) formulation is

− log2

(
Transmission error(κ)

)
∼ κ as κ→ +∞.

This result appears as the most elementary version of Shannon’s source coding theorem, here in one dimension.
Its extension to more general distributions µ on Rd will be possible, once stated the sharp convergence rate of
the L2-optimal mean quantization error for general distributions on Rd in Section 2.3 (Zador’s Theorem).

We focused in the above lines on a static random signal presentation but the adaptation to a stationary
process or a quasi-periodic signal, as defined above in terms of weak convergence of its time empirical measure,
is straightforward. In particular for stationary ergodic signal one may take advantage of the improvement
provided by (1.8), using n-aggregates of the signal, to reduce the range of the two-sided inequality (1.6)-(1.7)
in Theorem 1.1.

1.3. What else is quantization for?

1.3.1. Data mining, clustering, automatic classification

Let (ξk)1≤k≤n be an Rd-valued dataset and let µ be the uniform distribution over this dataset – the empirical
measure of the dataset – defined by

µ =
1

n

n∑
k=1

δξk (1.9)

where δa denotes the Dirac mass at a∈ Rd. In such a framework, n is usually large, say 106 or more, and optimal
quantization can be viewed as a model for clustering i.e. the design of a set of N prototypes of the dataset, with
N � n, obtained as a solution to the mean quadratic (or more generally Lp-) optimal quantization at level
N ≥ 1 of the distribution µ (p∈ (0,+∞) being fixed). This reads as the Lp-minimization problem

min
(x1,...,xN )∈(Rd)N

1

n

n∑
k=1

min
1≤i≤N

|ξk − xi|p.

2 The sender A only needs a codebook to discriminate the elementary quantizers xi i.e. a codebook where all xi are known with

a fixed length `1 (dyadic) bits in its dyadic representation. The receiver B may need arbitrary accurate values for the elementary
quantizers xi in his/her codebook in order to reconstruct a posteriori the signal.
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The existence of such an optimalN -quantization grid Γ(N,p) of prototypes follows from the above Proposition 1.1.
Such a distribution does assign mass to hyperplanes and in particular to the boundaries of polyhedral Voronoi
cells. However, owing to Theorems 4.1 and 4.2 in [33] (p.38), we know that the boundaries of the Voronoi cells
induced by an optimal grid Γ(N,p) are always µ-negligible.

Once an optimized grid of N prototypes has been computed (see Section 3 devoted to the algorithmic aspects),
it can be used to produce an automatic classification of the dataset by making up “clusters” of points of the
dataset following the nearest neighbour rule among the prototypes. Formulated equivalently, one defines the N
clusters as the “trace” of the dataset on the N Voronoi cells Ci(Γ

(N,p)), i = 1, . . . , N .

From a mathematical point of view, investigations on this topic are carried out be replacing the deterministic
dataset (ξk)1≤k≤n by a sequence of i.i.d. random vectors (Xk)k≥0 defined on a probability space (Ω,A,P) with
distribution µ. The quantities of interest become, in short, the sequence of optimization problems induced by
the random empirical measures µn(ω, dξ) = 1

n

∑n
k=1 δXk(ω)(dξ), ω∈ Ω. This has given rise to a huge literature

in Statistics and has known a kind of renewal with the emergence of clustering methods in the “Big Data”
world, see [10]. We consider, for every ω∈ Ω, the optimization problem

min
(Rd)N

[
1

n

n∑
k=1

min
1≤i≤N

|Xk(ω)− xi|p =

∫
Rd

min
1≤i≤N

|ξ − xi|pµn(ω, dξ)

]
. (1.10)

The main connection with optimal quantization is the following. assume that µ(B(0; 1)) = 1. For every
ω∈ Ω, there exists (at least) an optimal N -tuple x(N)(ω, n) for the above problem which satisfies

E
(
e2

(
x(N)(ω, n), µ

))
− e2,N (µ) ≤ C min

√Nd

n
,

√
dN1− 2

d log n

n


where C > 0 is a positive universal real constant. For other results, we also refer to [34] devoted to the
quantization rate of empirical measures.

1.3.2. From Numerical integration (I) . . .

Another way to take advantage of optimal quantization emerged in the 1990’s (see [55]). As we know, for a
sequence (Γ(N,p))N≥1 of Lp-optimal grids of size N with N → +∞, we have

‖X − X̂Γ(N,p)

‖Lp(P) = ep,N (X)→ 0

i.e. X̂Γ(N,p) → X in Lp as N → +∞ (hence in distribution). It can be shown (see [22]) that, in fact, this
convergence also holds in an a.s. sense although we will make little use of this feature in what follows. In

particular, if a function F : Rd → R is bounded and continuous, then EF (X̂Γ(N,p)

) → EF (X) as N → +∞.

On the other hand, using the characteristics (x
(N)
i , w

(N)
i )1≤i≤N of the distribution of X̂Γ(N,p)

, we derive a very
simple weighted cubature formula

EF
(
X̂Γ(N,p))

=

N∑
i=1

w
(N)
i F

(
x

(N)
i

)
. (1.11)

When F has more regularity and is possibly not bounded, precise error bounds for this quantization based
cubature formula can also be established, as we will see now.

First order error bound for the quantization based cubature formula. Assume F is locally α-Hölder continuous
in the sense that there exists α∈ (0, 1], β ≥ 0, and a real constant [F ]α,β such that

∀x, y∈ Rd, |F (x)− F (y)| ≤ [F ]α,β |x− y|α
(
1 + |x|β + |y|β

)
.
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Let Γ ⊂ Rd be a quantization grid. Then, for every conjugate Hölder exponents (p, q)∈ [1,+∞],∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [F ]α,βE

(
|X − X̂Γ|α

(
1 + |X|β + |X̂Γ|β)

))
≤ [F ]α,β‖X − X̂Γ‖αLαp(P)

(
1 + ‖X‖β

Lβq(P)
+ ‖X̂Γ‖β

Lβq(P)

)
.

In particular, if p = 1
α , one gets

∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [F ]α,β‖X − X̂Γ‖α1

(
1 + ‖X‖β

L
β

1−α (P)
+ ‖X̂Γ‖β

L
β

1−α (P)

)
(1.12)

with the convention ‖ . ‖0
L

β
1−1 (P)

= 1. If F is α-Hölder continuous with Lipschitz coefficient [F ]α = 1
3 [F ]1,0, then

∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ F ]α‖X − X̂Γ‖αLα(P). (1.13)

From the cubature formula (1.13) and using that bounded Hölder functions characterize the weak convergence
of probability measures, we derive the following corollary about Lp-optimal quantizers (by considering α = p∧1).

Corollary 1.1. Let X ∈ LpRd(P), p∈ (0,+∞), with distribution µ. Let (Γ(N))N≥1 be a sequence of quantizers,

with Γ(N) of size N , satisfying ep(Γ
(N), µ)→ 0 as N → +∞. Let µ̂

N
denote the distribution of the quantization

X̂Γ(N)

. Then

µ̂
N

=

N∑
i=1

µ
(
Ci(Γ

(N))
)
δ
x

(N)
i

(w)−→ µ as N → +∞ (1.14)

where Γ(N) = {x(N)
1 , . . . , x

(N)
N } and

(w)−→ denotes the weak convergence of distributions.

1.3.3. . . . to Numerical Probability (conditional expectation)

One of the main problem investigated in the past twenty years in Numerical Probability has been the
numerical computation of conditional expectations, mostly motivated by problems arising in finance for the
pricing of derivative products of American style or more generally known as “callable”. It is also a challenging
problem for the implementation of numerical schemes for Backward Stochastic Differential Equations (see [2,3]),
Stochastic PDEs (see [32]), for non-linear filtering [57, 68] or Stochastic Control Problems (see [13, 14, 58]).
Further references are available in the survey paper [62] devoted to applications of optimal vector quantization
to Numerical Probability. The specificity of these problems in the probabilistic world is that, whatever the
selected method is, it suffer in some way or another from the curse of dimensionality. Optimal quantization
trees (introduced in [2]) is one of the numerical methods designed to cope with this problem (with regression
and Monte Carlo-Malliavin method, see [46], [28]). The precise connection between vector quantization and
conditional expectation computation can be summed up in the proposition below.

We consider a couple of random vectors (X,Y ) : (Ω,A,P) → Rd × Rq and the regular version Q of the
conditional distribution operator of X given Y , defined on every bounded or non-negative Borel function f :
Rd → R, by

Qf(y) = E
(
f(X) |Y = y

)
.

Then, Qf is a Borel function on Rd. We define the Lipschitz ratio of a function f : Rd → R by [f ]Lip =

supx 6=y
|f(y)−f(x)|
|x−y| ≤ +∞. We make the following Lipschitz continuity propagation assumption on Q: there

exists [Q]Lip∈ R+ such that

∀ f : Rd → R, Borel function, [Qf ]Lip ≤ [Q]Lip[f ]Lip. (1.15)
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Proposition 1.2. Assume that the conditional distribution operator Q of X given Y satisfies the above Lipschitz
continuity propagation property (1.15). Let ΓX ⊂ Rd and ΓY ⊂ Rq be two quantization grids of X and Y
respectively.

(a) Quadratic case. Assume X, Y ∈ L2(P). Let f : Rd → R be a Lipschitz continuous function and let
g : Rd → R be a Borel function with linear growth. Then∥∥E(f(X) |Y

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥2

L2(P)
≤ [Qf ]2Lip

∥∥Y − Ŷ ΓY
∥∥2

L2
Rq (P)

+
∥∥f(X)− g(X̂ΓX )

∥∥2

L2(P)

so that if g = f ,∥∥E(f(X) |Y
)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)∥∥2

L2
Rq (P)

≤ [Qf ]2Lip

∥∥Y − Ŷ ΓY
∥∥2

L2(P)
+ [f ]2Lip

∥∥X − X̂ΓX
∥∥2

L2(P)
.

(b) Lp-case. Assume X, Y ∈ Lp(P), p∈ [1,+∞) and let f and g be like in (a). Then∥∥E(f(X) |Y
)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
LpRq (P)

≤ (2− δp,2)[Qf ]Lip

∥∥Y − Ŷ ΓY
∥∥
Lp(P)

+
∥∥f(X)− g(X̂ΓX )

∥∥
Lp(P)

where δp,p′ denotes the Kronecker symbol. In particular, if g = f , one has∥∥E(f(X) |Y
)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

≤ (2− δp,2)[Qf ]Lip

∥∥Y − Ŷ ΓY
∥∥
LpRq (P)

+ [f ]Lip

∥∥X − X̂ΓX
∥∥
Lp(P)

.

Proof. (a) We decompose E
(
f(X) |Y

)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)
into two (L2(P)-orthogonal) terms

E
(
f(X) |Y

)
− E

(
f(X̂ΓX ) | Ŷ ΓY

)
=

(
E
(
f(X) |Y

)
− E

(
E(f(X) |Y ) | Ŷ ΓY

)︸ ︷︷ ︸
(1)

)

+
(
E
(
E(f(X) |Y ) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)︸ ︷︷ ︸
(2)

)
.

To check the announced L2(P)-orthogonality, we note that (2) is σ(Ŷ ΓY )-measurable; hence, the character-

ization of conditional expectation given Ŷ ΓY implies E (1) × (2) = 0. On the other hand, the very definition

of conditional expectation given Ŷ ΓY as the best approximation in L2
Rq (P) by a square integrable σ(Ŷ ΓY )-

measurable random vector implies in turn

E (1)2 = E
(
Qf(Y )− E(Qf(Y ) | Ŷ ΓY )

)2 ≤ E
(
Qf(Y )−Qf(Ŷ ΓY )

)2
≤ [Qf ]2Lip

∥∥Y − Ŷ ΓY
∥∥2

L2(P)
.

On the other hand, using that Ŷ ΓY is σ(Y )-measurable, we first derive from the chain rule for conditional
expectation that

(2) = E
(
f(X) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)
= E

(
f(X)− g(X̂ΓX ) | Ŷ ΓY

)
.

Using now that conditional expectation is an L2-contraction, we deduce that

E (2)2 ≤ ‖f(X)− g(X̂ΓX )‖2L2(P) ≤ ‖f(X)− g(X̂ΓX )‖2L2
Rq (P).

When g = f , the conclusion is straightforward.
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(b) We start from the classical Minkowski Inequality∥∥E(f(X) |Y
)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

≤
∥∥Qf(Y )− E(Qf(Y ) | Ŷ ΓY )

∥∥
Lp(P)

+
∥∥E(f(X) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

where we used like in (a) that E
(
Qf(Y ) | Ŷ ΓY

)
= E

(
f(Y ) | Ŷ ΓY

)
. Now, still owing to Minkowski’s Inequality,∥∥Qf(Y )− E(Qf(Y ) | Ŷ ΓY )

∥∥
Lp(P)

≤
∥∥Qf(Y )−Qf(Ŷ ΓY )

∥∥
Lp(P)

+
∥∥E(Qf(Ŷ ΓY )−Qf(Y ) | Ŷ ΓY

)∥∥
Lp(P)

so that ∥∥Qf(Y )− E(Qf(Y ) | Ŷ ΓY )
∥∥
Lp(P)

≤ 2
∥∥Qf(Y )−Qf(Ŷ ΓY )

∥∥
Lp(P)

≤ 2[Qf ]Lip

∥∥Y − Ŷ ΓY
∥∥
LpRq (P)

.

Note that when p = 2 the above coefficient 2 can be cancelled using again, like in (a), that conditional expectation

given Ŷ ΓY is the best approximator in L2(P) by σ(Ŷ ΓY )-measurable square integrable random vectors. On the
other hand, ∥∥E(f(X) | Ŷ ΓY

)
− E

(
g(X̂ΓX ) | Ŷ ΓY

)∥∥
Lp(P)

≤
∥∥f(X)− g(X̂ΓX )

∥∥
Lp(P)

.

The case g = f follows immediately. This completes the proof. �

To conclude this section, we make the connection between these cubature formulas and the L1-Wasserstein
distance W1 defined by

W1(µ, ν) = inf
{
EP|X − Y |, X, Y : (Ω,A,P)→ Rd, X d

= µ, Y
d
= ν

}
where

d
= denotes the identity in distribution.

Proposition 1.3. Let X∈ LpRd(P), p∈ (0, 1], with distribution µ and let Γ = {x1, . . . , xN }.

(a) For every p∈ (0, 1], ‖X − X̂Γ‖pLp(P) = sup
[F ]p≤1

|EF (X) − EF
(
X̂Γ
)∣∣ where [F ]p = supx 6=y

|F (x)−F (y)|
|x−y|p denotes

the p-Hölder coefficient of the function F : Rd → R.

(b) If PN denotes the set of probability measures with a support having at most N points in Rd, then

W1(µ,PN ) = e1,N (µ).

Proof. (a) The inequality sup
[F ]p≤1

∣∣EF (X)−EF
(
X̂Γ
)∣∣ ≤ ‖X − X̂Γ‖pLp(P) is straightforward by setting α = p and

β = 0 in (1.12) and noting that [F ]p = 1
3 [F ]p,0. The equality follows by noting that the function Fp defined for

every ξ∈ Rd by Fp(ξ) = min1≤i≤N |ξ − xi|p is p-Hölder with [Fp]p = 1.

(b) Let X : (Ω,A,P) → Rd with distribution P
X

= µ. It is clear, as already seen, that if Y : (Ω,A,P) → Rd is

such that ΓY = Y (Ω) has at most N values, then |X − Y | ≥ dist(X,ΓY ) = |X − X̂ΓY | so that ‖X − X̂ΓY ‖1 ≤
E|X −Y |. As a consequence e1,N (µ) ≤ W1(µ,P

N
). Conversely, it follows from the definition of e1,N (µ) in (1.3)

that e1,N (µ) ≥ W1(µ,P
N

) since it is defined as an infimum over less random vectors, namely those of the form
Y = q(X) of X where q : Rd → R takes at most N values, than the L1-Wasserstein distance. This completes
the proof. �
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1.4. Application to Numerical Analysis

1.4.1. Representation and numerical approximation of the solution of parabolic PDE, Feynman-Kac’s formula

Let b : [0, T ] × Rd → Rd and a : [0, T ] × Rd → S+(d,R) be two continuous functions with at most linear
and quadratic growth in x, uniformly with respect to t∈ [0, T ], respectively (S+(d,R) denotes the set of d× d
symmetric non-negative matrices). Let f : Rd → R be a Borel function with polynomial growth. We want to
solve numerically the following parabolic partial differential equation (PDE), either by a Monte Carlo simulation
or by a quadrature formula

∂u

∂t
+ Lu = 0, u(T, .) = f (1.16)

where, denoting by (.|.) the canonical inner product on Rd,

Lu = (b|∇u) +
1

2
Tr(a∇2u). (1.17)

B Step 1 (Feynman-Kac’s representation formula). This fundamental connection between diffusion process and
(parabolic) PDEs is summed up in the following theorem.

Theorem 1.2 (Feynman-Kac’s representation formula). Assume (for simplicity) that the functions b and a are
such that the above PDE (1.17) has a unique C1,2([0, T ] × Rd) solution u whose gradient ∇xu has polynomial
growth in x, uniformly in t∈ [0, T ]. Let σ : Rd →M(d, q,R) (3) such that a = σσ∗ (where ∗ stands for matrix
transposition). Assume that b and σ are continuous on [0, T ] × Rd and, at least, Lipschitz continuous in x,
uniformly in t∈ [0, T ].

(a) Then the function u admits the following representation as an expectation:

∀x∈ Rd, ∀ t∈ [0, T ], u(t, x) = E f(Xt,x
T

)

where (Xx,t
s )s∈[t,T ] denotes the unique solution to the Stochastic Differential Equation (SDE)

dXt,x
s = b(s,Xt,x

s )ds+ σ(s,Xt,x
s )dWs, X

t,x
t = x, s∈ [t, T ], (1.18)

starting from x ∈ Rd at time t ∈ [0, T ] and defined on [t, T ], where W is a q-dimensional standard Brownian
motion defined on a probability space (Ω,A,P).

Owing to the Markov property, an alternative formulation is given by

∀ t∈ [0, T ], E
(
f(X

T
) |Xt

)
= u(t,Xt) a.s.

for any solution (Xt)t∈[0,T ] of the above SDE defined over the whole interval [0, T ] starting at a finite random

vector X0 independent of W . In particular u(t, x) = E
(
f(X

T
) |Xt = x

)
(in the sense that it is a regular version

of the conditional expectation as x varies).

(b) Time homogeneous diffusion coefficients: If b(t, x) = b(x) and σ(t, x) = σ(x) (no dependence of b and σ in
t), then the representation can be written

∀x∈ Rd, ∀ t∈ [0, T ], u(t, x) = E f(X0,x
T−t

). (1.19)

Proof. (a) Itô’s formula applied to the function u and the process (s,Xt,x
s )s∈[t,T ] between t and T yields

u(T,Xt,x
T

) = u(t, x) +

∫ T

t

(∂u
∂t

+ Lu
)

(s,Xt,x
s )︸ ︷︷ ︸

=0

ds+

∫ T

t

(
∇xu(s,Xt,x

s )|σ(s,Xt,x
s )dWs

)
.

3 Space of matrices with d rows and q columns with real entries.
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The integral in “ds” is zero since u satisfies the parabolic PDE (1.16) and one easily establishes that the local
martingale null at 0 defined by the Brownian stochastic integral is a true martingale, null at 0, owing to the
growth control assumption made on ∇xu. Then, one gets

Eu(T,Xt,x
T

) = u(t, x).

(b) One writes Itô’s formula between 0 and T − t to u(T − t,X0,x
t ) and proceeds as above. �

Remark. In the time homogeneous case, one can proceed by verification. Under smoothness assumption on b
and σ, say C2 with bounded existing derivatives and Hölder second order partial derivatives, one shows, using
the tangent process of the diffusion, that the function u(t, x) defined by (1.19) is C1,2 in (t, x). Then, the above
claim (b) shows the existence of a solution to the parabolic PDE (1.16).

B Step 2a (Monte Carlo simulation). Assume for the sake of simplicity that we want to compute a numerical
approximation of u(0, x) = E f(X0,x

T
) i.e. that t = 0. At this stage, the idea is to replace the diffusion by its

Euler scheme with step T
n , n ≥ 1, starting at x: let tnk = kT

n , k = 0, . . . , n be the uniform mesh of [0, T ] with

step T
n . It is recursively defined as follows (to alleviate notations, we drop the dependance in 0,x of the Euler

scheme):

X̄n
tnk+1

= X̄n
tnk

+
T

n
b(tnk , X̄

n
tnk

) +

√
T

n
σ(tnk , X̄

n
tnk

)U
(n)
k+1, k = 0, . . . , n, X̄n

0 = x

where (U
(n)
k )k=1,...,n is an i.i.d. sequence of N (0; Iq)-distributed random vectors representative of the Brownian

increments i.e.

Wtnk
−Wtnk−1

=

√
T

n
U

(n)
k , k = 1, . . . , n.

As T = tnn, the quantity Ef(X̄n
T

) is the counterpart of E f(X0,x
T

) for the Euler scheme. Assume b and σ are
Lipschitz continuous in (t, x) so that the regularity assumption of Theorem 1.2 is satisfied. Then,

sup
n≥1

∥∥∥ max
0≤k≤n

|X̄n
tnk
|
∥∥∥
Lp(P)

+
∥∥∥ sup
t∈[0,T ]

|X0,x
t |
∥∥∥
Lp(P)

≤ κp,b,σ,T
(
1 + |x|

)
(1.20)

and, on the other hand, the discrete time Euler scheme strongly converges to X for the sup norm in every Lp(P)

at rate
√

1
n in the following sense

∥∥∥ max
k=0,...,n

|X̄n
tnk
−X0,x

tnk

∥∥∥
Lp(P)

≤ Cp,b,σ,T

√
T

n

(
1 + |x|

)
.

As a consequence, E f(X̄n
T

)→ E f(X0,x
T

) with a O
(√

1
n

)
-rate as the step T

n goes to 0 if f is Lipschitz continuous.

This latter convergence still holds, without rate, if f is continuous with polynomial growth. It can be obtained
under less stringent assumptions on b and σ (continuity in (t, x) and linear growth in x uniformly in t) since
then a functional weak convergence holds.

By contrast, if b, σ and f are smooth enough then, the so-called weak error E f(X̄n
T

) − E f(X0,x
T

) can be

investigated directly by more analytic methods. As a result, a (faster) O
(

1
n

)
-rate can be established (see [74]).

This rate can be extended to bounded Borel functions f , provided σ satisfies a uniform ellipticity property – or
even a hypo-ellipticity assumption “à la Hörmander” for a modified Euler scheme – as proved in a celebrated
Bally-Talay’s paper (see [7]). This yields

u(0, x) = E f(X0,x
T

) = E f(X̄n
T

) +O
( 1

n

)
.
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The point of interest at this stage is of course that the expectation E f(X̄n
T

) can be computed by simulation
since the Euler scheme can be straightforwardly simulated as soon as b and σ are computable functions (and
X0 itself can be simulated). So, we can implement a Monte Carlo simulation to compute Ef(X̄n

T
) i.e. simulate

M i.i.d. copies
(
(X̄n

T
)m
)
m=1,...,M

of the above Euler scheme at time T = tnn and approximate E f(X̄n
T

) by the

strong Law of Large Numbers

E f(X̄n
T

) ≈ 1

M

M∑
m=1

f
(
(X̄n

T
)m
)

since a.s. convergence holds as M → +∞. This second error (known as the Monte Carlo or the statistical error)
is of order O( 1√

M
) owing to the Central Limit Theorem which provides (asymptotic) confidence intervals for an

a priori prescribed given confidence level involving the asymptotic variance

Var
(
f(X̄n

T
)
)

= E
(
f(X̄n

T
)− E f(X̄n

T
)
)2

= Ef(X̄n
T

)2 −
(
E f(X̄n

T
)
)2
.

This variance can be expressed by expectations of functions of X̄n
T

, consequently it can be computed on line
as a companion parameter of the original Monte Carlo simulation. By the way, note that one often has
Var
(
f(X̄n

T
)
)
≈ Var

(
f(X

T
)), either because f is continuous or because the diffusion is “elliptic enough”, see

above. For more details on these elementary aspects of the Monte Carlo method, we refer to classical textbooks
devoted Monte Carlo simulation and Numerical Probability (see [43] for a more PDE oriented introduction to
Monte Carlo method or [31,56] for more connections with Finance, among many others).

The main asset of this approach is that it is dimension free, in the sense that its complexity grows linearly
with the dimension d of the diffusion of interest, with little influence of the ellipticity of the function a, at least
when the function f is regular as we just saw.

B Step 2b (Quantization based cubature formula). If one has many computations to carry out with the same
operator L, e.g. for various functions f , it may be interesting to replace the Monte Carlo simulation by a cubature
formula based on an optimal quantization of X̄n

T
. To perform this quantization, as it will be seen further on

in Section 3, one can rely on a stochastic optimization procedure which can be viewed as a kind of compressed
Monte Carlo simulation. In that perspective, one faces now the following chain of approximations

u(0, x) = E f(X0,x
T

) ≈ E f(X̄n
T

) ≈ E f
(̂̄Xn

T

Γ(N))
where Γ(N) is an optimal (quadratic) quantization grid for the random vector X̄n

T
.

1.5. Toward automatic meshing.

An alternative to the direct quantization procedure is to consider the grid Γ(N) as a starting point to produce
an optimized mesh for the numerical solving of the original PDE by deterministic schemes like finite element or
finite volumes methods, etc. In such an approach, an optimal grid needs to be produced at each discretization
time tnk . This approach has been widely investigated by Gunzberger’s group in Florida (USA) (see e.g. [25] and
the references therein). More recently, a new concept of quantization (dual quantization, see [64]) has refined
this point of view by switching from Voronoi diagrams to a direct approach based on optimized Delaunay
triangulations. The resulting grids are better adapted to deterministic numerical analysis methods in medium
dimensions.

1.5.1. From optimal stopping theory to variational inequalities

B Discrete time optimal stopping theory in a Markov framework. We consider a standard discrete time Mar-
kovian framework: let (Xk)0≤k≤n be an Rd-valued (Fk)0≤k≤n-Markov chain defined on the filtered probability
space (Ω,A, (Fk)0≤k≤n,P): the chain is (Fk)0≤k≤n-adapted, i.e. Xk is Fk-measurable for every k = 0, . . . , n,
with transitions

Pk(x, dy) = P
(
Xk+1 ∈ dy |Xk = x

)
, k = 0, . . . , n− 1,
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so that for every bounded or non-negative Borel function f : Rd → R, Pkf(x) =

∫
Rd
f(y)Pk(x, dy) and

E
(
f(Xk+1) | Fk

)
= E

(
f(Xk+1) |Xk

)
= Pk(f)(Xk) a.s.

From now on, we denote by F the filtration (Fk)0≤k≤n. Intuitively, Fk is a σ-field of A which represents the
observable (or available) information at time k. Let Z = (Zk)0≤k≤n be an F-adapted obstacle/payoff sequence
of non-negative integrable random variables of the form

0 ≤ Zk = fk(Xk)∈ L1(Ω,Fk,P), k = 0, . . . , n.

In term of modeling, this can be understood as follows: an agent plays a stochastic game. Each round of the
game takes place at time k∈ {0, . . . , n}. The random variable Zk represents the reward when leaving the game
at time k. The question: “Is there an optimal way to quit the game in order to maximize the gain?”

By “quitting the game”, we mean leaving possibly at a random time τ : Ω→ {0, . . . , n} but always honestly
i.e. in such a way that, for every `∈ {0, . . . , n}, the event

{τ = `} =
{
ω∈ Ω | τ(ω) = `

}
∈ F`.

Thus, if the agent adopts this strategy τ , the available information that leads him/her to leave the game at time
τ(ω) is the following: if ` = τ(ω), for every A∈ F`, he/she knows whether ω belongs or not to A. In particular
the agent has observed the whole path (Xk(ω))0≤k≤τ(ω) since the chain is F-adapted. Such a random variable
is called an F-stopping time. In practice, one can imagine that reasonable strategies will involve or rely on the
payoff sequence Z`)` = f`(X`), ` = 0, . . . , n.

Imagine now that this agent enters the game at time k ∈ {0, . . . , n}. The aim of the agent is to attain the
optimal possible mean gain given the available information at time k, namely

Uk = P-esssup
{
E
(
Zτ | Fk

)
, τ : (Ω,A)→ {k, . . . , n}, F-stopping time

}
(1.21)

with an optimal mean gain given by EUk. The next question is to know whether there is an optimal stopping
time (or equivalently an optimal strategy), when starting the game at time k, i.e. a {k, . . . , n}-valued F-stopping
time τk satisfying

Uk = E
(
Zτk | Fk

)
.

For more details on this topic we refer to [53] or [42] (Chapter 2) or, more recently, [44].

The sequence U = (Uk)0≤k≤n is known as the (P,F)-Snell envelope of the sequence (Zk)0≤k≤n.
From a numerical point of view, we want to compute, or at least approximate, this Snell envelope, especially

at time 0, and the related optimal stopping time τ0 (if any).

The first important result of discrete time optimal stopping theory is the following Backward Dynamic
Programming Principle (BDPP ). Temporarily assume that (Zk)0≤k≤n is an F-adapted general sequence of
non-negative integrable random variables.

Proposition 1.4. (a) The (P,F)-Snell envelope (Uk)0≤k≤n satisfies the following BDDP :

Un = Zn and Uk = max
(
Zk,E

(
Uk+1 | Fk

))
, k = 0, . . . , n− 1, (1.22)

and τk = min
{
`∈ {k, . . . , n} |U` = Z`

}
is an optimal stopping time at time k i.e.

Uk = E
(
Zτk | Fk

)
.
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(b) Furthermore, if Zk = fk(Xk) for every k∈ {0, . . . , n}, there exists a Borel function uk : Rd → R such that

Uk = uk(Xk), k = 0, . . . , n,

and

Un = fn(Xn) and Uk = max
(
fk(Xk),E

(
Uk+1 |Xk

))
, k = 0, . . . , n− 1, (1.23)

or, equivalently, the sequence (uk)0≤k≤n satisfies

un = fn and uk = max
(
fk, Pkuk+1

)
, k = 0, . . . , n− 1.

Proof. (a) We prove this claim by a backward induction on k. The fact that Un = Zn is obvious since τn = n
is the only {n}-valued stopping time (hence optimal at time n).

Now let k∈ {0, . . . , n− 1}. Assume that τk+1 = min
{
`∈ {k + 1, . . . , n} |U` = Z`

}
is an optimal F-stopping

time at time k + 1 i.e.

Uk+1 = E
(
Zτk+1

| Fk+1

)
.

As τk+1 ≥ k + 1 is in particular a {k, . . . , n}-valued F-stopping time, it follows that

E
(
Uk+1 | Fk

)
= E

(
E
(
Zτk+1

| Fk+1

)
| Fk

)
= E

(
Zτk+1

| Fk
)

≤ Uk

where we used to get the inequality in the last line the definition (1.21) of the Snell envelope. Since Uk ≥ Zk,
by considering the deterministic stopping time τ = k, we finally get

Uk ≥ max
(
Zk,E

(
Uk+1 | Fk

))
.

To prove the reverse inequality and establish the BDPP at time k, we consider a generic {k, . . . , n}-valued
F-stopping time τ . Then, noting that {τ ≥ k + 1} = c{τ ≤ k}∈ Fk,

E
(
Zτ | Fk

)
= Zk1{τ=k} + E

(
Zτ∨(k+1) | Fk

)
1{τ≥k+1} P-a.s.

Now, using that τ ∨ (k + 1) is a {k + 1, . . . , n}-valued F-stopping time,

E
(
Zτ∨(k+1) | Fk

)
= E

(
E
(
Zτ∨(k+1) | Fk+1

)
| Fk

)
P-a.s.

≤ E
(
Uk+1 | Fk

)
P-a.s.

by the definition (1.21) of Uk+1. As a consequence,

E
(
Zτ | Fk

)
≤ Zk1{τ=k} + E

(
Uk+1 | Fk

)
1{τ≥k+1}

≤ max
(
Zk,E

(
Uk+1 | Fk

))
.

Taking the P-esssup over all such {k, . . . , n}-valued F-stopping times, we get

Uk ≤ max
(
Zk,E

(
Uk+1 | Fk

))
P-a.s.
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which in turn implies that the Snell envelope satisfies (1.22) at time k. Let us deal now with the optimal
stopping time. One checks from its definition that

τk = k1{Uk=Zk} + τk+11{Uk 6=Zk}.

Using that both events {Uk = Zk} and {Uk 6= Zk} lie in Fk and that {Uk 6= Zk} ⊂
{
E(Uk+1|Fk) = Uk

}
, we get

the following string of equalities

E
(
Zτk | Fk

)
= Zk1{Uk=Zk} + E

(
Zτk+1

| Fk
)
1{Uk 6=Zk} P-a.s.

= Uk1{Uk=Zk} + E
(
E
(
Zτk+1

| Fk+1

)
| Fk

)
1{Uk 6=Zk} P-a.s.

= Uk1{Uk=Zk} + E
(
Uk+1 | Fk

)
1{Uk 6=Zk} P-a.s.

= Uk1{Uk=Zk} + Uk1{Uk 6=Zk} P-a.s.

= Uk.

(b) This straightforwardly follows from the fact that, owing to the definition of the Markov transitions, if
Uk+1 = uk+1(Xk+1) for k∈ {0, . . . , n− 1}, then

E
(
Uk+1 | Fk

)
= E

(
Uk+1 |Xk

)
= Pkuk+1(Xk) P-a.s.

Hence, Uk = max
(
fk(Xk),E

(
Uk+1 | Fk

))
= max

(
fk(Xk), Pkuk+1(Xk)

)
= uk(Xk). �

Remark. The above optimal stopping time τk may be not unique, but one shows that it is always the lowest
stopping time for the game starting at time k: if τ̃k is another optimal stopping time for the game starting at k,
it satisfies τ̃k ≥ τk a.s.. Moreover it follows from the above proof that the sequence of optimal stopping times
(τk)0≤k≤n satisfies the dual backward dynamic programing principle

τk = k1{Uk=Zk} + τk+11{Uk 6=Zk}. (1.24)

This second backward dynamic programming principle – sometimes called dual – is often used in regression
methods to compute the Snell envelope (see e.g. Longstaff-Schwarz’s paper [46]).

B Approximation of the Snell envelope by a quantization tree. The starting idea of the quantization tree method,
originally introduced in [2], is to approximate the whole Markovian dynamics of the chain X = (Xk)0≤k≤n using
a sequence of quantizations (Xk)0≤k≤n to produce a skeleton of the whole distribution of X, namely the tree
quantization tree defined as the quantization grids Γk = {xk1 , . . . , xkNk} of Xk, k = 0, . . . , n, “connected” by the

transitions weights wkij between states xki and xk+1
j defined for every k∈ {0, . . . , n− 1} by

wkij = P
(
X̂k+1 = xk+1

j | X̂k = xki
)
, 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk+1.

Although we will rely on these transitions below, it is important to keep in mind that the sequence of quanti-

zations (X̂k)0≤k≤n is not a Markov chain.

At this stage, the idea is to mimic the BDPP (1.23) satisfied by the Snell envelope (Uk)0≤k≤n by replacing

Xk by a Γk-valued quantization X̂k = q(Xk) where q : Rd → Γk is a Borel function. In what follows we will

assume that q = πk is a nearest neighbor projection on Γk, so that X̂k is a Voronoi quantization, though not
always necessary. Moreover, as already seen in the introduction one can also choose these grids Γk so as to

optimize the Lp-mean quantization error criterion ‖Xk − X̂Γ
k ‖Lp(P) (for algorithmic aspects, see section 2.3.4

further on).
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Let (fk(X̂k))0≤k≤n be the sequence of quantized payoffs/obstacles. The key point, since the sequence

(X̂k)0≤k≤n is not a Markov chain, is to force this Markov property in the BDPP . Doing so leads to intro-

duce the pseudo-Snell envelope (Ûk)0≤k≤n defined by the following Quantized Backward (pseudo-)Dynamic
Programming Principle:

(QBDPP ) ≡ Ûn = fn(X̂n), Ûk = max
(
fk(X̂k),E

(
Ûk+1 | X̂k

))
, k = 0, . . . , n− 1. (1.25)

The forcing of the Markov property is obtained by directly conditioning by the single random vector X̂k rather

than by the σ-field F̂k := σ(X̂`, 0 ≤ ` ≤ k).

Then, it is straightforward still by a backward induction that, for every k ∈ {0, . . . , n}, that there exists a
Borel function uk : Rd → R+, such that

Ûk = ûk(X̂k), k = 0, . . . , n− 1.

From a computational point of view, (1.25) reads “in distribution”,

ûn(xni ) = fn(xni ), 1 ≤ i ≤ Nn,

ûk(xki ) = max
(
fk(xki ),

Nk+1∑
j=1

wkij ûk+1(xk+1
j )

)
, 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk+1, k = 0, . . . , n− 1, (1.26)

where Γk = {xk1 , . . . , xkNk}, k = 0, . . . , n. See subsection 2.3.4 for details on the practical implementation,

including the computation by Monte Carlo simulation of the transition weights wkij .

B Error bounds. The following theorem establishes the control on the approximation of the true Snell envelope

(Uk)0≤k≤n by its quantized counterpart (Ûk)0≤k≤n using the Lp-mean quantization errors ‖Xk−X̂k‖Lp(P).

Theorem 1.3 (see [2] (2001), [64] (2011)). Assume that all functions fk : Rd → R+, k = 0, . . . , n− 1, are Lip-
schitz continuous and that the transitions Pk(x, dy) = P(Xk+1∈ dy |Xk = x) propagate Lipschitz continuity i.e.

[Pk]Lip = sup
[g]Lip≤1

[Pkg]Lip < +∞, k = 0, . . . , n.

Set [P ]Lip = max
0≤k≤n−1

[Pk]Lip and [f ]Lip = max0≤k≤n[fk]Lip.

Let p∈ [1,+∞). We assume that

n∑
k=1

‖Xk‖Lp(P) + ‖X̂k‖Lp(P) < +∞.

(a) For every k∈ {0, . . . , n},

‖Uk − Ûk‖Lp(P) ≤ 2[f ]Lip

n∑
`=k

(
[P ]Lip ∨ 1

)n−`‖X` − X̂`‖Lp(P).

(b) If p = 2, for every k∈ {0, . . . , n},

‖Uk − Ûk‖L2(P) ≤
√

2[f ]Lip

(
n∑
`=k

(
[P ]Lip ∨ 1

)2(n−`)‖X` − X̂`‖2L2(P)

) 1
2

. (1.27)

Remark. In fact, the error bounds established in this theorem remain mathematically true as soon as the

“quantizations” X̂k are simply σ(Xk)-measurable, i.e. when X̂k = qk(Xk) where qk : Rd → Rd is a Borel
functions for every k ∈ {0, . . . , n}, with at mot linear growth (qk(x) ≤ Ck(1 + |x|)). Thus, if the functions qk



48 ESAIM: PROCEEDINGS AND SURVEYS

take countably many values, even (1.26) still makes sense; otherwise sums should be replaced by integrals with

respect to the conditional distributions L(X̂k+1 | X̂k) and the computational tractability is usually lost.

Proof. (b) Step 1. First, we control the Lipschitz constants of the functions uk. It follows from the elementary
inequality | supi∈I ai − supi∈I bi| ≤ supi∈I |ai − bi|, ai, bi∈ R, i∈ I, that

[uk]Lip ≤ max
(
[fk]Lip, [Pkuk+1]Lip

)
≤ max

(
[f ]Lip, [Pk]Lip[uk+1]Lip

)
with the convention [un+1]Lip = 0. A straightforward backward induction yields

[uk]Lip ≤ [f ]Lip

(
[P ]Lip ∨ 1

)n−k
. (1.28)

Step 2. We focus on claim (b) (quadratic case p = 2). First, we derive from Proposition 1.2(a) applied to
X = Xk+1 and Y = Xk, Q = Pk and f = uk+1, g = ûk+1 and h = ûk that∥∥∥E(Uk+1|Xk

)
− E

(
Ûk+1|X̂k

)∥∥∥2

L2(P)
≤ [Pkuk+1]2

∥∥Xk − X̂k

∥∥2

L2(P)
+
∥∥uk+1(Xk+1)− ûk+1(X̂k+1)

∥∥2

L2(P)
. (1.29)

Now, it follows by combining the original and the quantized dynamic programming formulas (1.22) and (1.25)
that

|Uk − Ûk| ≤ max
(
|fk(Xk)− fk(X̂k)|,

∣∣E(Uk+1|Xk

)
− E

(
Ûk+1|X̂k

)∣∣)
so that

|Uk − Ûk|2 ≤ |fk(Xk)− fk(X̂k)|2 +
∣∣E(Uk+1|Xk

)
− E

(
Ûk+1|X̂k

)∣∣2.
Taking expectation and plugging (1.29) in the above inequality yields for every k∈ {0, . . . , n− 1},∥∥Uk − Ûk∥∥2

L2(P)
≤
(

[f ]2Lip + [P ]2Lip[uk+1]2Lip

)∥∥Xk − X̂k

∥∥2

L2(P)
+
∥∥Uk+1 − Ûk+1

∥∥2

L2(P)

still with the convention [un+1]Lip = 0. Now, using (1.28), we obtain

[f ]2Lip + [P ]2Lip[uk+1]2Lip ≤ [f ]2Lip + [P ]2Lip

(
1 ∨ [P ]Lip

)2(n−(k+1))

≤ 2[f ]2Lip

(
1 ∨ [P ]Lip

)2(n−k)
.

Consequently

∥∥Uk − Ûk∥∥2

L2(P)
≤ 2

n−1∑
`=k

[f ]2Lip

(
1 ∨ [P ]Lip

)2(n−`)∥∥X` − X̂`

∥∥2

L2(P)
+ [f ]2Lip

∥∥Xn − X̂n

∥∥2

L2(P)

≤ 2[f ]2Lip

n∑
`=k

(
1 ∨ [P ]Lip

)2(n−`)∥∥X` − X̂`

∥∥2

L2(P)

which completes the proof.

Claim (a) is established following the above lines of the proof, relying now on Claim (b) of Proposition 1.2.
and Minkowski’s Inequality instead of the Pythagorus like Theorem �

Example of application: the Euler scheme. Let (X̄n
tnk

)0≤k≤n be the Euler scheme with step T
n of the d-dimensional

diffusion (X0,x
t )t∈[0,T ], solution to the SDE (1.18). It defines a homogeneous Markov chain with transition

P̄nk g(x) = E g

(
x+

T

n
b(tnk , X̄

n
tnk

) + σ(tnk , X̄
n
tnk

)

√
T

n
Z

)
, Z

L∼ N (0, Iq).
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If f is Lipschitz continuous,

∣∣P̄nk g(x)− P̄nk g(x′)
∣∣2 ≤ [g]2LipE

∣∣∣x− x′ + T

n

(
b(tnk , x)− b(tnk , x′)

)
+

√
T

n

(
σ(tnk , x)− σ(tnk , x

′)
)
Z
∣∣∣2

≤ [g]2Lip

(∣∣∣x− x′ + T

n

(
b(tnk , x)− b(tnk , x′)

)∣∣∣2 +
∥∥∥σ(tnk , x)− σ(tnk , x

′)
∥∥∥2T

n

)
≤ [g]2Lip|x− x′|2

(
1 +

T

n
[σ]2Lip +

2T

n
[b]Lip +

T 2

n2
[b]2Lip

)
where ‖A‖ =

√
Tr(AA∗), Tr stands for the trace of a square matrix, A∗ stands for the transpose of the

d × q-matrix A. The coefficient [σ]Lip should be understood as the Lipschitz coefficient of σ : [0, T ] × Rd →
(M(d, q,R), ‖ .‖) in x with respect to the Euclidean norm | . | uniformly in t∈ [0, T ] ([b]Lip is defined accordingly).
As a consequence

[P̄nk g]Lip ≤
(

1 +
Cb,σ,TT

n

)
[g]Lip, k = 0, . . . , n− 1,

where Cb,σ,T = [b]Lip +
1

2

(
[b]2LipT + [σ]2Lip

)
i.e.

[P̄n]Lip ≤ 1 +
Cb,σ,TT

n
.

Let (Ūk)0≤k≤n denote the (FWtnk )0≤k≤n-Snell envelope of the payoff process
(
fk(X̄n

tnk
)
)

0≤k≤n and let (Ûk)0≤k≤n

be the pseudo-Snell envelope associated by (1.25) to a quantized version (̂̄Xn
tnk

)0≤k≤n of this payoff process.

Applying the control established in claim (b) of the above theorem yields with obvious notations

∥∥Ūk − Ûk∥∥L2(P)
≤
√

2[f ]Lip

(
n∑
`=k

(
1 +

Cb,σ,TT

n

)2(n−`)∥∥X` − X̂`

∥∥2

L2(P)

) 1
2

≤
√

2[f ]Lip

(
n∑
`=k

e2Cb,σ,T (T−tn` )
∥∥X` − X̂`

∥∥2

L2(P)

) 1
2

(1.30)

≤
√

2[f ]Lipe
Cb,σ,TT

(
n∑
`=k

∥∥X` − X̂`

∥∥2

L2(P)

) 1
2

. (1.31)

The fact to be emphasized concerning the upper bound (1.31) is that the real constants on the left hand side
only depend on b, σ and T but not on n (except for the range of the sum itself of course) whereas in the
sharper (1.30) the constants do not explode with n. We will see further on that (1.30) can be used to calibrate

the sizes of the quantization grids associated to the quantizations X̂k (see section 2.3.4). (1.30) and Finally
note that the above computations hold more generally for the Euler scheme of a diffusion driven by a Lévy
processes Z with Lévy measure ν satisfying ν(z2) < +∞ i.e. Zt∈ L2 for every t∈ [0, T ].

B Connection with parabolic variational inequalities. We consider the parabolic variational inequality on [0, T ]×
Rd defined by

max

(
f − u, ∂u

∂t
+ Lu

)
(t, x) = 0, (t, x)∈ [0, T )× Rd, u(T, . ) = f(T, . ) (1.32)

where L is the operator introduced in (1.17) (which is for the probabilist the generator of the diffusion (1.18)).
We assume that f : [0, T ]× Rd → R+ is (at least) continuous with polynomial growth in the space variable x,
uniformly in t∈ [0, T ].
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From now on, we will switch to a completely heuristic reasoning in order to highlight in a simpler way
the connection between the above variational inequality and optimal stopping theory in continuous time. This
connection holds through a probabilistic representation formula involving the diffusion process (1.18) in the same
spirit as that which holds for parabolic PDEs through the Feynman-Kac formula. A probabilistic representation
of this variational inequality (1.32) is provided, under appropriate conditions that we will not detail here (see [5,6]
or, more recently, [44] and the references therein for a rigorous presentation in various settings), by the continuous
time optimal stopping problem, related to the diffusion process (Xx,t)s∈[t,T ] solution to Equation (1.18) and

the obstacle process Zt := f(t,Xx,0
t ) ≥ 0, t ∈ [0, T ]. This obstacle process is FW -adapted, non-negative and

continuous (hence predictable) where FW denotes the augmented filtration of the Brownian motion W . The
function f having polynomial growth in x uniformly in t ∈ [0, T ], then supt∈[0,T ] Zt ∈ L1(P). We define the

P-Snell envelope (Ut)t∈[0,T ] by

Ut = P-esssup
{
E
(
f(τ, Zτ ) | Ft

)
, τ ∈ T Wt,T

}
(1.33)

where T Wt,T denotes the set of FW -stopping times τ : (Ω,A,P)→ [t, T ] i.e. [t, T ]-valued random times satisfying

∀ s∈ [t, T ], {τ ≤ s}∈ FWs .

(This definition implies that for every s∈ [t, T ], {τ = s}∈ FWs but the converse – which is required for technical
reasons – is usually not true since [0, T ] is not countable.) One shows (see e.g. [73]) that under these conditions,
there exists a function u : [0, T ]× Rd → R+ such that

Ut = u(t,Xx,0
t ), t∈ [0, T ], (1.34)

and, in terms of réduite,

u(t, x) = sup
{
E f(τ,Xx,t

τ ), τ ∈ T Wt,T
}
, t∈ [0, T ], x∈ Rd.

Unfortunately, even in simple frameworks, this function u is not smooth enough, say C1,2([0, T ] × Rd,R), to
apply Itô’s formula.

We consider again the uniform mesh of [0, T ] of step T
n , tnk = kT

n , k = 0, . . . , n. We can approximate the
sequence (Utnk )0≤k≤n by the sequence (Untnk )0≤k≤n defined by replacing in (1.33) the set Tt,T by its subset T nk,n
of FW -stopping times taking values in {tn` , ` = k, . . . , n} of [0, T ]. Stopping times of T nk,n are of discrete nature
and are subsequently characterized by the simpler property

τ ∈ T nk,n if and only if {τ = tn` }∈ FWtn` , ` = k, . . . , n.

As a consequence, Untnk is defined for every k∈ {0, . . . , n} by

Untnk = P-esssup
{
E
(
f(τ, Zτ ) | Ftnk

)
, τ ∈ T nk,n

}
.

Hence, the sequence (Untnk )0≤k≤n is nothing but the P-Snell envelope of (Ztnk )0≤k≤n viewed as a discrete time

optimal stopping problem associated to the Markov chain (Xx,0
tnk

)0≤k≤n with transitions Pk(ξ, dy) = P(Xtnk+1
∈

dy |Xtnk
= ξ), k = 0, . . . , n − 1. They are usually not explicit and, more important in practice, even not

simulatable: more generally, exact simulation of time samples of a d-dimensional diffusion process is impossible,
at least at a reasonable cost, as soon as d ≥ 2 (4).

4 When d = 1 an exact (and efficient) simulation method has been devised for diffusion processes in [9]; unfortunately it deeply
depends on the scalar feature of the diffusion.
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Then, keeping in mind that Untnn = U
T

= f(T,Xx,0
T

), the sequence (Untnk )0≤k≤n satisfies the Markovian

BDPP (1.23) reading

Untnn = f(T,Xx,0
T

), Untnk = max
(
f
(
X0,x
tnk

)
,E
(
Untnk+1

|X0,x
tnk

))
, 0 ≤ k ≤ n− 1.

Consequently, one may consider that Utnk is close enough to Untnk so that the sequence (Utnk )0≤k≤n approximately

satisfies

U
T

= f(T,Xx,0
T

), max
(
f(Xx,0

tnk
)− Utnk ,E

(
Utnk+1

|Xx,0
tnk

)
− Utnk

)
≈ 0

or equivalently ,since Utnk = u(tnk , Xtnk
), k = 0, . . . , n, owing to (1.34),

u(T,Xx,0
T

) = f(T,Xx,0
T

), 0 ≈ max
(
f(X0,x

tnk
)− u(tnk , X

x,0
tnk

),E
(
u(tnk+1, X

x,0
tnk+1

) |X0,x
tnk

)
− u(tnk , X

x,0
tnk

)
)
.

If, in a second step, we assume that the function u is C1,2([0, T ] × R) and that ∇xu has polynomial growth.
Then we can apply Itô’s Lemma between tnk and tnk+1 to get

u(tnk+1, X
x,0
tnk+1

) = u(tnk , X
x,0
tnk

) +

∫ tnk+1

tnk

(
∂u

∂t
+ Lu

)
(s,Xx,0

s )ds+

∫ tnk+1

tnk

(
∇xu |σ

)
(s,Xx,0

s

)
dWs

where the stochastic integral with respect to W is a true martingale since σ has linear growth, ∇xu has
polynomial growth and

∥∥ supt∈[0,T ] |X
x,0
t

∥∥
p
< +∞ by (1.20). As a consequence,

E
(
u(tnk+1, X

x,0
tnk+1

) |Xtnk

)
− u(tnk , X

x,0
tnk

) = E

(∫ tnk+1

tnk

(
∂u

∂t
+ Lu

)
(s,Xx,0

s )ds

)
P-a.s.

≈
(∂u
∂t

+ Lu
)

(tnk , X
x,0
tnk

)
T

n
P-a.s.

Finally, this leads to

u(T,Xx,0
T

) = f(T,Xx,0
T

), max

(
f(Xtnk

)− u(tnk , X
x,0
tnk

),
(∂u
∂t

+ Lu
)

(tnk , X
x,0
tnk

)

)
≈ 0 P-a.s.

Letting n→ +∞, one may reasonably guess, switching back to continuous time that, P-a.s.,

u(T,Xx,0
T

) = f(T,Xx,0
T

), max

(
f(Xt)− u(t,Xx,0

t ),
(∂u
∂t

+ Lu
)

(t,Xx,0
t )

)
= 0.

If the support of Xx,0
t is the whole space Rd for every t∈ (0, T ], this suggests that u is a solution to the above

variational inequality (1.32).

The simplest non trivial setting in which the above heuristic reasoning can be made rigorous is when Xx,0
t =

x+Wt, relying on distribution theory and extended versions of Itô’s Lemma (see [44] for a rigorous variational
approach using distribution theory).

In practice, this approach is usually used in a backward way as a verification theorem: starting from a
solution u to (1.32) (possibly in a viscosity sense) with enough regularity, one checks that (u(t,Xx,0

t ))t∈[0,T ] is

the P-Snell envelope of the payoff/obstacle process Zt = f(t,Xx,0
t ) (see again [44] and [6]).

BNumerical aspects. From a numerical point of view, this connection suggests numerical methods to solve (1.32),
at least when deterministic schemes become inefficient due to the curse of dimensionality: any probabilistic
method devised to compute the réduite of a discrete time optimal stopping problem with a Markov structure
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process can be viewed as a way to solve (1.32). Having in mind that, in these probabilistic methods, the discrete
time Markov process needs to be simulated at a moment or another, we cannot rely on a sample (Xtnk

)0≤k≤n of
the diffusion process itself at least when d ≥ 2 as mentioned beforehand. A noticeable exception, of course, is the
case of diffusion processes of the form Xx,0

t = ϕ(t, x,Wt) like e.g. the multi-dimensional correlated Black-Scholes
model.

Consequently, as developed above, for numerical purposes, we do need to introduce as above the discrete time
Euler scheme X̄n,x,0 = (X̄n,x,0

tnk
)0≤k≤n with step T

n (with obvious notations) of the diffusion (Xx,0
t )t∈[0,T ] and

the Snell envelope Ūn = (Ūntnk )0≤k≤n related to the payoff/obstacle process Z̄ntnk = f(tnk , X̄
n,x,0
tnk

), k = 0, . . . , n.

All these successive approximations of the “true” original Snell envelope have been investigated in full details
in [3], depending on the regularity of the payoff function and of the coefficients b and σ (or a = σσ∗).

Note that for the sake of simplicity, we did not take into account a zero order term in (1.32). This is done
in the cited literature and corresponds to a discounting factor appearing in the payoff/obstacle process.

The resulting convergence rates are of the form O(n−
1
2 ) between (Ūntnk )0≤k≤n and (Untnk )0≤k≤n but, if f is

quasi-convexity in the space variable x uniformly in t∈ [0, T ], it is O(n−1) this time between (Untnk )0≤k≤n and

(Utnk )0≤k≤n. These rates holds for various type of convergence (on compacts set with respect to x or in Lp(P)).

Conversely, we must of course have in mind that in low dimension (say d ≤ 2 or sometimes 3), the numerical
strategy is the exact converse of what precedes: one relates the optimal stopping theorem to the parabolic
variational inequality and implement a deterministic solver based on finite difference or finite elements/volume
methods. So is the case for the seminal paper on the computation of American Put option in a Black-Scholes
model, see [39] (see also [76] for exchange options). For an overview of PDE methods for option pricing, we
refer to [1].

2. Optimal vector quantization

As emphasized in what precedes, whatever the application fields are, we need to have “good” and, if possible,
“optimal”, quantization grids at various levels N . This section is devoted to the existence of optimal quantizers
(via the proof of Proposition 1.1(b)) and their properties as well as the numerical methods to compute them.

2.1. Existence of optimal quantization grids (proof of Proposition 1.1(a)-(b))

We will proceed by induction on the level N . First note that, if p ≥ 1, for every level N ≥ 1, the Lp-mean
quantization error function defined on (Rd)N by

(x1, . . . , xN ) 7−→
∥∥∥ min

1≤i≤N
|X − xi|

∥∥∥
Lp(P)

is clearly 1-Lipschitz continuous with respect to the `∞-norm on (Rd)N defined by |(x1, . . . , xN )|`∞ := max
1≤i≤N

|xi|.
This is a straightforward consequence of Minkowski’s inequality combined with the more elementary inequality
|min1≤i≤N ai−min1≤i≤N bi| ≤ max1≤i≤N |ai− bi|. As a consequence, it implies the continuity of its pth power,
the Lp-distortion function Gp,N .

If p∈ (0, 1], one shows directly that Gp,N is p-Hölder continuous.

B N = 1. The non-negative continuous function Gp,1 clearly goes to +∞ as |x1| → +∞. Hence, Gp,1attains

a minimum at a so-called Lp-median x
(1)
1 (which is clearly unique when p > 1 by a strict convexity argument).

So {x(1)
1 } is an optimal quantization grid at level 1.

B N ⇒ N + 1. Assume there exists x(N) ∈ (Rd)N such that Gp,N (x(N)) = min(Rd)N Gp,N . Set Γ(N) =

{x(N)
i , i = 1, . . . , N}. Then, either supp(µ) \ Γ(N) = ∅ and any (N + 1)-tuple of (Rd)N+1 which “exhausts” the

grid Γ(N) makes the function Gp,N+1 equal to 0, its lowest possible value, or there exists ξN+1∈ supp(µ) \Γ(N).
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In this second case, let Γ∗ = Γ(N) ∪ {ξN+1} and let (Ci(Γ
∗))1≤i≤N+1 be a Voronoi partition of Γ∗ where

◦
CN+1 (Γ∗) is the Voronoi cell of ξN+1. As ξN+1 /∈ Γ(N), it is clear that

◦
CN+1 (Γ∗) 6= ∅ and that |X − ξN+1| <

min1≤i≤N |X − x(N)
i | on the interior of this cell. Furthermore, P(X ∈ CN+1(Γ∗)) = µ

( ◦
CN+1 (Γ∗)

)
> 0 since

ξN+1∈
◦
CN+1 (Γ∗) and ξN+1∈ supp(µ). Note that, everywhere on (Rd)N , one has |X−ξN+1|∧ min

1≤i≤N
|X−x(N)

i | ≤

min
1≤i≤N

|X − x(N)
i |, so that, combining both inequalities yields

λN+1 = E
(
|X−X̂Γ∗ |p

)
= E

(
|X−ξN+1|p∧ min

1≤i≤N
|X−x(N)

i |p
)
< E

(
min

1≤i≤N
|X−x(N)

i |p
)

= Gp,N (x(N) = ep,N (X)p.

In particular card(Γ(N)) = N , otherwise card(Γ∗) ≤ N which would contradict that Gp,N is minimum at x(N).

Hence, the set KN+1 =
{
x ∈ (Rd)N+1 : Gp,N+1(x) ≤ λN+1

}
is non-empty since it contains all the (N + 1)-

tuples which “exhaust” the elements of Γ∗. It is closed since Gp,N+1 is continuous. In fact, we will show that
it is also a bounded subset of (Rd)N+1. Let x(k) = (x(k)1, . . . , x(k)

N+1
), k∈ N, be a KN+1-valued sequence of

(N + 1)-tuples. Up to at most N + 1 extractions, one may assume without loss of generality that there exists
a subset I ⊂ {1, . . . , N + 1} such that for every i∈ I, xi(k) → xi(∞)∈ Rd and for every i /∈ I, |xi(k)| → +∞.
By a straightforward application of Fatou’s Lemma

lim inf
k
Gp,N+1(x(k)) ≥ lim inf

k

∥∥∥min
i∈I
|X − xi(∞)|

∥∥∥p
Lp(P)

≥ ep,|I|(X)p.

The sequence
(
x(k)

)
k∈N being KN+1-valued, one has ep,|I|(X)p ≤ λN+1 < ep,N (X)p. In turn, this implies that

|I| = N+1 i.e. the sequence of (N+1)-tuples
(
x(k)

)
k≥0

is bounded. As a consequence, the set KN+1 is compact

and the function Gp,N+1 attains a minimum overKN+1 at an x(N+1) which is obviously its absolute minimum and

has pairwise components such that, with obvious notation, card(Γ(N+1)) = N + 1 and P
(
X∈ Ci(Γ(N+1))

)
> 0,

i = 1, . . . , N + 1. �

Remarks. • The proof of Claim (b) and (c) are as follows: if N ≥ 2 and P
(
X∈ Ci(Γ(N)

)
= 0 for some index i,

then ep,N (X) = ep,N−1(X) which is impossible by the above proof if supp(µ) has at least N points. Moreover,
if (z

N
)N≥1 is an everywhere dense sequence in Rd, then 0 ≤ ep,N (X) ≤ ep

(
{z1, . . . , zN }

)
→ 0 as N → +∞ by

the Lebesgue dominated convergence theorem.

• This existence result admits many extensions, in particular in infinite dimension when Rd is replaced by a
separable Hilbert space or, more generally, a reflexive Banach space. It holds true for L1-spaces as well (see [35]
or Section 2.3.2 for a brief introduction to functional quantization).

• The set argminGp,N is never reduced to a single N -tuple when N ≥ 2, simply because argminGp,N is left stable
under the action of the N ! permutations of {1, . . . , N}. Even from a geometrical viewpoint, as soon as d ≥ 2,
uniqueness of the resulting optimal quantization grid usually fails, e.g. because of the various transformations
that may leave the distribution µ of X invariant. Thus, the normal distribution N (0; Id) is invariant under all
orthogonal transforms. But there are also examples (see [33]) for which optimal grids at level N do not even
make up a “connected” set.

However, in 1-dimension, it has been proved (see e.g. [40]) that, as soon as µ is absolutely continuous with
a log-concave density, there exists exactly one optimal quantization grid at level N . This grid has full size N
and is characterized by its stationarity (see the next section) so that argminGp,N is made of the N ! resulting
N -tuples. Such distributions are called strictly unimodal.
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2.2. Stationary quantization grid

2.2.1. Definition

Definition 2.1. Let X∈ L1
Rd(Ω,A,P) with distribution µ. A (quantization) grid Γ = {x1, . . . , xN } ⊂ Rd of size

N is µ-stationary if the following two conditions are satisfied
(i) µ-negligibility of the boundary of the Voronoi diagram : µ

( ⋃
1≤i≤N

∂Ci(Γ)
)

= 0.

(ii) Self-consistency of the centroids : ∀ i∈ {1, . . . , N}, xi=

∫
Ci(Γ)

ξµ(dξ)

µ(Ci(Γ))
= E

(
X |X∈ Ci(Γ)

)
if µ(Ci(Γ)) 6=0.

Note that item (ii) also reads

X̂Γ = E
(
X | X̂Γ

)
. (2.35)

We will see further on in Section 3.1 (see Corollary 3.1 and the comments that follow) that L2-optimal grids
at level N of full size N are always stationary: they always satisfy condition (i) (see Theorem 4.3, p.38, in [33])
so that the related N -tuples turn out to be critical points of the quadratic distortion function G2,N , where which
is differentiable at such points. All such critical points induce stationary grids which satisfy condition (ii) (see
Proposition 3.1 in Section 3 further on).

Note that almost all numerical algorithms devised to search for (at least locally) optimal quantizers at a
given level N are based on this stationary property (see Section 3 devoted to algorithmic aspects).

Remarks. • The above µ-stationarity property is also known in the statistical literature as the self-consistency
property and such quantizers as self-consistent prototypes (see [75]). Moreover, this also gave rise to a new
terminology (borrowed from statistics) to emphasize that each xi is the µ-centre of mass of its Voronoi cell: one
speaks of the points xi as the centroids of their Voronoi cells.

• Stationarity is a key property for both applications and numerical methods t compute quadratic grids al-
gorithms. Unfortunately, it is satisfied only by few quantizers. A new notion of quantization, called dual
quantization has been recently developed (see [64] for a theoretical introduction and [63,65] for applications to
Numerical Probability) in which a reverse stationarity property is satisfied by all dual quantizers. Typically for
dual quantization, one has

X = E
(
X̂Γ,dual |X

)
.

This dual quantization requires the introduction of an exogenous noise and relies on the Delaunay triangulation
rather than on the Voronoi diagram (hence its name “dual”).

2.2.2. Application to quantization based cubature formulas (II): second order

Proposition 2.1. Let Γ be a µ-stationary quantizer and let X : (Ω,A,P) → Rd be a µ-distributed random
vector such that E |X|1+α < +∞. Let F : Rd → R be a C1 function with an α-Hölder gradient ∇F . We denote
by [∇F ]α its α-Hölder ratio. Then∥∥E(F (X) | X̂Γ

)
− F (X̂Γ)‖1 ≤ [∇F ]α

∥∥X − X̂Γ
∥∥1+α

L1+α(P)

so that, by taking expectation, ∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [∇F ]α

∥∥X − X̂Γ
∥∥1+α

L1+α(P)
. (2.36)

In particular, if ∇F is Lipschitz continuous∣∣EF (X)− EF (X̂Γ)
∣∣ ≤ [∇F ]Lip

∥∥X − X̂Γ
∥∥2

L2(P)
.
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Remark. Since we know from Claim (c) in Proposition 1.1 that e2,N (X) ↓ 0 as N → +∞, it is clear that if

we consider optimal quadratic (hence stationary) grids Γ(N) satisfying e2,N (X) =
∥∥X − X̂Γ(N)∥∥

L2(P)
→ 0 which

implies that
∥∥X−X̂Γ(N)∥∥1+α

L2(P)
= o
(∥∥X−X̂Γ(N)∥∥

L2(P)

)
as N → +∞. So, the error bounds in the above cubature

formulas become infinitely smaller than those obtained in Section 1.3.2 when N is large enough. Moreover, it is
proved in Section 2.3 below (Theorem 2.1 known as Zador’s Theorem) that a sharp convergence rate of decay

e2,N (X) ∼ c
X
N−

1
d holds.

Proof. It follows from a second order Taylor expansion that∣∣F (X)− F (X̂Γ)−
(
∇F (X̂Γ)|X − X̂Γ

)∣∣ ≤ [∇F ]α
∣∣X − X̂Γ

∣∣1+α
.

The stationarity property reads X̂Γ = E
(
X | X̂Γ) and, as ∇F (X̂Γ) is σ(X̂Γ)-measurable, we obtain

E
((
∇F (X̂Γ)|X − X̂Γ

) ∣∣ X̂Γ
)

=
(
∇F (X̂Γ)

∣∣E(X − X̂Γ | X̂Γ
)︸ ︷︷ ︸

=0

)
= 0. �

2.2.3. Application to convex functions

If F : Rd → R is convex and X, F (X)∈ L1(P), then for every stationary quantization grid Γ, one has

EF (X̂Γ) = EF
(
E
(
X | X̂Γ

))
≤ E

(
E
(
F (X) | X̂Γ

))
= EF (X).

This shows that quantization based cubature formulas provide lower bounds for EF (X) when F is convex.
Note that one has the reverse inequality by the dual quantization based cubature formula

EF (X) ≥ EF
(
X̂Γ,dual

)
since it holds for for any grid (see [64]). These provides a two-sided bound can be numerically implemented.

2.3. Optimal quantization rate

2.3.1. Rate results

This rate is ruled by two results: the first one is asymptotic and is known as Zador’s Theorem (see [33]), the
second one is non-asymptotic and, in some way, universal.

Theorem 2.1. (a) Zador’s Theorem (asymptotic rate, see [33]). Let X ∈ Lp+ηRd (P) for some η > 0, with

distribution P
X

= µ. Let | . | denote (here) any norm on Rd. We define ϕ = dµ
dλd

(where λd denotes the Lebesgue

measure on (Rd,Bor(Rd))) the density of the non-singular part of µ. Then

lim
N
N

1
d ep,N (X) = J̃p,d‖ϕ‖

1
p

L
p
p+d (λd)

where J̃p,d = infN≥1N
1
d ep,N

(
U([0, 1]d)

)
∈ (0,+∞) depends on the current norm. When this norm is the

canonical Euclidean norm on Rd, one has J̃1,2 =

√
2+3 log

√
3

3
7
4
√

2
, J̃2,2 =

√
5

18
√

3
and (5)

J̃p,d ∼
(

d

2πe

) 1
2

as d→ +∞. (2.37)

5 where ak ∼ bk means that ak = ukbk with limk uk = 1.
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(b) Extended Pierce’s Lemma (non-asymptotic rate, see [49]). Let p, η > 0. There exists a real constant
κd,p,η∈ (0,+∞) such that, for every Rd-valued random vector X : (Ω,A,P)→ Rd,

∀N ≥ 1, ep,N (X) ≤ κd,p,η σp+η(X)N−
1
d (2.38)

where, for every r∈ (0,+∞), σr(X) = infa∈Rd ‖X − a‖Lr(P) denotes the Lr-standard deviation of X.

Claim (a), known as Zador’s Theorem, was first established in [77] for the uniform distribution on the unit
hypercube [0, 1]d, using a self-similarity argument “à la Hammersley”. The extension to more general distribu-
tions is due to Bucklew and Wise in [15], with a gap in the proof for non-compactly supported distributions.
This gap was filled in [33], Chapter II, Theorem 6.2 (p.78).

When µ is purely singular, the above result remains true but the above asymptotics is not the right one since
the limit in this normalization is 0. Other asymptotics can emerge e.g. for (uniform) distributions on fractal
sets, leading to the definition of a quantization dimension (see again [33], Chapter III, for an introduction to
quantization on fractal sets).

2.3.2. Additional results and first applications

B Square grids for U([0, 1]d). A natural question is to compare optimal quantization methods with “standard”
square grid methods on [0, 1]d when N = md, m∈ N∗ (these values of N are the only ones for which such square
grids exist). Let

Γd(m) =

d∏
`=1

(
2i` − 1

2m

)
1≤i`≤m

be a hyper-cubic “product quantization” grid. When p = 2, this grid induces, owing to Pythagorus’ Theorem
and Formula (1.4) for the uniform distribution U([0, 1]), a mean quadratic quantization error given by

e2,N

(
Γd(m), U([0, 1]d)

)2
= d

(
1

2
√

3m

)2

=
d

12m2
,

so that

e2,N

(
Γd(m), U([0, 1]d)

)
=

√
d

12
N−

1
d .

If we consider that d is large enough so that, by (2.37), J̃p,d ≈
(
d

2πe

) 1
2 , one derives by the above Zador Theorem,

e2,N

(
U([0, 1]d)

)
≈
√

d

2πe
N−

1
d ≈

√
d

17.0795
N−

1
d .

This shows that, as d grows to infinity, the ratio between true optimal and optimal product quantization remains

(asymptotically) bounded and, in fact, very close to 1 since
√

2πe
12 ≈ 1.1930 . . . ! But the main difference between

these two points of view is that optimal quantization grids do exist for every size/level N whereas product grids
become increasingly sparse in higher dimensions.

B Empirical measure theorem. If Γ(N) = {x(N)
1 , . . . , x(N)

N
}, N ≥ 1, denotes a sequence of Lp-optimal N -

quantizers of the distribution µ, we saw in Equation (1.13) that the weighted distribution µ̂
N

of X̂Γ(N)

weakly
converges to the original distribution µ of X. But what about the regular empirical measures

µ̃
N

=
1

N

N∑
i=1

δ
x

(N)
i
, N ≥ 1?

The answer is provided by the following empirical measure theorem established in [33] (see Theorem 7.5, p.96)
and [22].
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Theorem 2.2. If X∈ Lp+η(P) for some η > 0, then, with the notations of Zador’s Theorem, if ϕ 6≡ 0,

µ̃
N

(w)−→ µ̃ =
ϕ

d
d+p∫

Rd ϕ
d
d+p dλd

.λd as N → +∞

where
(w)−→ denotes weal convergence of probability measures.

Remark. In fact the theorem holds true for (sub-)sequences of asymptotically optimal quantizers in the sense
that they satisfy Zador sharp rate.

B A brief look back at Information Theory. Let X : (Ω,A,P) → Rd be a (static) square integrable random
vector/signal X with a non-singular distribution µ. We consider an optimal quadratic quantization grid Γ(N) of

size N for µ. Let µ̂
N

denote the distribution of its optimal quadratic quantization X̂Γ(N)

We saw in Section 1.2
that the mean transmission cost κµ̂

N
, when coded by an appropriate instantaneous code, satisfies the two-sided

inequality (1.6)-(1.7) involving the dyadic entropy of H2(µ̂
N

) of µ̂
N

.

B A universal asymptotic bound. Let w
(N)
i = µ̂

N

(
x

(N)
i

)
, i = 1, . . . , N , be the weights attached to the

distribution µ̂
N

. We know, by classical optimization arguments, that

H2

(
µ̂
N

)
= −

N∑
i=1

w
(N)
i log2 w

(N)
i ≤ log2N

so that we derives that 2κµ̂N −1 ≤ N ≤ 2κµ̂N . Now, let κ > 0 be a prescribed mean transmission cost.
Plugging this universal bound in (2.1) with N = d2κ−1e, we derive that the quadratic mean transmission error∥∥X − X̂Γ

N

∥∥
L2(P)

satisfies

L2-mean transmission error(κ) - J̃2,d

∥∥ϕ∥∥ 1
2

L
d
d+2 (λd)

2−
κ−1
d as κ→ +∞.

In particular, expressed in terms of quantization level, we get this coarser equivalent

− log2

(
L2-mean transmission error(N)

)
∼ κ(N)

d
as N → +∞.

This provides a more precise “flavor” of Shannon’s Source Coding Theorem (for a general formulation and a
proof in a more general framework, we refer to [23]).

BA sharper, but heuristic, bound. It is commonly shared in the Information Theory community (see [30])
that an absolutely distribution µ with a continuous bounded density ϕ > 0 satisfies (ϕ logϕ is bounded and)

w
(N)
i ∼ c

N

ϕ
d
d+2 (x

(N)
i )

N
as N → +∞

uniformly over the elementary quantizers x
(N)
i lying in a fixed compact set, where cN is a normalizing constant.

Partial results in that direction have been recently established in [37] for a wide class of absolutely continu-
ous distributions (including among many others normal distributions, gamma distributions, hyper-exponential
distributions).

It follows from the empirical measure theorem (2.2) that

lim
N
cN =

(∫
Rd
ϕ

d
d+2 (ξ)dξ

)−1

.
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If we assume a sharper result, namely w
(N)
i −c

N

ϕ
d
d+2 (x

(N)
i )

N → 0 as N → +∞, uniformly when x
(N)
i lies a compact

set, elementary computations based on repeated applications of Theorem 2.2 (empirical mean theorem) yield

Cµ = − lim
N

(
H2

(
µ̂
N

)
− log2N

)
= log

(∫
Rd
ϕ

2
d+2 dλd

)
+

d

d+ 2

∫
Rd
ϕ log2 ϕdλd.

Noting that

∫
Rd
ϕ

2
d+2 dλd =

∫
Rd
ϕ−

d
d+2 dµ and applying Jensen’s Inequality to the distribution µ and the

concave function log imply that Cµ > 0. This is in accordance with the fact that the uniform distribution µUnif
N

over {1, . . . , N} or any set of size N has the highest possible entropy equal to log2N . This finally yields the
slightly sharper bound for the quadratic mean signal transmission error

L2-mean transmission error(κ) - J̃2,d

∥∥ϕ∥∥ 1
2

L
d
d+2 (λd)

2
1−Cµ
d 2−

κ
d as κ→ +∞.

B From vector to functional quantization. Most issues raised in the former sections can be formulated in an
infinite dimensional setting where Rd is replaced by a separable Hilbert space or more generally a (reflexive
or not) separable Banach space (E, | . |

E
). From a more probabilistic point of view E is often a functional

space like L2
R([0, T ], λ) or C([0, T ],R). This corresponds to the path space of a bi-measurable stochastic process

(Xt)t∈[0,T ] defined on a probability space (Ω,A,P) so that for every ω∈ Ω, X(ω) = (t 7→ Xt(ω))∈ E: viewing
things that way makes X an E-valued (infinitely dimensional) random vector. For this reason, the quantization
problem in infinite dimension is often known as functional quantization. Thus, existence of optimal quantizers
can be established in the case of reflexive Banach spaces like LpR([0, T ], dt), 1 < p < +∞, following the proof of
Proposition 1.1, using this time a weak continuity lower semi-continuity argument (see e.g. [21, 35, 47]). It also
holds true for the L1

R(dt) space, but not in full generality for the space C([0, T ],R).
However, no such general rate result as Zador’s Theorem is available, but optimal quantization rates, some-

times sharp, can be established in this framework for various classes of stochastic processes, including the
(fractional) Brownian motion and the Brownian bridge, scalar Brownian diffusions processes, etc. We refer
to [24, 35, 47–49] and the references therein for results in that direction. It turns out that in many situations
these convergence rates for optimal functional quantization error “live” in a (logN)−r scale (r = 1

2 for the
standard Brownian motion and bridge, diffusion processes, r = H for the fractional Brownian motion with
Hurst constant H, r = m+ 1

2 for the m-fold integrated Brownian motion, etc).
More generally, when dealing with Gaussian processes this quantization rate is closely related to the rate

of decay of the eigenvalues of its covariance operator (Karhunen-Loève eigensystem). For general stochastic
processes, a connection has been made between the mean Lp([0T ), dt)-functional quantization rate and the
regularity of the mapping t 7→ Xt from [0, T ] to Lp([0, T ], dt) (see [49]).

Numerical applications of functional quantization have also been devised, based on optimized grids. Packages
of such grids available on the website www.quantize.maths-fi.com, see Section 3.5. They mostly rely on
cubature formulas which can be straightforwardly extended to Hilbert or Banach spaces. See e.g. [59] for
applications to the pricing and hedging of path-dependent options. Let us cite as well applications to variance
reduction by universal stratified sampling (see [18]). But we will not go further in that direction in this paper.

2.3.3. Numerical integration (III): rates

Assume X ∈ L2
Rd(P) (still with a distribution µ). The above results show that, provided one has access to

quadratic optimal quantization grids Γ
N

for various levels/sizes, it is possible to produce cubature formulas
with respect to µ which have the following properties.

B α-Hölder functions, α∈ (0, 1]. An α-Hölder function F : Rd → R can be integrated using theN -point cubature

formula (1.11) induced by a grid Γ with an accuracy upper-bounded by ‖X − X̂Γ‖L1(P) owing to (1.13).



ESAIM: PROCEEDINGS AND SURVEYS 59

Let Γ(N) be an optimal quadratic quantization grid at level N for the distribution µ and that X ∈ L2+η
Rd (P)

for some η > 0. We use that ‖X − X̂Γ(N)‖L1(P) ≤ ‖X − X̂Γ(N)‖L2(P) = e2,N (µ) ≤ Cd, µN−
1
d where Cd, µ is a real

constant only depending on the dimension d and on the (2 + η)-pseudo standard deviation of µ given by (2.38)
in Theorem 2.1(b).

B Locally α-Hölder functions. Let us come back to the general error bound (1.12) for α-Höder functions with

α + β-polynomial growth at infinity. If α + β ≥ 1 then β
1−α ≥ 1 so that, combining stationarity and Jensen’s

inequality, we get

‖X̂Γ(N)

‖
L

β
1−α (P)

=
∥∥E(X | X̂Γ(N))∥∥

L
β

1−α (P)
≤
∥∥X∥∥

L
β

1−α (P)

which makes the right hand side of (1.12) only depending on (Lr-norms of) X, namely∣∣EF (X)− EF (X̂Γ(N)

)
∣∣ ≤ [F ]α,βCd,µ

(
1 + 2‖X‖β

L
β

1−α (P)

)
N−

α
d .

B Functions with α-Hölder gradient. If F is continuously differentiable on Rd with an α-Hölder gradient α∈ (0, 1]

and X∈ L2+η
Rd (P), note that in the cubature formula (2.36), one has

‖X − X̂Γ(N)

‖L1+α(P) ≤ ‖X − X̂Γ(N)

‖L2(P) = e2,N (µ) = O
(
N−

1
d )

since the grid Γ(N) is stationary (i.e. satisfies (2.35)) so that∣∣EF (X)− EF (X̂Γ
N )
∣∣ ≤ Cd,µ[∇F ]αN

− 1+α
d . (2.39)

This last result somewhat extends the one established in [52] for compactly supported absolutely continuous
distributions µ on Rd.
B Numerical tests. Various numerical tests have been carried out on these cubature formulas in [59] and in the
survey [62]. They include very performing results obtained using a spatial Richardson-Romberg extrapolation,
not developed here, which consists in a linear combination of several quantization based cubature formulas with
appropriate sizes.

2.3.4. Application to optimal stopping problems: design of a quantization tree

Assume that the characteristics of the quantization tree (Γk, w
k)0≤k≤n related to the Markov chain (Xk)0≤k≤n

is made up with grids such that Γk = Γ
(Nk)
k of size Nk is L2-optimal for the marginal distribution µk of Xk at

every time k∈ {0, . . . , n}. Let
N = N0 + · · ·+Nn

denote the total number of points (or nodes) used in the quantization tree.

If one sets Nk = N̄ := N
n+1 , or N−1

n if X0 is deterministic so that N0 = 1, it follows from the upper-

bound (1.27) that resulting approximation provided by the quantization tree of the Snell envelope related to
the optimal stopping problem (1.33) and their related réduites satisfy∣∣E û0(X̂Γ0

0 )− Eu0(X0)
∣∣ ≤ ‖Û0 − U0‖L2(P) ≤ CX

√
nN̄−

1
d .

In the special case where the Markov chain is the Euler scheme (X̄n
tnk

)0≤k≤n with step T
n of a diffusion

process with drift b and diffusion coefficient σ satisfying appropriate Lipschitz assumptions, then the constant
CX = C[b]Lip,[σ]Lip,T does not depend on the time discretization parameter n as shown beforehand in the error

bound (1.31). In particular, if X0 = x0∈ Rd (with the obvious notations un and ûn) we have∣∣ûn0 (x0)− un0 (x0)
∣∣ ≤ Cb,σ,T (N − 1)−

1
dn

1
d+ 1

2 .
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Although we will not discuss this point here in details, we must have in mind that the time discretization
error bounds established in [2] behave under a Lipschitz continuity assumption on b, σ and f , in x uniformly in
t∈ [0, T ], is O(n−α) with α = 1

2 when the discrete time approximating Markov chain is the Euler scheme. When
the discrete time approximating Markov chain is the sampled process itself (Xtnk

)0≤k≤n and the function f is
quasi-convex with linear growth in x uniformly in t∈ [0, T ], the rate holds with α = 1 (this class of functions
includes convex functions f with linear growth in x and functions having a Lipschitz continuous gradient ∇xf
in x uniformly in t in both cases).

In fact, especially in a diffusion framework, it is important for practical purposes to optimize the shape
or the design of the quantization tree, i.e. the sizes Nk of the grids, subject to the above global constraint∑

0≤k≤nNk = N . The idea is to take advantage of the non asymptotic bound (2.38) to bound the mean
quadratic quantization error of each marginal i.e.

min
N0+···+Nn=N

n∑
k=0

N
− 2
d

k

∥∥X̄n,x
tnk

∥∥2

L2+η(P)

subject to the additional constraint that all the Nks are non-zero positive integers. In practice,
∥∥X̄n,x

tnk

∥∥
L2+η(P)

is

not known explicitly and one may replace this quantity by its classical upper bound,
∥∥X̄n,x

tnk

∥∥
2+η
≤ eCb,σ,T tnk (1 +

‖X0‖L2+η(P)) which holds true as soon as both functions b and σ satisfy a linear growth assumption (in x, uni-
formly in t∈ [0, T ]): this follows from (1.20) after integrating the starting value with respect to the distribution
of X0 (see [11,56] among others for details). This (approximately) leads to

Nk =

 a
2d
d+2

k∑n
`=0 a

2d
d+2

`

N

 ∨ 1

where ak is a known upper-bound of
∥∥X̄n,x

tnk

∥∥
L2+η(P)

for every k = 0, . . . , n. The resulting bound is of the form

∣∣ûn0 (x0)− un0 (x0)
∣∣ ≤ Cb,σ,TN− 1

d

(
n∑
k=0

a
2d
d+2

k

) 1
2 + 1

d

.

B Numerical tests: Extensive numerical experiments on quantization based schemes for pricing American op-
tions, but also non-linear filtering, stochastic control have been carried out, including the introduction and
analysis of a Richardson-Romberg extrapolation method which again dramatically improves the convergence
rate. For more details we refer to [2–4, 65] (the last reference is devoted to both Voronoi and dual vector
quantizations applied to the the pricing of American style derivatives) and [19, 62, 68] (for non-linear filtering,
stochastic control applied to Finance) and the references therein.

3. How to get optimal (quadratic) quantization?

The foundation of almost every numerical method devoted to the computation of optimal quantizers is to

establish the differentiability of the Lp-distortion function Gp,N (at level N). In what follows ∂A = Ā\
◦
A

denotes the boundary of A ⊂ Rd.

3.1. Differentiability of the (quadratic) distortion function

Proposition 3.1. Let X∈ L2
Rd(P) with distribution P

X
= µ. If x = (x1, . . . , xN )∈ (Rd)N has pairwise distinct

components (i.e. xi 6= xj, i 6= j) and P
(
X ∈

⋃
1≤i≤N

∂Ci(x)
)

= 0 (with an obvious abuse of notation concerning
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the Voronoi cells), the L2-distortion function G2,N is differentiable at x and

∇G2,N (x) = 2

(∫
Ci(x)

(xi − ξ)µ(dξ)

)
1≤i≤N

= 2
(
E1{X∈Ci(x)}(xi −X)

)
1≤i≤N

. (3.40)

Proof. First note that, as the N -tuple x has pairwise distinct components, all the interiors
◦
Ci (x), i = 1, . . . , N ,

of the Voronoi cells induced by x are non-empty. For every ξ /∈
⋃

1≤i≤N ∂Ci(x), i.e µ(dξ)-a.s., one has

∀ i∈ {1, . . . , N}, ∂

∂xi

(
min

1≤j≤N
|xj − ξ|2

)
= 1

{ξ∈
◦
Ci(x)}

∂|xi − ξ|2

∂xi
= 2 1

{ξ∈
◦
Ci(x)}

(xi − ξ).

On the other hand, for every x, x′∈ (Rd)N , the function G2,N is locally Lipschitz continuous since

|G2,N (x′)− G2,N (x)| ≤
∫
Rd

∣∣ min
1≤j≤N

|xj − ξ| − min
1≤j≤N

|x′j − ξ|
∣∣( min

1≤j≤N
|xj − ξ|+ min

1≤j≤N
|x′j − ξ|

)
µ(dξ)

≤ max
1≤j≤N

|xj − x′j |
∫
Rd

(
max

1≤j≤N

(
|xj |+ |ξ|

)
+
(

min
1≤j≤N

|xj |+ |ξ|
))
µ(dξ)

≤ Cµ|x− x′|∞
(

1 + |x|∞ + |x′|∞
)
.

As a consequence, G2,N is differentiable at x by the local interchange Lebesgue differentiation Theorem. �

Remarks. In fact, when p > 1, the Lp-distortion function with respect to an Euclidean norm is also differen-
tiable at N -tuple having pairwise distinct components with gradient

∇Gp,N (x) = p

(∫
Ci(x)

xi − ξ
|xi − ξ|

|xi − ξ|p−1µ(dξ)

)
1≤i≤N

= p

(
E
(
1{X∈Ci(x)}

xi −X
|xi −X|

|xi −X|p−1
))

1≤i≤N
.

An extension to the case p∈ (0, 1] does exist under appropriate continuity and integrability assumptions on the
distribution µ so that µ({a}) = 0 for every a and the function a 7→

∫
Rd |ξ − a|

p−1µ(dξ) remains bounded on

compact sets of Rd. A more general differentiation result exists for strictly convex smooth norms (see Lemma 2.5,
p.28 in [33]).

bigskip This leads to the following corollary which is the starting point of all numerical methods to compute
optimal (or at least locally optimal) quantizers.

Corollary 3.1. Let X∈ L2
Rd(P) with distribution µ such that card

(
supp(µ)

)
≥ N .

(a) Any grid Γ(N) attached to an N -tuple x(N) which minimizes the quadratic distortion function G2,N is a

stationary quantizer of full size N in the sense of Definition 2.1. (“attached” means Γ(N) = {x(N)
i , 1≤ i≤N}.)

(b) Any grid Γ
N

attached to a critical point x(N) of G2,N , hence having a Voronoi partition with µ-negligible
boundary, is a stationary quantizer at level (at most) N .

Proof. (a) As card(supp(µ)) ≥ N , any optimal grid has full size N by Proposition 1.1(b) and can be reduced,
up to a permutation, to an N -tuple x(N). Moreover, owing to Theorems 4.1 and 4.2 in [33] (p.37-38), we know

that µ
( ⋃

1≤i≤N

∂Ci(x)
)

= 0 and µ
(
Ci(x

(N))
)
> 0, i = 1, . . . , N , i.e. the boundaries of its Voronoi partition is

µ-negligible. Then, one easily checks that x(N) is in fact a both global and local minimum of G2,N and G2,N is

differentiable at x(N) so that ∇G2,N

(
x(N)

)
= 0 i.e.

∀ i∈ {1, . . . , N},
∫
Ci(x(N))

(xi − ξ)µ(dξ) = 0.
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Or, equivalently,

x
(N)
i =

∫
Ci(x(N)) ξµ(dξ)

µ(Ci(x(N)))
= E

(
X |X∈ Ci(x(N))

)
which in turn can be rewritten

X̂Γ(N)

= E
(
X | X̂Γ(N))

where Γ(N) =
{
x

(N)
i , i = 1, . . . , N

}
.

Claim (b) is obvious. �

3.2. Competitive Learning Vector Quantization

The Competitive Learning Vector Quantization (CLV Q) is a stochastic gradient descent deriving from the
quadratic distortion G2,N , viewed as a potential function to be minimized. Let us start by its mean field version.

3.2.1. The deterministic “batch” algorithm.

First let us consider the classical – deterministic – gradient descent associated to G2,N , also known as “batch”
CLV Q to k-means. It is a recursive zero search procedure of its gradient ∇G2,N formally reading

x(k + 1) = x(k)− γk+1∇G2,N

(
x(k)

)
, x(0)∈

(
Hull

(
supp(µ)

))N
, (3.41)

where Hull
(
supp(µ)

)
denotes the closed convex hull of the support of the distribution µ. The sequence (γk)k≥1

is a sequence of positive step parameters satisfying the so-called decreasing step assumptions
∑
k≥1 γk = +∞

and
∑
k≥1 γ

2
k < +∞. We will also assume in the present case that γk∈ (0, 1), k ≥ 1, for reasons to be explained

further on. When ∇G2,N is itself differentiable (enough) one could replace this step γk+1 by the inverse of
the Hessian of H

(
G2,N

)
, leading to the classical Newton-Raphson procedure. It opens the door to many of its

variants like Levenberg-Marquardt algorithm, etc.
The procedure (3.1) is well-defined if the distribution µ assigns no mass to hyperplanes and x(0) has pairwise

distinct components. Indeed, when these conditions are fulfilled, one shows that xi(k + 1) lies in the interior
of the Voronoi cell of xi(k) which prevents the components to get stuck as a result of an iteration. Thus, the
existence of ∇G2,N for the next iteration is preserved.

Unfortunately lim infmaxi |xi|→+∞ G2,N (x) =E |X|2<+∞ and one only has that lim inf
mini |xi|→+∞

G2,N (x) = +∞.

Hence, the function G2,N is not a standard potential function for optimization purposes and the classical con-
vergence results from optimization theory do not apply: the boundedness of the sequence (x(k))k≥0 cannot be
established, except when µ itself has a compact support, so that its closed convex hull is compact too.

3.2.2. The CLV Q as a stochastic gradient descent.

In fact, there is an upstream problem: beyond dimension d ≥ 2 or 3, an accurate computation of the
components of G2,N (x) for a given x∈ (Rd)N becomes too costly to be used in such a recursive procedure as
soon as µ has an infinite support (especially if µ has no atom). When computing simple integrals on Rd, it is well-
known that, as the dimension d increases, one has to switch from cubature formulas to Monte Carlo simulations,
provided µ can be simulated. For the same reason and, in the same spirit, we will switch from the above
deterministic gradient descent to a stochastic gradient descent, taking advantage of the representations (3.40)
of ∇G2,N as an expectation. We also assume that the distribution µ can be simulated at reasonably low cost.

Such a stochastic gradient descent formally reads in our setting (the factor 2 is dropped on purpose)

x(k + 1) = x(k)− γk+1

(
1{Xk+1∈Ci(x)}(xi(k)−Xk+1)

)
1≤i≤N , x(0)∈

(
Hull

(
supp(µ)

))N
, (3.42)

x(0) having pairwise distinct components. We simply replaced mutatis mutandis the expectation operator E by
a sequence (Xk)k≥1 of independent copies of X defined on a probability space (Ω,A,P).
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The iterates (x(k))k≥0 are now random vectors (though we will still denote them by script letters). When
µ assigns no mass to hyperplanes, one shows that the algorithm is well defined i.e. no components of x(k + 1)
get stuck as a result of an iteration. As could be expected from the deterministic framework, and for the same
reason induced by the behavior of G2,N at infinity, it is all the more hopeless to apply the classical counterpart
convergence theorems for stochastic gradient like those established, e.g. in [8, 27, 41]. Of course, its main asset
is that it can be implemented very easily when µ is simulatable. In fact, under various names (k-means,
CLV Q, nuées dynamiques, etc), it has been widely implemented for years in the communities of Artificial
Neural Networks, Data Mining and, more recently, Machine Learning, as a an unsupervised clustering procedure
producing prototypes and Voronoi cells (classifiers) to perform automatic classification (see below).

3.2.3. The special case of an empirical measure (Data mining).

Note however that, when µ is the empirical measure of a dataset (ξk)1≤k≤n given by (1.9), the deterministic
gradient descent (3.41) at a given level N � n can always be implemented since each computation of ∇G2,N

will require n computations of the known function appearing inside the expectation operator in (3.40). In this
framework, the procedure is also known as Forgy’s algorithm or batch k-means procedure by practitioners in
Data mining. However, even in that case, it can be too much time consuming in practice when the size n of the
dataset is too large. So, practitioners often come back to the above stochastic gradient by sampling at random
uniformly in the dataset the input datum at each iteration which can be seen as bootstrapping.

When implemented at level N ≥ 1 for optimal classification purposes, the resulting procedure is designed to
– hopefully - converge toward a(n at least local) minimum of G2,N . If so, it produces N prototypes of the dataset
(the resulting N -quantizer). The classification is finally obtained by assigning to each datum of the dataset the
label of its Voronoi cell among the prototypes.

3.2.4. Stochastic Gradient Descent formula: the CLV Q step by step.

At this stage, it is time et us describe more precisely what this CLV Q algorithm (3.42) really does from a
geometric point of view at each iteration.

Still starting from a starting N -tuple x(0) =
(
x1(0), . . . , xN (0)

)
in
(
Hull

(
supp(µ)

))N
, we update the proce-

dure from k to k + 1 in a two fold procedure which can be analyzed and interpreted as follows: let x(k) :=(
x1(k), . . . , xN (k)

)
∈ (Rd)N be the value of the state vector of the algorithm at the kth iteration (the running

vector of “prototypes”).

B Competition phase: This phase is also known as the winner selection stage; it amounts to solving the following
nearest neighbour search

iwin(k + 1) ∈ argmini∈{1,...,N}
∣∣xi(k)−Xk+1

∣∣.
When the input Xk+1 falls in a general position (i.e. not on a median hyperplane), iwin(k + 1) is uniquely

defined. In case of conflict, when Xk+1 falls on a median hyperplane and has subsequently (at least) two nearest
neighbours, a rule to determine the winner has to be defined. Picking up iwin(k + 1) at random among all the
nearest neighbours seems the most natural rule. Note that when µ assigns no mass to hyperplanes (e.g. because
it is absolutely continuous) this situation P-a.s. never occurs.

B Learning phase: During this second phase, the current N -tuple set of elementary quantizers (or prototypes)
x(k) = (xi(k))i=1,...,N is updated to incorporate the information provided by the input Xk+1. As a result
the nearest neighbour xiwin(k+1)(k) is moved closer to k + 1 by a dilatation centered at Xk+1 with a ratio in
1− γk+1∈ (0, 1) since γk+1∈ (0, 1). To be more precise xiwin(k+1)(k + 1) = Dilat(Xk+1, 1− γk+1)(xiwin(k+1)(k)),

xi(k + 1) = xi(k) for every i 6= iwin(k + 1)

where Dilat(ξ, ρ) denotes the dilation centered at ξ with ratio ρ∈ (0, 1) defined by

Dilat(ξ, ρ)(u) = ξ + ρ(u− ξ), u∈ Rd.
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Note that, still because the step γk ∈ (0, 1), xiwin(k + 1) is a convex combination of xiwin(k) and Xk+1.

Consequently, as the pairwise distinct components of x(0) lie in Hull
(
supp(µ)

)N
, a straightforward induction

shows that so will be the case of all the iterations x(k), k ≥ 0.
One also deduces that, if the N -tuple x(k) has pairwise distinct components, this feature is preserved by the

learning phase. So that the above procedure is well-defined, up to the convention to be made in case of conflict
between several components xj(k) in the competitive phase.

The name of this stochastic optimization algorithm – Competitive Learning Vector Quantization – is a
synthesis of these two phases.

The heuristics is that the CLV Q procedure a.s. converges at least toward an local minimum of G2,N . It
has been rigorously proved in few situations (e.g. when d = 1 and µ has a log-concave density on a bounded
interval). But one must have in mind that, as soon as the structural dimension d increases, the “landscape”
of the potential function G2,N – the quadratic distortion – has many local minima and various kinds of saddle
points. Then the convergence toward a the true minimum is not granted, as confirmed by numerical experiments.
For partial results on the convergence of the CLV Q algorithm, we may refer to [55] in the special case where
X has a compactly supported distribution. For a weak rate of convergence, namely a Central Limit Theorem
under the assumption that the algorithm converges toward the global minimum, we refer to [69] f.

Several Lp-variants have also been investigated more recently, in particular the k-median case corresponding
to p = 1 (see [16]).

3.2.5. Adaptive on line computation of the “companion parameters”.

Assume that the above CLV Q procedure a.s. converges toward an N -tuple x(N,∗) =
(
x

(N,∗)
1 , . . . , x(N,∗)

N

)
∈

Hull
(
supp(µ)

)N
. One can compute on line the associated weights and the resulting mean quadratic quantization

error as follows:

B Weights w
(N,∗)
i = P(X̂x(N),∗

= x
(N,∗)
i ), i = 1, . . . , N : for every i = 1, . . . , N ,

wi(k + 1 := (1− γk+1)wi(k) + γk+11{iwin=i}
a.s.−→ w

(N,∗)
i on the event

{
x(k)→ x(N,∗)

}
.

B Quadratic Distortion error G2,N (x) = E
∣∣min1≤i≤N |X − xi|

∣∣2:

GN (k + 1) := (1− γk+1)GN (k) + γk+1|xiwin(k+1)(k)−Xk+1|2
a.s.−→ G2,N (x(N,∗)) on the event

{
x(k)→ x(N,∗)

}
.

Note that, since the “ingredients” involved in the above companion procedures are those involved in the
competition and learning phases, they add (almost) no extra C.P.U. time cost, especially if one has in mind
that the costly part of the algorithm, as well as that of the Lloyd procedure presented below, lies in the nearest
neighbour search of the “competition phase”. For a proof of the a.s. the convergence of the above online adaptive
version of the companion procedures, we refer to [2].

In some way the CLVQ algorithm can be seen as a Non Linear Monte Carlo Simulation devised to design

an optimal skeleton of the distribution µ of X, this skeleton being the distribution of X̂x(N,∗)
(with an obvious

abuse of notation), that is the N -tuple x(N,∗) itself and its companion weight vector
(
w

(N,∗)
i

)
1≤i≤N .

3.3. A fixed point algorithm: Lloyd’s procedures

3.3.1. The batch Lloyd procedure

This time, we start directly from the stationary Equation (2.35). The idea is to use this identity to devise a
fixed point procedure. Let Γ(0) ⊂ Hull

(
supp(µ)

)
(with N pairwise distinct elements). Then, for every integer
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k ≥ 0, one updates the current grid Γ(k) as follows:
(i)Centroid updating: X̃Γ(k+1) = E

(
X | X̂Γ(k)

)
=

E
(
X1{X∈Ci(Γ(k)}

)
P(X∈Ci(Γ(k))) ,

(ii)Voronoi cell updating: X̂
Γ(k+1) ← X̃Γ(k+1).

(3.43)

This procedure clearly lives in Hull
(
supp(µ)

)
by a convexity argument derived form (i). Note that (i) can

be re-written (with obvious notations) as

xi(k + 1) = E
(
X | X̂Γ(k) = xi(k)

)
, i = 1, . . . , N.

As set, when µ has an infinite support, this procedure is a pseudo-algorithm as it requires to be implemented
the computation of the the quantities E

(
X1{X∈Ci(Γ(k))}

)
and P

(
X∈ Ci(Γ(k))

)
at each iteration k.

3.3.2. Randomized Lloyd’s procedure.

There are basically two cases of application for the batch Lloyd procedure:

– When µ is the empirical measure of a dataset given by (1.9), the former batch Lloyd procedure can be
implemented directly, at least when this dataset is not too large: one computes at each iteration the expectation
and the probability appearing in the ratio (3.43)(i).

– If the distribution µ has an infinite support, the situation becomes more involved. When d = 1, it is often
possible to compute the two quantities of interest which appear in the conditional expectation of (3.43)(i) since
both are terms of the ratio are 1-dimensional integrals. This is sometimes still possible in low dimension, say
d = 2, by using appropriate cubature formulas for numerical integration on convex sets, see e.g. the algorithms
available on the website

www.qhull.org

and the references therein.
Nevertheless, as d increases, this becomes rapidly intractable. In order to compute both expectations

in (3.43)(i) there is no alternative to the Monte Carlo (or Quasi-Monte Carlo) methods. One replaces the
distribution µ of X by the empirical measure µ

M
of a large M -sample of (independent copies) (Xm)1≤m≤M of

X defined a probability space (Ω,A,P), namely

µ(dξ) = P
X

(dξ)← µ
M

(ω, dξ) =
1

M

M∑
m=1

δXm(ω)(dξ),

considering that, as M increases, both distributions µ(dξ) and µ
M

(ω, dξ) are P(dω)-a.s. get close enough. Then
phase (i) (centroid updating) becomes Γ(k + 1) =

{
xi(k + 1,M), i = 1, . . . , N

}
where

(i)
M
≡ xi(k + 1,M) =

∑M
m=1Xm1{Xm∈Ci(Γ(k))}

card
(
{1 ≤ m ≤M, Xm ∈ Ci(Γ(k))}

) , i = 1, . . . , N. (3.44)

This algorithm is often called randomized Lloyd’s algorithm. Like for the CLV Q algorithm, the convergence
results for the Lloyd procedure are still partial, even in its original (deterministic) form (3.43) (see e.g. [67]).

Two examples of (nearly) optimal quadratic quantizations are reproduced in Figures 2 and 3. They have
been obtained by a hybrid stochastic optimization procedure mixing the randomized Lloyd algorithm and the
CLV Q algorithm. Furthermore, it relies on a “splitting approach” that is a level-by-level computation of the
grids (see [59] as concerns the normal distribution).

For more details about these numerical stochastic optimization procedures used to produce optimal quantizers
at level N , we refer e.g. to [8, 59] for CLV Q, [25, 40, 67] for (randomized) Lloyd’s procedure or more applied
textbooks like [30].
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Figure 2. Optimal N -quantizer (N = 500) of the bi-variate Normal distribution depicted with
its Voronoi tessellation (with J. Printems).

3.4. Nearest neighbor search: how to speed it up. . .

In both above described procedures – CLV Q and randomized Lloyd’s procedures – the most time consuming
phase is by far the nearest neighbour search which determines the Voronoi cell in which the new input Xk+1

falls at step k+ 1. This nearest neighbour search is well-known to have an exploding complexity when d and N
are large. Its reduction or, at least, its control is known as a highly challenging problem in computer science.

There are several methods to speed it up, at least in medium dimension. We consider in what follows, either
an M -sample (Xm(ω))m=1,...,M obtained by simulation of the distribution µ or a true dataset denoted in both
cases by (ξm)m=1,...,M to alleviate notations.

B Partial Distance Search principle (PDS, Chen). This idea is quite simple and very efficient: a nearest
neighbour search amounts to check, in a canonical Euclidean framework, whether a squared norm |ξ|2 =
|(ξ1, . . . , ξd)|2 = (ξ1)2 + · · ·+ (ξd)2 is lower than a record value, say δ2

rec.

To test the inequality |ξ|2 < δ2
rec, one proceeds by induction on the coordinates as described in Algorithm 1

below.
The testing procedure is stopped as soon as the partial computation of the squared norm is higher than

the record value. This procedure is known as Chen’s Partial Distance Search protocol. Adaptation to other
common norms is straightforward. It can still be improved in medium dimensions, say up to d = 10, by storing
the data in a tree structure as described below.

B Space partitioning tree (see [29]). As a first step, one divides the dataset into two subsets of size M
2 according

to the median of the first coordinate. Then, one divides again each sub-sample following the second coordinate
and so on. At each step, the procedure is applied either to a new coordinate or, when the dimension is exhausted,
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Figure 3. Optimal N -quantization (N = 250) of
(
W1, supt∈[0,1]Wt

)
depicted with its Voronoi

tessellation, W standard Brownian motion (with B. Wilbertz).

Algorithm 1 (Chen’s Partial Distance Search protocol)

record = true;
aux = 0;
` = 1
while aux+ (ξ`)2 < δ2

rec do
` := `+ 1;

end while
if ` = d+ 1 then
record = false;

end if

to the one with the highest index. Each leaf of the resulting tree is labelled. The data are coded in the tree by
their leaf label and a local index inside its assigned leaf. After this pre-processing phase, whose complexity is
O(M logM), the search cost of a single datum in the tree is O(logM). It is commonly shared by users that the
depth of the tree should be fixed to 7 to get the best compromise. In many situations of interest, this choice
seems more or less independent of the size of the dataset and its structure.

B Principal Axis Tree (McNames, see [51]). The additional improvement brought by this approach lies in a
preliminary Principal Component Analysis (PCA) inducing a change of coordinates which makes the search
more efficient, especially in view of applying the PDS principle: in the new basis induced by the PCA the
absolute value of coordinates tends to decrease when the coordinate index increases implying that Chen’s PDS
procedure stops sooner in average.

B Rough Self-Quantization pre-processing (Corlay, see [17], chapter 1). The underlying idea is completely
different and competes with the PAT approach when designing the search tree. It consists of a cascade of rough
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pre-quantizations of the dataset with N0 (N0 ≈ 7) prototypes (or classes) at each level. This again speeds up
Chen’s PDS principle of course.

A different approach, not detailed here, is to devise approximate nearest neighbor search procedures, often
based on some anchor points (see [30] for examples and the references therein).

3.5. Where to download optimal quantization grids?

Optimized quadratic quantization grids of the d-dimensional normal distributions N (0; Id), computed on the
occasion of various numerical experiments (pricing of multi-asset American style options, portfolio manage-
ment, nonlinear filtering, swing option pricing, etc) by the hybrid “splitting method” described above can be
downloaded from the website

www.quantize.maths-fi.com

for N = 1 up to 104 and d = 1, . . . , 10. The precise procedure is described in a companion file which can be
downloaded. On this website are also made available functional quantization grids of the standard Brownian
motion over the interval [0, 1], the Brownian bridge, as well as a detailed procedure to compute grids for the
(normalized) Ornstein-Uhlenbeck process and its bridge (6).

4. Greedy quantization

4.1. What is greedy quantization?

We still consider p∈ (0,+∞) and X : (Ω,A,P) → Rd an Lp-integrable random vector. The starting idea of
optimal greedy quantization is to determine a sequence (aN )N≥1 of points of Rd which is recursively optimal
step by step or level by level with respect to the Lp-mean quantization criterion. We mean that, if we denote
a(N) = {a1, . . . , aN }, N ≥ 1, then the points a

N
are recursively defined by a(0) = ∅ and

aN+1∈ argminξ∈Rdep
(
a(N) ∪ {ξ}, X

)
, N ≥ 0. (4.45)

Note that this section is no longer a survey but is made of more recent material, developed in an extended
version in [50]. A priori the sequence is not uniquely defined since the above function may attain its minimum
at several points of Rd. Note that if N = 0, a1 is simply the Lp-median of the distribution µ of X and is
subsequently unique whenever p > 1 by a strict convexity argument. This idea to design not only optimal
N -tuples but an optimal sequence which, hopefully, will produce N -tuples with a rate optimal behaviour as
N → +∞ is very natural and can be compared to sequences with low discrepancy implemented in Quasi-Monte
Carlo methods. In fact such sequences have already been investigated but only in an L1 setting when X has a
compact support as a model of short term planning (by contrast with long term planning, see [12]). Our aim
in this section is to solve this greedy optimization problem for general distributions µ = P

X
in any Lp-space in

two directions: first establish the existence of such Lp-optimal greedy sequences and then evaluate the rate of
decay of ep(a

(N), X) to 0 as the quantization level N goes to infinity.

For convenience, we will introduce for every subset A ⊂ Rd and every ξ ∈ Rd, the notation dist(ξ, A) =
infa∈A |ξ−a| for the distance between ξ and A, where | . | denotes the canonical Euclidean norm in what follows.
However, note that except for algorithmic aspects the results of this section are true with any norm on Rd.
B(ξ, r) will denote the closed ball centered at ξ∈ Rd with radius r > 0.

Proposition 4.1. (a) If X ∈ LpRd(P), then the sequence of optimization problems (4.45) admits at least one

solution (aN )N≥1 where a1 is the Lp-median of the distribution µ. Moreover, the sequence
(
ep(a

(n), X)
)

1≤n≤N
is (strictly) decreasing as long as N ≤ |supp(µ)| (so that an /∈ a(n−1), 1 ≤ n ≤ N).

6 All downloads for scientific and non-commercial purposes are free of charges.
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(b) Any solution (aN )N≥1 to (4.45) satisfies lim
N
ep(a

(N), X) = 0 i.e.

lim
N→+∞

∫
Rd

min
1≤i≤N

|ξ − ai|pµ(dξ) = 0.

Such a solution is called an Lp-optimal greedy quantization sequence.

Proof. (a) We proceed by induction. When N = 1, the existence of a1 obviously follows from the fact that
a 7→ E(|X − a|p) is continuous and goes to infinity as |a| → +∞. Assume there exists a1, . . . aN such that
ep(a

(k), X) = mina∈Rd ep(a
(k−1) ∪ {a}, X) for k = 2, . . . , N .

If supp(µ) ⊂ {a1, . . . , aN } then for every a ∈ Rd, ep(a(N) ∪ {a}, X) = ep(a
(N), X). Otherwise, let ξ∗ ∈

supp(µ) \ {a1, . . . , aN }. It is clear that |ξ − ξ∗| < dist(ξ, a(N)) on the ball B
(
ξ∗, 1

4dist(ξ∗, a(N))
)

which satisfies

µ
(
B
(
ξ∗, 1

4dist(ξ∗, a(N))
))
> 0. Consequently, ep

(
a(N) ∪ {ξ∗}, X

)
< ep

(
a(N), X

)
. Now let

K0
N+1 =

{
ξ∈ Rd | ep(a(N) ∪ {ξ}, X) ≤ ep(a(N) ∪ {ξ∗}, X)

}
.

This is a closed non-empty set of Rd. Now let (ξk)k≥1 be a sequence of elements of K0
N+1 such that |ξk| → +∞.

as k → +∞. It follows from Fatou’s Lemma that

lim inf
k

ep(a
(N) ∪ {ξk})p ≥

∫
Rd

lim inf
k

min
(
dist(ξ, a(N))p, |ξ − ξk|p

)
µ(dξ)

=

∫
Rd

dist(ξ, a(N))pµ(dξ)

= ep(a
(N), X)p > ep(a

(N) ∪ {ξ∗}, X)p.

This yields a contradiction which in turn implies that K0
N+1 is a compact set. On the other hand, ξ 7→

ep(a
(N) ∪ {ξ}, X) is clearly Lipschitz continuous on Rd, hence it attains its minimum on K0

N+1 which is clearly
its absolute minimum.

(b) It is clear that, for every ξ∈ Rd, min1≤i≤N |ξ − ai| is non-increasing and converges toward inf
N≥1
|ξ − a

N
| so

that by the Lebesgue dominated convergence theorem (|ξ − a1|∈ L1(µ)), one has

ep(a
(N), X)p ↓ `∞ :=

∫
Rd

inf
N≥1
|ξ − aN |pµ(dξ).

Let a(∞) = {a
N
, N ≥ 1}. If `∞ 6= 0, then there exists ξ0 ∈ supp(µ) such that ε0 = dist(ξ0, a

(∞)) > 0 and, for
every ξ∈ B(ξ0,

ε0
4 ), dist(ξ, a(N)) ≥ 3

4ε0 so that∫
B(ξ0,

ε0
4 )

dist
(
ξ, a(∞)

)p
µ(dξ) ≥ η0 with η0 =

(
3ε0

4

)p
µ
(
B(ξ0,

ε0

4
)
)
.

Let N0 be a positive integer such that,∫
Rd

dist
(
ξ, a(N0)

)p
µ(dξ) ≤ `∞ +

η0

2

(
1− 1

3p

)
.

We consider the (N0 + 1)-quantizer a(N0) ∪ {ξ0}. On the one hand,∫
B(ξ0,

ε0
4 )

dist
(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤

(ε0

4

)p
µ
(
B(ξ0,

ε0

4
)
)

=
η0

3p
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and, on the other hand,∫
cB(ξ0,

ε0
4 )

dist
(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤

∫
cB(ξ0,

ε0
4 )

dist
(
ξ, a(N0)

)p
µ(dξ)

≤
∫
Rd

dist
(
ξ, a(N0)

)p
µ(dξ)−

∫
B(ξ0,

ε0
4 )

dist
(
ξ, a(N0)

)p
µ(dξ)

≤ `∞ +
η0

2

(
1− 1

3p

)
− η0

so that ∫
Rd

dist
(
ξ, a(N0) ∪ {ξ0}

)p
µ(dξ) ≤ `∞ +

η0

2

(
1− 1

3p

)
− η0 +

η0

3p
< `∞

which yields a contradiction. Hence `∞ = 0 which completes the proof. �

4.2. Greedy quantization is rate optimal

4.2.1. The main result

In this section we answer the question whether a greedy sequence may be rate optimal i.e. that ep(a
(N), X)

goes to zero at the same rate as a sequence of optimal quantizers at level N when N → +∞. Following [36], we
define for every b∈ (0,+∞) the b-maximal function associated to a greedy sequence (aN )N≥1 by

∀ ξ∈ Rd, Ψb(ξ) = sup
N≥1

λd
(
B(ξ, bdist(ξ, a(N)))

)
µ
(
B(ξ, bdist(ξ, a(N)))

) ∈ [0,+∞].

It is clear that Ψb(ξ) > 0 for every ξ 6= a1 (Lp-median).

Note that this notion of maximal function (originally introduced in [36]) can be naturally defined with
respect to a sequence of grids (ΓN )N≥1 where ΓN has size N . The theorem below yields a criterion based on
the integrability of a maximal function Ψb which implies that an Lp-optimal greedy quantization sequence is
Lp-rate optimal (in the sense of Zador’s theorem). Practical easy-to-check criterions are given further on.

Theorem 4.1. Let p ∈ (0,+∞) and let µ = P
X

be such that

∫
Rd
|ξ|pµ(dξ) < +∞. Assume that there exists

b∈ (0, 1
2 ) such that Ψb∈ L

p
p+d (µ). Then

lim sup
N

N
1
d ep(a

(N), X) < +∞.

Proof. First, if µ is a Dirac mass δa for some a∈ Rd, then a1 = a and ep(a
(N), X) = 0 for every integer N ≥ 1.

Otherwise, we rely on the following micro-macro inequality established in [36] (see Equation (3.4) in the proof
of Theorem 2).

∀ ξ∈ Rd, dist(ξ, a(N))p ≤ Cp,b

µ
(
B(y, bd(y, a(N)))

)(ep(a(N), X)p − ep(a(N) ∪ {ξ}, X)p
)

where b∈ (0, 1
2 ) and Cp,b is a positive real constant depending on p and b. Then, it follows that

ep(a
(N) ∪ {ξ}, X)p ≤ ep(a(N), X)p − 1

Cp,b

µ
(
B(ξ, bdist(ξ, a(N)))

)
λd
(
B(ξ, bdist(ξ, a(N)))

)bddist(ξ, a(N))p+dVd
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where Vd denotes the hyper-volume of the unit ball with respect to the current norm on Rd i.e. Vd =
λd
(
B| . |(0; 1)

)
. This implies that

ep(a
(N) ∪ {ξ}, X)p ≤ ep(a(N), X)p − 1

C̃p,b,d

1

Ψb(ξ)
dist(ξ, a(N))p+d

where C̃p,b,d = Cp,b/(b
dVd)∈ (0,+∞). Note that µ({a1}) < 1 since µ is not a Dirac mass, so that∫

Rd
Ψ

p
p+d

b dµ > 0.

Consequently, as Ψb ∈ L
p
p+d (µ), we can define the probability distribution ν = κb,p,d Ψ

p
p+d

b .µ (where κb,p,d =( ∫
Rd Ψ

p
p+d

b dµ
)−1

∈ (0,+∞) is a normalizing real constant). Then, integrating the above inequality with respect

to ν yields ∫
Rd
ep
(
a(N) ∪ {ξ}, X

)p
ν(dξ) ≤ ep(a(N), X)p − 1

C̃p,b,d

∫
Rd

dist(ξ, a(N))p+d
ν(dξ)

Ψb(ξ)
.

Jensen’s Inequality applied to the convex function u 7→ u1+ d
p yields

∫
Rd

dist(ξ, a(N))p+d
ν(dξ)

Ψb(ξ)
≥

(∫
Rd

dist(ξ, a(N))p
ν(dξ)

Ψb(ξ)
p
p+d

)1+ d
p

= κ
1+ d

p

b,p,d

(∫
Rd

dist(ξ, a(N))pµ(dξ)

)1+ d
p

= κ
1+ d

p

b,p,d ep
(
a(N), X

)p+d
.

On the other hand, it is clear that

ep
(
a(N+1), X

)p ≤ ∫
Rd
ν(dξ)ep

(
a(N) ∪ {ξ}, X)

)p
so that, finally, if we set A

N
= ep(a

(N), X)p, N ≥ 1, this sequence satisfies for every integer N ≥ 1, the recursive
inequality

A
N+1
≤ A

N
− κ̃b,p,dA

1+ d
p

N

where κ̃b,p,d = κ
1+ d

p

b,p,d/C̃r,b,d. The sequence (A
N

)N≥1 being non-negative, one classically derives the announced
conclusion. �

Remark. When µ has no absolutely continuous part with respect to the Lebesgue measure, it is likely that, like
for standard optimal vector quantization in Zador’s Theorem, this rate is not optimal. The natural conjecture
should be that greedy quantization sequence(s) go to 0 at the same rate as that obtained for sequences of

optimal quantizers which is not N−
1
d when the distribution µ is singular (see e.g. [33]).

We produce below easy-to-check criterions on µ borrowed (and slightly adapted) from [36] that ensure that
Ψb has the required integrability property so that any greedy sequence is rate optimal.

B The case of compactly supported distributions.
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Lemma 4.1 (see Lemma 1 in [36]). If X ∈ LpRd(P) has a distribution µ having an absolutely continuous

component and if (ΓN )N≥1 is a sequence of N -quantizers such that
∫
Rd dist(ξ,Γ

N
)pµ(dξ)→ 0 then the maximal

functions Ψb lie in all Lrloc(µ) for every r∈ (0, 1) i.e.

∀ r∈ (0, 1), ∀ b∈ (0,+∞), ∀R∈ (0,+∞),

∫
{|ξ|≤R}

ψb(ξ)
rµ(dξ) < +∞.

By combining this result (with r = p
p+d ) with Proposition 4.1, we derive the following proposition which

generalizes that stated in [12] for absolutely continuous distributions µ having a compact convex support on Rd.
Proposition 4.2 (Compact support). If X has a distribution µ with compact support, then any greedy Lp-
optimal sequence (a

N
)N≥1 is rate optimal i.e. satisfies

lim sup
N

N
1
d ep(X, a

(N)) < +∞.

B The case of non-compactly supported distributions with radial density functions

Lemma 4.2 (see Corollary 3 in [36]). Assume X∈ Lp+ηRd (P) for some η > 0 with an essentially radial distribution
µ = ϕ.λd in the sense that

ϕ = h(| . |0) on B| . |0(0, R)c with h : (R,+∞)→ R+, non-increasing and | . |0 a norm on Rd. (4.46)

Let (ΓN )N≥1 be a sequence of N -quantizers such that
∫
Rd dist(ξ,Γ

N
)pµ(dξ)→ 0. If there exists a real constant

c > 1 such that ∫
Rd
ϕ(c ξ)−

p
p+dµ(dξ) =

∫
Rd
ϕ(c ξ)−

p
p+dϕ(ξ)dξ < +∞ (4.47)

then Ψb∈ L
p
p+d (µ).

In fact Corollary 3 in [36] is stated to be used only with Lp-optimal quantizers so the above formulation
includes minor modifications. Combining this lemma with Theorem 4.1 yields the following proposition.

Proposition 4.3 (Non-compact support with radial density). Assume X ∈ Lp+ηRd (P) for some η > 0 with an
essentially radial distribution in the sense of (4.46). If ϕ satisfies (4.47), then any greedy Lp-optimal sequence
(a
N

)N≥1 is rate optimal i.e. satisfies

lim sup
N

N
1
d ep(X, a

(N)) < +∞.

This case includes e.g. all the (centered) hyper-exponential distributions of the form µ = ϕ.λd with

ϕ(ξ) = κa,b,c|ξ|c0 e−a|ξ|
b
0 , ξ∈ Rd, a, b > 0, c > −d

and | . |0 denotes any norm on Rd and subsequently all hyper-exponential distributions distributions since Lp-
mean-quantization errors is invariant by translation of the random vector X. In particular, this includes all
normal and Laplace distributions

Remark. In one dimension, (4.46) can be replaced mutatis mutandis by the following one-sided variant: there
exists R0, R

′
0∈ R, R′0 ≥ R0 such that

supp(µ) ⊂ [R0,+∞) and f|[R′0,+∞) is non-increasing. (4.48)

This criterion is e.g. satisfied by the gamma distributions on R+ (including the exponential distributions).

B The case of non-compactly supported distributions with possibly non-radial density functions.

A criterion for non-radial density functions can also be derived from Corollary 4 in [36], see [50] for details.
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4.2.2. Some additional remarks and two questions.

From now on, we denote by
(
a
N,p

)
N≥1

an Lp(µ)-optimal greedy quantization sequence and by
(
a(N),p

)
N≥1

the resulting sequence of N -quantizers.

B Optimal rate of decay. If E|X|p+η < +∞ for some η > 0 and µ = P
X

has a non-zero absolutely continuous
component ϕ.λd with respect to the Lebesgue measure, Zador’s Theorem implies

lim inf
N

N
1
d ep(a

(N), X) ≥ lim
N
N

1
d ep(X) = J̃p,d‖ϕ‖

1
p

L
p
p+d (λd)

> 0.

In that setting, we derive that ep(a
(N), X) � N− 1

d as N → +∞.

B About the sharpness of optimal greedy sequences. It is pointed out in [12] (see Theorem 4.10) that, by

contrast with what is observed with global optimization at level N (Zador’s Theorem), N
1
d ep(a

(N), X) usually
does not converge when (a

N
)N≥1 is a greedy Lp-optimal sequence. The counter-example is exhibited in the one-

dimensional framework for the uniform distribution U([0, 1]) where an L1-optimal greedy sequence (a
N,1

)N≥ is

analyzed. It is shown that for this sequence Nep
(
a(N),1, U([0, 1])

)
does not converge as N goes to infinity and

1 < lim infN
e1

(
a(N),1, U([0,1])

)
e1,N

(
U([0,1])

) < lim supN
e1

(
a(N),1,U([0,1])

)
e1,N

(
U([0,1])

) < +∞. Other numerical experiments reproduced

below in the quadratic case p = 2, still with U([0, 1]), on the one hand and, on the other hand, in [50], with the
scalar and bivariate normal distributions N (0; 1) and N (0; I2) (which have an unbounded support), strongly
suggest that, for more general absolute continuous distributions µ on (Rd,Bor(Rd)), Lp(µ)-optimal greedy
sequence(s) (a

N,p
)N≥1 satisfy

lim inf
N

ep
(
a(N),p, µ

)
ep,N

(
µ
) > 1.

However, no proof of this fact is known to us so far. As a consequence, owing to Theorem 2.2 (and the remark
that follows), this would prove that no subsequence extracted from an Lp(µ)-greedy optimal sequence (a

N,p
)N≥1

can produce a (subsequence)
(
a(N ′),p)N≥1 of asymptotically Lp-optimal N ′-quantizers for µ.

B Rate optimality of non-greedy sequences. Another natural question arises at this stage: “Are there rate
optimal sequences for the Lp-mean quantization error which are not solution to the greedy problem?”

To answer – positively – to this question, let us consider the celebrated dyadic Van der Corput (VdC )
sequence, viewed as a quantization sequence rather than a sequence with low discrepancy. Let us recall that
the VdC sequence is defined by

∀N ≥ 1, ξN =

r∑
k=0

nk
2k+1

where N = nr2
r + · · ·+ n0, ni∈ {0, 1}, i = 1, . . . , r. (4.49)

→ L1-mean quantization problem. Elementary computations carried out with the L1-mean quantization error
modulus, not reproduced here, show that

lim inf
N

Ne1(ξ1, . . . , ξN , [0, 1]) =
1

4
= J̃1,1 and lim sup

N
Ne1(ξ1, . . . , ξN , [0, 1]) =

9

32
=

9

8
× J̃1,1

where J̃1,1 = limN e1,N

(
U([0, 1])

)
. This lim inf is achieved by the subsequence N ′ = 2n−1, n ≥ 1, and the

lim sup with the subsequence N = 3
2 .2

n = 3.2n−1. So we can answer to the first question: it does exist rate

optimal sequences for the L1-mean quantization error which are not solutions to the greedy problem (4.45). In
fact this example shows that it even exists rate optimal sequences (ξN )N≥1 containing subsequence of quantizers

(ξ(N ′))N≥1 which are asymptotically L1-rate optimal quantizers: so is the case of the Van der Corput sequence
with the above subsequence N ′ = 2n−1.
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On the other hand the sequence
(
a(N),1

)
N≥1

has been investigated in [12], numerical computations carried

out in this paper still suggest that

lim inf
N

Ne1(a(N),1, U([0, 1])) ≈ 1, 02× J̃1,1 and lim sup
N

Ne1(a(N),1, U([0, 1])) ≈ 1, 09× J̃1,1.

The second approximate asymptotics shows that the sequence
(
aN,1

)
N≥1

outperforms the VdC sequence from

the lim sup criterion since 1.09 < 1.125 = 9/8.

→ L2-mean quantization problem. The same phenomenons are confirmed in the quadratic case since

lim inf
N

Ne2(ξ1, . . . , ξN , [0, 1]) =
1

2
√

3
= J̃2,1 and lim sup

N
Ne2(ξ1, . . . , ξN , [0, 1]) =

3
√

5

4
× J̃2,1

where J̃2,1 = lim
N
Ne2,N (U([0, 1])) = inf

N
Ne2,N (U([0, 1])). Using the greedy Lloyd procedure briefly described in

the next Section 4.3, we observe numerically that

lim inf
N

Ne2(a(N),2, U([0, 1])) ≈ 1.02732× J̃2,1 > J̃2,1 and lim sup
N

Ne2(a(N),2, U([0, 1])) ≈ 1.13401× J̃2,1.

As for the lim inf, one checks again that no subsequence of
(
a(N),2

)
N≥1

can be asymptotically L2-optimal.

As for the lim sup, one checks again that the quadratic optimal greedy sequence
(
aN,2

)
N≥1

outperforms the

VdC sequence from the lim sup criterion since 1.13401 < 1.67706 = 3
√

5
4 .

Both these results and numerical experiments naturally lead to two open theoretical questions, left for further
investigations:

(1) Does it exist distributions µ (with a non-countable support) for which an Lp-optimal greedy sequence

(a
N,p

)N≥1 produces a sequence of asymptotically optimal N -quantizers(a(N),p)N≥1 i.e. such that
ep(a(N),p,µ)
ep,N (µ) → 1

as N goes to +∞; or at least subsequences (a(N ′),p)N≥1 having this property?

(2) Does an Lp(µ)-optimal greedy sequence for a distribution µ on Rd produce the lowest possible value for

lim supN N
1
d ep,N

(
a(N),p, µ

)
among all Rd-valued sequences (ξN )N≥1?

The answer to the first question is probably negative (as suggested by further numerical experiments carried
out in [50]), whereas the second one remains more uncertain.

4.3. Algorithmic aspects

We adopt notations of Sections 3. Practical computation of an optimal greedy sequence of quantizers relies
on obvious variants of the historical algorithms (CLV Q and Lloyd) implemented recursively: to switch from
level N to N + 1, one first adds a (N + 1)th point (sampled from the support of the distribution µ) to the
N -tuple (a1, . . . , aN ) computed during the first N stages of the optimization procedure. This makes up the
starting (N + 1)-tuple for the variants of the CLV Q and Lloyd procedures. Then, one implements one of these
two optimization procedures with the following restriction: all formerly computed components ai, 1 ≤ i ≤ N ,
are frozen, and only the new point is moved, following the standard rules. Thus, assume we implement a greedy
CLV Q algorithm, based on an i.i.d. sequence (Xm)m≥1 of copies of X. When the (N + 1)th component is the
“winner” in the competition phase (i.e. this (N + 1)th component at the mth iteration is the nearest neighbour
to the new input stimulus, say Xm+1). For Lloyd’s procedure, this (N + 1)th component is the only one to be
updated following (3.44), the other N components remaining frozen as well.

For more details about these greedy variants, especially Lloyd’s, we refer to [50] where convergence proofs
are provided (complete in 1-dimension, partial in higher dimension).
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We reproduce in Figure 4 the graph of the sequence N 7→ Ne2,N

(
a(N), U([0, 1])

)
where (aN )N≥1 is an

L2-optimal greedy quantization sequence for the uniform distribution U([0, 1]).
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Figure 4. N 7→ Ne2

(
a(N),2, U([0, 1])

)
, N = 1, . . . , 10 000, (a

N,2
)N≥1 L2-optimal greedy se-

quence; flat solid line (−−−) ≡ J̃2,1 =
√

1
2
√

3
.

4.4. Greedy quantization versus Quasi-Monte Carlo?

Of course, for every integer N ≥ 1, the weights induced by the µ-mass of the Voronoi cells associated to
a(N) define canonically a sequence of N -tuples which usually cannot be “arranged” into a sequence, even up
to a re-scaling. When considering the unit hypercube [0, 1]d as a state space in d dimension, it is easy natural
to compare an optimal greedy sequence with respect to the uniform distribution U([0, 1]d) and the so-called
uniformly distributed sequences usually implemented in the Quasi-Monte Carlo method.

Let us recall that a sequence (ξ
N

)N≥1 is uniformly distributed over [0, 1]d if the empirical measures ν
N

=

1

N

N∑
i=1

δξi , N ≥ 1, weakly converges toward the Lebesgue measure λd on [0, 1]d. In particular, for every bounded

λd-a.s. continuous function f : [0, 1]d → R,
1

N

N∑
i=1

f(ξi) →
∫

[0,1]d
fdλd =

∫
[0,1]d

f(u)du. This means that the

weights associated to a uniformly distributed sequence are by definition equal to 1
N (i.e. are equal to 1 up to

the normalization factor 1/N). We will see that the cost induced by considering these uniform weights 1
N is

essentially logN . This follows from Proinov’s Theorem (see [70]) recalled below, which evaluates precisely the
rate of convergence of these sequences on Lipschitz continuous functions.

In the Quasi-Monte Carlo (QMC) method, the performance of an N -tuple (ξ1, . . . , ξN )∈ ([0, 1]d)N is mea-
sured by the Kolmogorov-Smirnov distance between the d-dimensional cumulative distribution function of its
empirical measure ν

N
and the uniform distribution U([0, 1]d), namely the so-called star discrepancy defined by

D∗N (ξ1 . . . , ξN ) = sup
u∈[0,1]d

∣∣∣∣∣ 1

N

N∑
i=1

1{ξi∈[[0,u]]} − λd
(
[[0, u]]

)∣∣∣∣∣
where [[0, u]] =

∏d
`=1[0, u`], u = (u1, . . . , ud)∈ [0, 1]d.
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Several sequences ξ = (ξN )N≥1 have been exhibited (see [54]) whose star discrepancy at the origin satisfy for
a real constant C(ξ)∈ (0,+∞),

∀N ≥ 1, D∗N (ξ1 . . . , ξN ) ≤ C(ξ)
(1 + logN)d

N
. (4.50)

Among them, in 1-dimension, the dyadic VdC sequence as defined by (4.49) (and its p-adic generalizations
VdC (p), p ≥ 2) and, in d-dimension, the Halton sequences (made up with VdC (pi) sequences where the bases
pi, i = 1, . . . , d are the first d prime numbers), the Faure sequences, the Sobol’ sequences and the unifying
framework developed by Niederreiter, see [54]. For definitions of these sequences and numerical tests on various
numerical integration problems, we refer to [11, 54, 56, 66]. Although such a rate has never been proved to be
the lowest possible, its optimality is a commonly shared opinion in the QMC community (however see [54] for
a review of existing lower bounds).

The striking fact with these sequences satisfying (4.50), called sequences with low discrepancy, is that, when
implemented on the class of functions with finite variation on [0, 1]d, the Koksma-Hlawka inequality implies
that, for every such function f : [0, 1]d → R∣∣∣∣∣

∫
[0,1]d

fdλd −
1

N

N∑
i=1

f(ξi)

∣∣∣∣∣ ≤ V (f)D∗N (ξ1 . . . , ξN )

where V (f) denotes the variation of the function f . So it induces for this specific class of functions a rate

of numerical integration of order O
(

(logN)d

N

)
. In one dimension (d = 1), the above notion of finite variation

coincides with the standard definition of finite variation in real analysis. When d ≥ 2, several definitions can be
given, the most popular being the finite variation in the Hardy & Krause sense (as described e.g. in [54]). Another
– slightly less general but more elementary – being the finite variation in the signed measure sense developed
in [11] (see also [56]). Unfortunately, as the dimension d increases, the set of functions with finite variation (in
any of the above senses) becomes somewhat “sparse” among the set of all real-valued Borel functions defined
on [0, 1]d. So, one may have doubts about this striking performance when dealing with practical simulation
problems. This is confirmed by their behaviour on the more natural space of Lipschitz continuous functions
which is ruled by the following Proinov Theorem.

Theorem 4.2. (Proinov, [70]) Assume Rd is equipped with the `∞-norm |(ξ1, . . . , ξd)|∞ = max
1≤i≤d

|ξi|. For every

continuous function f : [0, 1]d → R, let

w(f, δ) := sup
ξ, ξ′∈[0,1]d, |ξ−ξ′|∞≤δ

|f(ξ)− f(ξ′)|, δ∈ (0, 1).

denote the related uniform continuity modulus of f (with range δ).

(a) Let (ξ1, . . . , ξN )∈ ([0, 1]d)N . For every continuous function f : [0, 1]d → R and every integer N ≥ 1,∣∣∣∣∣
∫

[0,1]d
fdλd −

1

N

N∑
i=1

f(ξi)

∣∣∣∣∣ ≤ Cd w(f,D∗N (ξ1, . . . , ξN )
1
d

)
where Cd ∈ (0,+∞) is a universal optimal real constant only depending on d. In particular, if the function

f : [0, 1]df → R is Lipschitz continuous with coefficient [f ]Lip := supx,y∈[0,1]d
|f(x)−f(y)|
|x−y|∞ , then∣∣∣∣∣

∫
[0,1]d

fdλd −
1

N

N∑
i=1

f(ξi)

∣∣∣∣∣ ≤ Cd [f ]LipD
∗
N

(ξ1, . . . , ξN )
1
d .
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If d = 1, Cd = 1 and if d ≥ 2, Cd∈ [1, 4].

(b) In particular if (ξN )N≥1 is a sequence with low discrepancy in the above sense, then for every integer N ≥ 1,∣∣∣∣∣
∫

[0,1]d
fdλd −

1

N

N∑
i=1

f(ξi)

∣∣∣∣∣ ≤ Cd [f ]LipC(ξ)
1 + logN

N
1
d

.

Remark. As the function fξ : u 7→ min1≤i≤N |u− ξi| defined on [0, 1] is 1-Lipschitz continuous and equal to 0
on {ξ1, . . . , ξN }, Proinov’s inequality in (a) implies that e1

(
ξ1, . . . , ξN , U([0, 1])

)
≤ D∗N (ξ1, . . . , ξN ).

The above claim (b) emphasizes the fact that considering uniform weights 1
N induces the loss of a logN

factor compared to an (L1, U([0, 1]))-optimal greedy (or simply rate optimal) sequence since, for such a greedy
sequence (a

N
)N≥1, one has, for every N ≥ 1,∣∣∣∣∣

∫
[0,1]d

fdλd −
N∑
i=1

w
(N)
i f(ai)

∣∣∣∣∣ ≤ κ(a) [f ]Lip
1

N
1
d

.

Of course the practical implementation of such greedy sequences is more demanding since one needs to have

access to the attached N -tuples of weights w(N) = (w
(N)
1 , . . . , w(N)

N
). However, by contrast, one checks that

cubature formulas based on optimal quantization turn out to be efficient for much lower values of N than
sequences with low discrepancy (see e.g. [59] for the pricing of European derivatives).
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