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Model Identification and Validation for translational movements of an
Octorotor UAV

Majd Saied1,2, Daniel ALShamaa1, Hassan Shraim1, Clovis Francis1, Benjamin Lussier2 and Isabelle Fantoni2

Abstract— This paper presents preliminary results on a
complete translational system modeling and identification of a
coaxial counter-rotating X8 octorotor. The objective is to assess
the applicability of the widely-used quadrotor model to the
coaxial eight-rotor aircraft. A real and representative model of
the UAV is necessary to develop simulation tools for validation
and to predict the system behavior. A series of tests were
conducted with the X8 in flight when performing movements in
the x, y and z directions. The model is simulated and validated
offline in a MATLAB environment using real data.

I. INTRODUCTION

Multirotor unmanned aerial vehicles (UAV) arouse a lot of
interest in recent years. Their operation is intended to support
human beings activities in numerous applications such as:
railway monitoring, supervision of electrical power lines,
development of the precision agriculture, package delivery,
etc. Different designs exist with a number of rotors greater or
equal to four, uniformly distributed in star-shaped or coaxial
configurations (quadrotors [1], hexarotors [2], octorotors
[3]). Quadrotors are the most popular between the existing
multirotors due to their mechanical simplicity and low power
requirements. However, octorotors present advantages over
quadrotors in terms of improved stability, higher payload
capacity and the ability to recover from failures during flight.

These multirotors are inherently unstable systems and
hence require precise control in order to operate in a safe
manner. Control methodologies range amongst others from
proportional-integral-derivative to feedback linearization [6]
and backstepping [7], for the control of the orientation, alti-
tude and position. However, implementing these controllers
supposes the existence of an accurate system model, taking
into consideration nonlinearities and aerodynamic effects.
Extensive work has been done in the literature to model
the dynamics of the quadrotor vehicles [1] with various
levels of complexity. In [10] and [11], an experimental
identification of the quadrotor model parameters is presented.
In [12], an open-loop identification of a micro quadrotor
LTI model from closed-loop data is developed, followed by
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the application of a linear model-based controller. The last
few years witnessed also many developments in the area of
dynamics modeling of n-rotors helicopters [4], [5]. In most
of the applications the modeling was kept relatively simple.

In this paper, we will focus on the translational model
validation and identification of a coaxial counter-rotating
octorotor UAV. The dynamics equations are deduced from
that of a quadrotor [1], using Newton-Euler formalism. The
parameters of the translational model are identified using
the mean square error minimization criterion. Several tests
were conducted on the X8 octorotor in real flights when
moving in a single direction along one of the x, y or
z axes, or when following a complex trajectory including
displacements along the three axes. The real control inputs
generated from these experimentations are used as inputs
to a simulated model implemented in Matlab. The simu-
lated translational dynamics are then compared to the real
measurements obtained during the experimentations from
an Optitrack motion capture system (for x and y) and an
ultrasonic sensor (for z).

This paper is organized as follows: Section II presents the
dynamics of the coaxial octorotor and the controller used in
closed loop to stabilize the body angles, the altitude and the
position in real flights. Section III is dedicated to the model
parameters estimation where the experimental platform, the
methodology, the experimental data sets and the results are
detailed. A discussion on the usability of the obtained results
for fault tolerant control and fault diagnosis is presented in
section IV, and the paper concludes with perspectives in
section V.

II. DYNAMICS MODELING OF OCTOROTOR

An octorotor is a highly nonlinear, multivariable, strongly
coupled, underactuated, and basically unstable system. It is a
6-DOFs rigid body consisting of eight motors with attached
propellers. These motors are fixed at the ends of a number
of arms following a symmetric frame. Each motor can be
controlled individually, thus modifying the attitude and the
altitude of the vehicle and allowing the octorotor to move
from one point to another. Different configurations of oc-
torotors exist. According to the arrangement and distribution
of rotors, the most widely widespread layouts are coaxial
octorotors and star-shaped octorotors. In coaxial octorotors,
the actuators are aligned vertically but stacked in pairs so
as to resemble a quadrotor, while in star-shaped octorotors



Fig. 1: The coaxial octorotor and the reference frames

the actuators are aligned vertically and are equally spaced
around the vehicle. According to the authors in [5], a coaxial
octorotor presents advantages over a star-shaped one in terms
of endurance and size. This configuration is adopted in this
work, and will be controlled using an adapted quadrotor
model.

Several methods have been proposed in the literature for
the dynamic modeling of the quadrotor vehicle. In [9] and
[13], the quadrotor is considered as a rigid body and its
dynamics are described using the Euler-Lagrange formalism
with small angles approximation. In [14], the model is de-
rived using the Newton-Euler approach. The resultant model
from both methods is the same, but written with different
notations. In [1], a detailed model of the quadrotor is derived
including all rigid body dynamics, aerodynamic forces and
gyroscopic effects.

In all the approaches cited above, the models developed
assume the following hypotheses :

• The structure of the vehicle is rigid and symmetrical;
• The motor dynamics are ignored;
• The center of gravity and the body fixed frame origin

coincide;
• The inertia matrix off-diagonal terms are zero;
• The thrust and the drag are proportional to the square

of the rotors speed.

We define two frames that we use to study the system’s
motion: a body-fixed reference frame {RB} (O,X, Y, Z)
originating at the center of mass of the vehicle, and an inertial
frame {RI} (o, x, y, z) fixed to the earth. The rotation matrix
RI,B defines the attitude of RB with respect to RI :

RI,B =

 CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ
CθSψ SθSφSψ + CφCψ CφSθSψ − CψSφ
−Sθ CθSφ CθCφ


(1)

where φ, θ and ψ are the Euler angles, and Sφ,θ,ψ and Cφ,θ,ψ
are the sine and the cosine of the corresponding angle.

A. Newton-Euler Formalism

The dynamics of a rigid body under external forces applied
to the center of mass, expressed in the body fixed frame are

written in Newton-Euler formalism as follows [1]:[
mI 0
0 I

] [
V̇
ω̇

]
+

[
ω × mV
ω × Iω

]
=

[
F
τ

]
(2)

where I ∈ R3x3 is the inertia matrix, m the mass of the
vehicle, V the body linear speed vector and ω the body
angular speed.
To make the model of the octorotor more realistic, hub
forces, rolling, pitching and yawing moments and variable
aerodynamical coefficients should be considered. The forces
acting on the octorotor in the inertial frame RI are listed
below:

• Along the z-axis:
– actuators action: CψCφ ∗ uf
– weight: mg

• Along the x-axis
– actuators action: (SψSφ + CψSθCφ) ∗ uf
– hub force: −

∑8
i=1Hxi

– friction: 1
2CxAcρẋ|ẋ|

• Along the y-axis
– actuators action: (−CψSφ + SψSθCφ) ∗ uf
– hub force: −

∑8
i=1Hyi

– friction: 1
2CyAcρẏ|ẏ|

where Hx and Hy are the hub forces in the x and y
directions respectively, Cx, Cy are friction coefficients, Ac
is the fuselage area and ρ is the air density.

The moments around the three axes resulting from the
generated forces are also listed below:

• Rolling moments
– body gyro effect: θ̇ψ̇(Iyy − Izz)
– propeller gyro effect: Jr θ̇Ωr
– roll actuators action: τφ

• Pitching moments
– body gyro effect: φ̇ψ̇(Izz − Ixx)
– propeller gyro effect: Jrφ̇Ωr
– pitch actuators action: τθ

• Yawing moments
– body gyro effect: θ̇φ̇(Ixx − Iyy)
– inertial counter-torque: JrΩr
– counter-torque unbalance: τψ

where Jr is the rotor inertia and Ωr is the overall residual
propeller speed from the unbalanced rotor rotation, expressed
in function of the motors speeds ωi as follows:

Ωr = ω2 + ω3 + ω6 + ω7 − ω1 − ω4 − ω5 − ω8 (3)

Note that hub forces also create moments around the three
axes, but they are not detailed here.

The total thrust uf defined in RB and the torques τφ, τθ
and τψ are defined as:

uf = F12 + F34 + F56 + F78

τφ = (F78 + F56 − F34 − F12) ∗ l ∗
√

2/2

τθ = (F34 + F56 − F78 − F12) ∗ l ∗
√

2/2
τψ = (τ2 + τ3 + τ6 + τ7)− (τ1 + τ4 + τ5 + τ8)

(4)



The thrust force and the torque produced by each propeller
is proportional to the square of the angular velocity:

Fi = Kfω
2
i

τi = Ktω
2
i

(5)

l is the arm length, Kf and Kt are the thrust and drag
coefficients.

The thrust produced by each pair of coaxial rotors i and
j is given by [17]:

Fij = αij ∗ (Fi + Fj) ∗ (1 + Ss

Sprop
)

Fi = Kf ∗ ω2
i

(6)

αij is the coefficient of loss of aerodynamic efficiency due
to the aerodynamic interference between the upper and lower
rotors of each pair of coaxial rotors. S = (1 + Ss

Sprop
) repre-

sents the shape factor of the propellers, with Ss denoting the
propeller’s surface and Sprop the surface of the circle that
the propeller would make when rotating.

The equations of motion of the octorotor are derived from
(2) and all the forces and moments previously given:

Ixxφ̈ = θ̇ψ̇(Iyy − Izz) + Jr θ̇Ωr + τφ
Iyy θ̈ = φ̇ψ̇(Izz − Ixx) + Jrφ̇Ωr + τθ
Izzψ̈ = θ̇φ̇(Ixx − Iyy) + JrΩr + τψ
mẍ = (SψSφ + CψSθCφ) ∗ uf −

∑8
i=1Hxi

− 1
2CxAcρẋ|ẋ|

mÿ = (−CψSφ + SψSθCφ) ∗ uf −
∑8
i=1Hyi − 1

2CyAcρẏ|ẏ|
mz̈ = CθCφ ∗ uf −mg

(7)

B. Control Strategy

A control strategy for stabilizing the octorotor while
hovering is presented in this section. The altitude and the
yaw positions are controlled by a PID controller that makes
use of observations obtained respectively from an ultrasonic
sensor and an Inertial Measurement Unit (IMU):

u = Kpe+Kdė+KI

∫ t

0

e(τ)dτ (8)

Kp, Kd and KI are the controller’s gains, and e is the state
error compared to the desired position.

The roll and pitch angles are controlled using saturation
functions, where each state is bounded separately (9). The
stability of this control law is proved in [18].

τφ = Ixx

g [σpy(kpy(y − yd)) + σdy(kdy ẏ)−
σpφ(kpφφ)− σdφ(kdφφ̇)]

τθ = − Iyy

g [σpx(kpx(x− xd)) + σdx(kdxẋ)−
σpθ(kpθθ)− σdθ(kdθ θ̇)]

(9)

where kpy , kdy , kpφ, kdφ, kpx, kdx, kpθ and kdθ are positive
gains, and σpy , σdy , σpφ, σdφ, σpx, σdx, σpθ, and σdθ are
saturation functions defined as follows: σbi(s) = bi if s > bi

σbi(s) = s if −bi < s < bi
σbi(s) = −bi if s < −bi

(10)

Fig. 2: Experimental Plateform

III. MODEL’S PARAMETERS IDENTIFICATION

The main objective of this section is to assess the appli-
cability of the model developed previously to the coaxial
counter-rotating octorotor. The parameters of the system are
identified and validated using the mean square error criterion
using real flight data sets. The following part describes our
experimental octorotor, then the three subsystems used to
model the thrust and translational dynamics. Furthermore,
an overview of the used method, data and tests is given.

A. Experimental Octorotor

The experimental UAV is shown in Fig. 2. It is a coaxial
octorotor built at the Heudiasyc laboratory. It uses Bl2827−
35 brushless motors driven with BLCTRLV 2 controllers
(Mikrokopter) giving motors speeds measurements.

The multirotor is equiped with a Microstrain 3DMGX3−
25 IMU composed of accelerometer, gyroscope, and mag-
netometer sensors giving Euler angles and rotation speed
measurements at 100 Hz, and an ultrasonic sensor SRF08
giving altitude measurements. The control law is executed in
real time onboard the vehicle.

The octorotor’s inertia was extracted from the software
Catia and was found to be as follows: Ixx = Iyy =
4.2x10−2Kg.m2, Izz = 7.5x10−2Kg.m2. The propeller’s
inertia was neglected. The vehicle’s mass was measured to
be 1.6 kg, and the distance from the center of mass to the
center of the propellers is l = 0.23m.

B. Methodology

Depending on the types of available data, and the way
they are adopted, different approaches can be used for
parameters identification [15]. The Trial-and-Error method
is one of these approaches that has been widely used for
model calibration and system identification. This technique
is presented in Fig. 3 and is based on two main criterias:
C-1 The model output should fit the observed output as close

as possible
C-2 The prior information should be used as much as

possible
To use this method, only some observation data of the state
variables with prior information of the identified parameters
are needed.



Fig. 3: Trial and Error Method

To guarantee the first criteria, we chose to minimize the
mean square error MSE function:

MSE =
1

n

n∑
i=1

e2i (11)

where ei = Ŷi − Yi denotes the error between the estimated
and the measured values at sample i. Yi corresponds in this
case to the variables x, y, z and their derivatives.

The procedure starts with a set of estimated values of all
the parameters, which will be used as inputs to the forward
model to generate the model-calculated system state. Then
these calculated states will be compared to the observed data.
New parameters that minimize the mean square error will be
used instead of the initial guesses.

C. Experimental Data

To collect the needed data, different experiments were
realized on the octorotor while it was moving along single
directions or following complex trajectories. For each axis,
one experiment is used for identification and another one
for validation. Then, the complete model is validated on a
complex trajectory. The measured variables used are:

1) Speeds of the eight motors at each instant;
2) Variations of roll, pitch and yaw angles φ, θ and ψ;
3) Variations of translational velocities ẋ, ẏ and ż;
4) Variations of translational displacements x, y and z;

D. Results and Model Validation

1) Modeling along z-axis: The differential equation gov-
erning the motion of the vehicle along the z-axis is given in
(12):

mz̈ = CθCφ ∗ uf −mg (12)

The control input uf is the total thrust. It depends on the
motors speeds and the thrust coefficient Kf .

In most of the works presented in the literature, the thrust
coefficient Kf is considered constant. However, this is just
an hypothesis to simplify the model. It was shown from
the experimental data collected that the thrust coefficient
depends slightly on the motors speeds.

Figure 4 shows the variation of the thrust coefficient in
terms of the motors speeds. The model parameters obtained
from the experiments shown in Fig. 6 are applied to a second
experiment, as shown in Fig. 7. In this experiment, the UAV
is driven with respect to z-axis from z = 0 to z = 0.7m.

Fig. 4: The variation of the thrust coefficient Kf [Ns2/rad2] in
function of the motors speeds [rpm]

Fig. 5: The measured and the model-calculated altitude using the
simplified model [m]

Note that the sensor is placed at an altitude of 10 cm far
from the ground.

The results in Fig. 7 show a significant error between
the measured and the estimated altitude. However, their
comparison with respect to the results obtained from the
simplified model in Fig. 5 make the estimated model more
representative of the real one. The causes of the shown error
are discussed later in the paper.

2) Modeling along x-axis: For the model identification
along the x-axis, the octorotor is considered to move along
the x-direction at a constant altitude. The motors speeds vary
slowly but they remain within the same rank, then the thrust
coefficient is taken as a constant, Kf = 1.7∗10−5, deduced
from the dataset presented above. The equation governing

Fig. 6: Experiment 1 along z-axis: The measured and the
model-calculated altitude [m]



Fig. 7: Experiment 2 along z-axis: The measured and the
model-calculated altitude [m]

Fig. 8: The measured and the model-calculated position using the
simplified model [m/s2]

the motion along the x-axis is presented as follows:

mẍ = (SψSφ + CψSθCφ) ∗ uf −
8∑
i=1

Hxi
− 1

2
CxAcρẋ|ẋ|

(13)
The identified parameters are:∑8

i=1Hxi
= CHρA(ΩRrad)

2 = 10−9.
∑8
i=1 ω

2
i

1
2CxAcρx|ẋ| = 0.4688ẋ|ẋ|

(14)
First, Fig. 8 reveals the invalidity of the simplified model
by comparing its output along x-axis with the measured
one. Figures 9 and 10 show the model-calculated and the
measured accelerations and positions. This experiment was
used for the identification. For the validation purpose, data
of a second experiment were used and the results are shown
in Fig. 11 and 12.

3) Modeling along y-axis: The same procedure as the
modeling along the x-axis is followed here. Figures 13 and
14 represent the data of the experiment used for identifica-
tion, and Fig. 15 shows the validated model output compared
with the measured state on a different experiment. The
identified model parameters are approximately the same as
those determined in (14). This is due to the system symmetry.

4) Validation over Complex Motion: To validate the iden-
tified model, the octorotor had to follow a complex trajectory
with a movement along the three axes at the same time.
The identified translational states x, y and z are shown
respectively in Fig. 16, 17 and 18 and compared with the real
measurements. Figure 19 shows the estimated and measured

Fig. 9: Experiment 1 along x-axis: The measured and the
model-calculated acceleration [m/s2]

Fig. 10: Experiment 1 along x-axis: The measured and the
model-calculated position [m]

Fig. 11: Experiment 2 along x-axis: The measured and the
model-calculated acceleration [m/s2]

Fig. 12: Experiment 2 along x-axis: The measured and the
model-calculated position [m]



Fig. 13: Experiment 1 along y-axis: The measured and the
model-calculated acceleration [m/s2]

Fig. 14: Experiment 1 along y-axis: The measured and the
model-calculated position [m]

trajectories on the three axes.
As can be seen in the plots of the validation, the identified

dynamical model approximates well the behavior of the real
plant but does not match it. This is caused by the fact that the
identification errors are amplified by the double integration,
add to this the delay introduced by the integrator in matlab.

IV. DISCUSSION

A well identified dynamic model of a multirotor UAV
helps researchers to design controllers and predict the
behaviors of the UAV via simulation. Although a best
solution cannot be obtained by the trial-and-error method,
an approximate model close to the real one can be deduced.
This model can be sufficient for designing controller and
especially for designing mathematical observers.
For many applications, such as fault detection and
isolation, the use of a complete analytical model, including
aerodynamical and gyroscopical effects, is necessary in

Fig. 15: Experiment 2 along y-axis: The measured and the
model-calculated position [m]

Fig. 16: Experiment along a complex motion: The measured and the
model-calculated positions [m]

Fig. 17: Experiment along a complex motion: The measured and the
model-calculated positions [m]

Fig. 18: Experiment along a complex motion: The measured and the
model-calculated positions [m]

Fig. 19: Experiment along a complex motion: The measured and the
model-calculated positions [m]



order to design observers for fault estimation or residual
generation.
In a previous work [16], we have proposed the use of a
second-order sliding mode observer based on the Super-
Twisting algrithm for fault diagnosis purposes in a octorotor
UAV after the occurrence of motors failures. However, we
could only validate it during hovering flights, as we used
a simpler observer model that neglected aerodynamical
effects. When the octorotor is moving, a more precise model
is needed, such as the one presented in this paper.

V. CONCLUSION

In this paper, a complete translational dynamic model of
a coaxial counter-rotating octorotor UAV is proposed for
special cases which are under the assumptions of small
displacements without agressive maneuvers. By minimizing
the mean square errors between the modeled states and the
real ones, by trial-and-error method, the model parameters
are identified. This makes possible the use of the obtained
model for analytical observers designed to detect and isolate
abnormal behavior or failure in the system.

In future works, we intend to complete the identification
of the rotational model, by investigating other identification
methods and considering different data sets. Finally, the
obtained model will be used to design observers to estimate
faults and failures in the system.
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