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Abstract The interdependence between climatic variables should be taken into account when developing
climate scenarios. For example, temperature-precipitation interdependence in the Arctic is strong and
impacts on other physical characteristics, such as the extent and duration of snow cover. However, this
interdependence is often misrepresented in climate simulations. Here we use two two-dimensional (2-D)
methods for statistically adjusting climate model simulations to develop plausible local daily temperature
(Tmean) and precipitation (Pr) scenarios. The first 2-D method is based on empirical quantile mapping (2Dqm)
and the second on parametric copula models (2Dcopula). Both methods are improved here by forcing
the preservation of the modeled long-term warming trend and by using moving windows to obtain an
adjustment specific to each day of the year. These methods were applied to a representative ensemble of
13 global climate model simulations at 26 Canadian Arctic coastal sites and tested using an innovative
cross-validation approach. Intervariable dependence was evaluated using correlation coefficients and empirical
copula density plots. Results show that these 2-D methods, especially 2Dqm, adjust individual distributions
of climatic time series as adequately as one common one-dimensional method (1Dqm) does. Furthermore,
although 2Dqm outperforms the other methods in reproducing the observed temperature-precipitation
interdependence over the calibration period, both 2Dqm and 2Dcopula perform similarly over the validation
periods. For cases where temperature-precipitation interdependence is important (e.g., characterizing
extreme events and the extent and duration of snow cover), both 2-Dmethods are good options for producing
plausible local climate scenarios in Canadian Arctic coastal zones.

1. Introduction

Climate change impact and adaptation studies need plausible local climate scenarios covering the coming
decades [Fowler et al., 2007; Maraun et al., 2010; Maurer et al., 2014]. When represented as time series, plau-
sible scenarios should be characterized by the following: (1) agreement with observations in key statistical
properties over relatively long comparison periods, (2) lack of discontinuities at past/future junctions, and
(3) future trends simulated by state-of-the-art climate models that take into account likely evolutions of nat-
ural and anthropogenic forcing agents [Grenier et al., 2015]. Such scenarios are often obtained by statistically
adjusting global or regional climate model simulations. The techniques employed often use transfer func-
tions calibrated on observed and simulated climate variables over a historical period [e.g., Chiew et al.,
2010; Dibike and Coulibaly, 2005; Mpelasoka and Chiew, 2009; Räty et al., 2014; Themeßl et al., 2012].

One important aspect of observed climates which climate scenarios should reflect is the interdependence of
climatic variables. For example, temperature and precipitation are physically related through several
mechanisms, such as the influence of rainfall on soil moisture, which in turn impacts on surface temperature
by controlling partitioning between sensible and latent heat fluxes [Cong and Brady, 2012; Huang and van den
Dool, 1993]. However, observed intervariable dependences are often misrepresented in climate model
outputs, and univariate methods that adjust simulated sequences are not made to improve their realism
[Wilcke et al., 2013]. For this reason, recent studies have investigated the possibility of applying postproces-
sing methods that also adjust intervariable dependences [Ben Alaya et al., 2014; Hoffmann and Rath, 2012;
Li et al., 2014; Piani and Haerter, 2012; Vrac and Friederichs, 2014]. Some of these methods are based on
parametric copula models, which are functions that describe the dependence structure between variables
independently of their univariate marginal distributions [Genest and Favre, 2007; Sklar, 1959].
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Intervariable dependence is not a
fixed characteristic but varies spatially
and seasonally [Cong and Brady,
2012]. For example, the temperature-
precipitation interdependence in
Canada tends to increase with lati-
tude and is particularly strong in
the Arctic regions [Isaac and Stuart,
1992], where it impacts other funda-
mental physical characteristics, such
as the extent and duration of snow
cover [R. D. Brown, 2000; Vaughan
et al., 2013; Ye and Cohen, 2013].
There are several reasons to build
local Arctic climate scenarios with
more realistic intervariable depen-
dence. First, such scenarios would
potentially allow for a better charac-
terization of future extreme events

[S. J. Brown et al., 2014]. Second, meteorological intervariable consistency is essential for determining the
future extent and duration of snow cover and sea ice [R. D. Brown, 2000; Germe et al., 2014; Vaughan et al.,
2013; Ye and Cohen, 2013], as well as for improving modeling of streamflow (especially during snowmelt),
permafrost thaw, and lake water level [Carroll et al., 2011; Smith et al., 2005; Thorne, 2011].

In this paper, we compare temperature-precipitation interdependence in observations and model out-
puts at 26 Canadian Arctic coastal sites and improve two recently published two-dimensional (2-D)
statistical adjustment methods to produce climate scenarios. More specifically, we use the gridded
interpolated Canadian database of daily minimum and maximum temperatures and precipitation for
1950–2010 [McKenney et al., 2011] as a benchmark to assess interdependence realism in a representative
ensemble of 13 model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5).
Subsequently, we investigate how the modeled temperature-precipitation dependence structures at
the study sites are modified by both a common one-dimensional (1Dqm) and the two proposed 2-D
postprocessing techniques. One 2-D method (2Dqm) is based on empirical quantile mapping as sug-
gested by Piani and Haerter [2012] and the other (2Dcopula) on the use of parametric copula models
as suggested by Li et al. [2014]. Both methods are improved by two modifications suggested by univariate
statistical adjustment studies. First, we adjust the data for each day of the year differently in order to
respect seasonal variations of the climate variables [Themeßl et al., 2012; Thrasher et al., 2012]. Second,
we handle temperature values to force the preservation of the modeled warming trend [Hempel et al.,
2013; Wood et al., 2004]. Results show the realism of the temperature-precipitation interdependence
in the scenarios’ time series for a variety of sites, simulations, postprocessing techniques, and times of
the year over the calibration/validation period 1981–2010. An innovative approach for performing cross
validation is also presented.

2. Materials and Methods
2.1. Study Sites and Observational Data

We selected for this study 26 Canadian Arctic coastal sites that have daily weather station records of both
temperature and precipitation. Site locations are shown in Figure 1, whereas toponyms and coordinates
are listed in Table 1. To avoid discontinuities in the time series, the nearest grid node to each station of the
Natural Resources Canada 10× 10 km interpolated data set (hereafter referred to as NRCan; http://cfs.nrcan.
gc.ca/projects/3/4; [McKenney et al., 2011]) is used as the observational product rather than station records.
The NRCan data set contains daily minimum and maximum temperatures (Tmin and Tmax) as well as daily
precipitation (Pr). We obtained the mean daily temperature using the approximation Tmean = (Tmin + Tmax)/2
for each site. The study period is 1981–2010.
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Other study sites
Hall Beach
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Figure 1. Study sites in the Canadian Arctic. Resolute and Hall Beach are
highlighted as they are selected as examples in other figures.
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2.2. Model Data

Methods are assessed using 13 global climate model simulations. Initially, we considered 30 simulations with
ensemble member r1i1p1 from CMIP5 historical/RCP4.5 experiments (see Tables 2 and S1 in the supporting
information). Daily values of Tmean and Pr over the 1981–2010 period were interpolated to the study sites.
Next, to reduce redundancy, a smaller but representative ensemble was selected based on a cluster analysis
[Logan et al., 2011; Houle et al., 2012]. For that we created a matrix in which we stacked the mean and stan-
dard deviation of the climatic variables (daily Tmean and Pr) for each site and each simulation (30 rows × 120
columns matrix, where 30 is the number of simulations initially considered and 120 results from 30 sites × 2
variables × 2 statistical properties). The matrix values were then normalized independently for each column,
and a series of k-means clustering analyses were conducted by iteratively increasing the number of clusters
(starting from one) and retaining only the simulations nearest to one cluster centroid at each iteration. The
smallest subset explaining at least 80% of the original ensemble’s variance was finally selected for the subse-
quent analyses; this amounted to 13 simulations (Table 2).

2.3. Postprocessing Methods

In total, four alternative methods for obtaining climate scenarios are used in this study: (1) using simulations
directly as scenarios (hereafter DirectSim scenarios), (2) a 1-D method based on quantile mapping (1Dqm),
(3) a 2-D method based on quantile mapping, and (4) a 2-D method based on copula models. Other 2-D

Table 1. Study Sitesa

No. Site Latitude Longitude Kind of Siteb
Canadian Province

or Territory

1 Kuujjuarapik 55.3 �77.8 Community Quebec
2 Nain 56.5 �61.7 Community Newfoundland

and Labrador
3 Kuujjuaq 58.1 �68.4 Community Quebec
4 Inukjuak 58.5 �78.1 Community Quebec
5 Churchill 58.7 �94.1 Community Manitoba
6 Quaqtaq 61.0 �69.6 Community Quebec
7 Chesterfield Inlet 63.3 �90.7 Community Nunavut
8 Iqaluit 63.8 �68.6 Community Nunavut
9 Cape Dorset 64.2 �76.5 Community Nunavut
10 Coral Harbour 64.2 �83.4 Community Nunavut
11 Fox-5, Broughton

Island
67.5 �63.8 Radar Station, site of the

DEW Line
Nunavut

12 Kugluktuk 67.8 �115.2 Community Nunavut
13 Kugaaruk 68.5 �89.8 Community Nunavut
14 Hall Beach 68.8 �81.3 Community, site of the

DEW Line
Nunavut

15 Shepherd Bay 68.8 �93.4 Radar Station, site of the
DEW Line

Nunavut

16 Shingle Point 68.9 �137.2 Radar Station, site of the
DEW Line

Yukon

17 Cambridge Bay 69.1 �105.1 Community, site of the
DEW Line

Nunavut

18 Tuktoyaktuk 69.4 �133.0 Community, site of the
DEW Line

Northwest Territories

19 Komakuk Beach 69.6 �140.2 Radar Station, site of the
DEW Line

Yukon

20 Cape Parry 70.2 �124.7 Radar Station, site of the
DEW Line

Northwest Territories

21 Sachs Harbour 72.0 �125.3 Community Northwest Territories
22 Nanisivik 73.0 �84.6 Dismissed mining company town Nunavut
23 Resolute 74.7 �95.0 Community Nunavut
24 Mould Bay 76.2 �119.3 Weather station Northwest Territories
25 Eureka 80.0 �85.9 Research station Nunavut
26 Alert 82.5 �62.3 Military and scientific base Nunavut

aSites are ordered from the southernmost (top) to the northernmost (bottom).
bDEW Line means distant early warning line, a system of radar stations established during the Cold War.
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methods that restrict the duration of
scenarios to that of the observational
product and that cannot be easily
adapted to respect the long-term
simulated trend are not considered
[e.g., Vrac and Friederichs, 2014].

The 1Dqmmethod adjusts daily Tmean

and Pr separately and is based on the
empirical quantile mapping techni-
que [Déqué, 2007; Themeßl et al.,
2012]. The basic idea of quantile map-
ping is to first describe the mismatch
between simulated and observed
distributions at specific quantiles and
then to apply a transfer function,
defined as the operation that must
be performed on each quantile of
the simulated distribution to obtain
the corresponding observed quantile.
For example, if the simulated and
observed Tmean distributions have
their 25th percentile at 13°C and 16°C,
respectively, then the transfer func-
tion has a +3°C value for 13°C. The
transfer function is next used to
adjust each simulated value, even
those out of the calibration period.
In our case, the transfer function F(x)
is computed at 51 fixed percentile
values [SimPi where i= {0, 2, 4, …,
100}], and F(x≠ SimPi) is linearly inter-
polated if SimP0<×< SimP100 or
held constant beyond these bound-

ary values [F(x< SimP0) = F(SimP0) and F(x> SimP100) = F(SimP100)]. Modifications to this basic procedure
are often applied (see, for example, section 2.4).

Like 1Dqm, the 2Dqm method uses the basic quantile mapping idea, but some changes are made to more rea-
listically reproduce the temperature-precipitation interdependence. Here we first adjust dry day frequencies in
the simulated time series, as done by Schmidli et al. [2006] (see the Pr adjustment of the 2Dcopula below).
Tmean values for wet and dry days are then correctedwith two separate quantilemappings. Finally, Pr for wet days
is adjusted following the steps suggested by Piani and Haerter [2012]: (1) In both the observed and simulated
values, the daily Pr and Tmean data pairs over the calibration period are ordered according to Tmean ranks, and
equally sized subsets are defined (here eight subsets: up to the 12.5th percentile, between the 12.5th and 25th
percentiles, and so on). (2) Within each subset, an independent quantile mapping is performed on the Pr values.
(3) The adjusted Pr daily values are sorted back to their original Julian day. Simulated Pr values are thus adjusted
differently according to the Tmean of their corresponding day. A schematic diagram illustrating the 2Dqm proce-
dure is provided in Figure 2, and Figure S1 illustrates how Prmay differ between each subset at one site.

The 2Dcopula adjustment is based on parametric copula models which, following Sklar’s theorem [1959],
allow the dependence structure of a joint cumulative distribution function (joint CDF: H(x, y)) to be described
as follows:

H x; yð Þ ¼ C F xð Þ;G yð Þf g; x; y∈R (1)

where F(x) and G(y) are the marginal CDF of two variables, and C is the copula CDF. Copula and marginals
are independent from one another. Here we model the observed and simulated Pr and Tmean marginal

Table 2. Models Used in This Studya

Modeling Centerb Model Selected by Cluster Analysis

BCC BCC-CSM1.1
BCC BCC-CSM1.1(m)
CCCma CanCM4 x
CCCma CanESM2
CMCC CMCC-CM x
CMCC CMCC-CMS
CNRM-CERFACS CNRM-CM5 x
CSIRO-BOM ACCESS1.0
CSIRO-BOM ACCESS1.3
CSIRO-QCCCE CSIRO-Mk3.6.0 x
GCESS-BNU BNU-ESM x
INM INM-CM4 x
IPSL IPSL-CM5A-LR
IPSL IPSL-CM5A-MR
IPSL IPSL-CM5B-LR x
LASG-CESS FGOALS-g2 x
MIROC MIROC-ESM x
MIROC MIROC-ESM-CHEM
MIROC MIROC4h x
MIROC MIROC5
MOHC HadCM3
MOHC HadGEM2-CC
MOHC-INPE HadGEM2-ES x
MPI-M MPI-ESM-LR x
MPI-M MPI-ESM-MR
MRI MRI-CGCM3
NCC NorESM1-M x
NOAA-GFDL GFDL-CM3
NOAA-GFDL GFDL-ESM2G
NOAA-GFDL GFDL-ESM2M

aFor each of the 30 models, the simulation of the experiment historical/
RCP4.5 with ensemble member r1i1p1 was considered, but in the end only
13 simulations were selected by cluster analysis for the subsequent
analyses.

bFull names for the modeling centers are provided in Table S1.
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distributions and their joint behavior using gamma (for Prmarginal distribution), Gaussian (for Tmean marginal
distribution), and Gaussian copula (for the dependence structure) functions for each site and simulation over
the calibration period. Once these functions’ parameters are determined, the adjustment of simulated daily
Pr and Tmean proceeds by adjusting first Tmean, and next Pr conditional upon the probability associated to
Tmean, as explained by Li et al. [2014]. However, unlike the original method and similarly to our 2Dqm, we
define the joint intervariable behavior (i.e., copula functions) on wet days only, after the previous
adjustment of dry/wet day frequencies. This expedient also allows Tmean to be modeled for wet and dry
days with different Gaussian functions, thus improving the scenario results (not shown). The steps of the
2Dcopula adjustment for simulated Tmean and Pr values at day i are described in further detail below.

Step 1: Tmean adjustment.

PrSimi ≤ nPerc
� �

→ Tmean
Scen
i ¼ F1Obs

�1
F1Sim Tmean

Sim
i

� �� �
PrSimi > nPerc
� �

→ Tmean
Scen
i ¼ F2Obs

�1
F2Sim Tmean

Sim
i

� �� �
(

(2)

Step 2: Pr adjustment.

PrSimi ≤ nPerc
� �

→ PrSceni ¼ 0

PrSimi > nPerc
� �

→ p ¼ CSim F2Sim Tmean
Sim
i

� �
;GSim PrSimi

� �� �
PrSceni ¼ GObs�1

CObs�1
F2Obs …ð Þ;GObs …ð Þ F2Obs …ð Þ ¼ F2Sim Tmean

Sim
i

� �
; CObs …ð Þ ¼ p

� ���� �� �
8>>><
>>>:

(3)

where Sim and Obs refer to simulation and observations over the calibration period, Scen refers to scenarios
over the study period, F1 and F2 are the Tmean marginal CDFs for dry and wet days, G is the Prmarginal CDF for
wet days, C is the copula CDF, and nPerc is the nth percentile of the simulated precipitation values over the
calibration period, n indicating the percentage of dry days in the observations.

2.4. Method Modifications

For all adjustment methods (1Dqm, 2Dqm, and 2Dcopula), we also employ the following two modifications
proposed by univariate adjustment studies to improve the scenarios. First, we use moving windows (41 days
centered on the day of the year to be adjusted, considering all years within the calibration period) to deter-
mine the transfer functions between simulated and observed climate values used in the adjustment pro-
cedure [Themeßl et al., 2012; Thrasher et al., 2012]. Moving windows allow for an adjustment that varies
smoothly from one day of the year to another. Second, temporal trends in temperature (i.e., linear trends
calculated separately for simulated and observed time series and for each day of the year) are removed prior
to statistical adjustment in order to obtain a stationary adjustment procedure (i.e., one not influenced by the

Figure 2. Diagram illustrating the 2Dqm adjustment of the data for 1 day of the year (dayx where x can vary from 1 to 365)
at one site for one simulation. The transfer functions in steps (2) and (3) are based on quantile mappings calibrated to years
k to k +m to adjust simulated data of years k to k + n.
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trend-induced inflation of the variability [Scherrer et al., 2005]). Trends are subsequently added back to the
Tmean time series. This modification is similar to what Hempel et al. [2013] and Wood et al. [2004] proposed
and guarantees the preservation of the long-term trend from the simulation to the scenario; this property
can otherwise be altered by the statistical adjustments. Figure 2 illustrates how moving windows and tem-
perature time trend preservation are integrated in the 2Dqm procedure, whereas in section 3.3 we show
the impact of these modifications on the 2Dqm method.

2.5. Cross-Validation Scheme

A cross-validation scheme is applied to assess the methods’ performance. For that, we calibrate over three
different 20 year periods within 1981–2010 and assess the scenarios’ plausibility over the remaining 10 year
blocks (1981–1990, 1991–2000, or 2001–2010). Cross validation has previously been used in climatological
studies [e.g., Lafon et al., 2013; Li et al., 2010; Stoner et al., 2013; Thrasher et al., 2012], with the objective of
validating whether scenario-generating methods can predict a block of data not used in the calibration
[Maraun et al., 2015]. Here we work with an alternative cross-validation approach that does not compare
the validation data with each individual scenario, but rather with the ensemble of scenarios as a whole.
This approach is consistent with interpreting each individual scenario not as a prediction but as a plausible
climate trajectory among many alternatives [Mearns et al., 2001] that may diverge from one another due to
nonsynchronized internal variability [Fischer et al., 2014]. However, if individual scenarios are equiprobable
and form a reliable predictive ensemble, then a large number of independent validation cases (each
with its own ensemble of scenarios) should result in the validation data occupying all possible ranks within
the ensembles of scenarios equally often. A relevant statistical tool for this exercise is the verification rank
histogram [Wilks, 2011], previously used in climatological studies [e.g., Oldenborgh et al., 2013; Grenier et al.,
2015]. The sharpness of the results of the ensembles of scenarios is also verified using boxplots.
By sharpness, we mean here a reduced spread of the scenario ensemble members around the observa-
tional statistics.

3. Results
3.1. Adjustment of the Marginal Distributions

As a first step, each generated scenario has been visually evaluated with quantile-quantile plots (e.g.,
Figure 3). This shows that all methods (1Dqm and 2-D) adjust marginal distributions quite well. For Tmean,
quantile-quantile values for adjusted scenarios are close to the diagonals, meaning the distributions of the
daily data are similar in observations and scenarios. Conversely, DirectSim scenarios are characterized by
larger, temperature-dependent offsets, specific to each site and model. For example, Figure 3a shows a
DirectSim scenario with an almost constant positive offset that shifts around 0°C, probably because the
model misrepresents physical processes associated with the freezing point. This is a common characteristic
among the simulations and has also been observed in studies of other regions [e.g., Casati et al., 2013]. For
Pr, 1Dqm could have been expected to perform better than 2-D methods because the adjustment is not con-
ditioned by the Tmean values. However, visual evaluation reveals that the 1Dqm and 2-D methods produce
similar improvements relative to DirectSim scenarios, even if the quantile-quantile values are generally
farther from the diagonals than in the case of Tmean, especially for extreme values (e.g., Figure 3b). This is
because precipitation extremes are highly variable and the transfer functions’ fit is worse. It is worth mention-
ing that our methods, based on moving windows (41 days centered on the day to be adjusted), are imple-
mented not to exactly reproduce the observational sequences but to develop scenarios that are intended
to be interpreted as plausible climate trajectories.

The plausibility of the Tmean and Pr marginal distributions in the scenarios has subsequently been analyzed
with the cross-validation scheme using Kolmogorov-Smirnov tests and two custom metrics (termed mcenter

and mextremes metrics; see supporting information). The Kolmogorov-Smirnov test allows for testing the null
hypothesis that observed and scenario data are drawn from the same parent distribution (Figures 4 and S2),
while the two custommetrics are implemented to specifically quantify dissimilarities in the central part of the
univariate distributions (mcenter metric; Figures S3 and S4) and in the extreme values (mextremes metric;
Figures S5 and S6). Annual daily values are examined, as well as daily values of a winter month (January)
and a summer month (July).

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023890

GENNARETTI ET AL. INTERVARIABLE DEPENDENCE IN SCENARIOS 11,867



These goodness-of-fit tests general-
ize the results of the visual evalua-
tion and allow us to conclude that
all adjustment methods (1Dqm,
2Dqm, and 2Dcopula) lead to signifi-
cant improvements in the marginal
distributions relative to DirectSim
scenarios, and that the 2-D methods
are as good as 1Dqm. In the case of
Tmean, all adjustments result in simi-
lar positive cross-validation statistics
(Figures S2, S4, and S6). In the case
of Pr, scenarios based on quantile
mapping (1Dqm and 2Dqm) agree
better with the observations than
2Dcopula scenarios do over the
calibration period (Figures 4a–4c,
S3, and S5). However, 1Dqm,
2Dqm, and 2Dcopula obtain similar
results over the validation periods,
all of them improving the sharpness
of the ensembles of scenarios
(Figures 4d–4f and S3) as well as the
equiprobability of the observational
ranks among the scenario members
(Figure S3g), except for extreme
values (Figures S5d–S5g). The
Kolmogorov-Smirnov statistic also
indicates that the higher the site’s
latitude, the more dissimilar the
distributions of the observed and
DirectSim scenario data (for both
Tmean or Pr; see Figures 4 and S2).
Finally, Figure S3 shows that, in
general, low Pr values in DirectSim
scenarios have positive offsets
relative to observations. This is
likely due to a combination of the

model drizzle problem [see Dai, 2006] and/or underestimations of trace events in the NRCan data set
[see Mekis, 2005].

3.2. Interdependence Between Tmean and Pr

Once the goodness-of-fit tests were completed, the interdependence between Tmean and Pr at each site was
evaluated and compared among observations, DirectSim, 1Dqm, and 2-D scenarios. First, we analyzed the
correlation between daily Tmean and Pr, in terms of both Spearman (Figures 5 and 6) and Pearson
(Figure S7) correlation coefficients. As expected, results indicate that temperature-precipitation interdepen-
dence varies with the period of the year and the site location, as reported by other studies [Cong and
Brady, 2012]. In January, the observational correlation coefficients are always highly significant and positive,
whereas in July coefficients are generally negative or not significant depending on whether or not dry days
were included (Figures 5b, 5c, 6b, 6c, S7b, and S7c). The intervariable correlation coefficients obtained with
the 2-D methods are much more similar to those observed over the full calibration period for almost all
site/scenario pairs and all analyzed periods of the year (Figures 5a–5c). Conversely, the DirectSim and
1Dqm scenarios are in some cases characterized by large offsets relative to the observations. DirectSim
and 1Dqm also obtain similar results for both January and July data (Figures 5b, 5c, 6b, and 6c). This supports

Figure 3. Quantile-quantile plots of observed versus scenario annual daily
climatic data (1981–2010 period using value of the three 10 year validation
blocks) showing the results of the adjustment methods for one model
(MIROC-ESM) at one site (Resolute) selected as examples. (a) Temperature
(note that the results for 2Dcopula, 1Dqm, and 2Dqm are almost coincident
and their plus symbols cannot be differentiated). (b) Precipitation.
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Wilcke et al.’s [2013] previous finding that univariate adjustments do not impact modeled temperature-
precipitation correlations much if the scenario’s sequence (i.e., succession of low and high values) is based
on the simulated one. When considering annual daily data instead, the 1Dqmmethod reduces the correlation
offsets of the DirectSim scenarios (Figures 5a and 6a). Indeed, all proposed adjustment methods use moving
windows so that summer days are subjected to different transfer functions than winter days. Thus, the annual
cycle is rectified by both the 1Dqm and the 2-D methods. However, the 2-D methods also adjust the day-to-
day covariation between Tmean and Pr. For this reason, over the three validation periods, the 2-D methods

Figure 4. Kolmogorov-Smirnov statistic between observed and scenario (a and d) annual, (b and e) January, (c and f) July daily Pr over the full calibration period
(Figures 4a–4c), and the three validation periods (Figures 4d–4f). In each pair of observed and scenario data, the n lower values were removed, where n is the
maximum of the number of dry days in the observations or the scenario. The number of scenarios for which the test rejected the null hypothesis that the observed
and scenario values are drawn from the same parent distribution is also indicated (p< 0.001). Different colors indicate values for observed versus DirectSim (red),
1Dqm (green), 2Dqm (blue), and 2Dcopula (violet) scenario data. Sites (see Table 1) are ordered from the southernmost (left) to the northernmost (right). Each
box refers to 13 values (one per simulation) in Figures 4a–4c and to 1014 values (three periods × 26 sites × 13 simulations) in Figures 4d–4f. For each box, quartiles
(central bar and box edges), extreme values within 1.5 interquartile ranges from the box edges (whiskers), and outliers (plus signs) are represented. The other
boxplots in this paper have a similar setup.
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improve the sharpness of the scenario ensembles in terms of correlation values and the equiprobability of the
observational ranks if dry and wet days are mixed (Figures 5d–5g). These improvements are less obvious
when dry days are excluded, especially for 2Dqm, which tends to underestimate the correlation
coefficients (Figure 6g).

The intervariable dependence was subsequently analyzed with plots showing the empirical nonparametric
copula densities of observed and scenario Tmean and Pr data (e.g., Figures 7, S8, and S9). We used the cell
values of these plots to evaluate the degree of similarity of Tmean-Pr interdependence between observed
and scenario data using RMSEs (root-mean-square errors; Figure 8). The main results, supporting those of
the intervariable correlation analyses, are the following: (1) The realism of the intervariable dependence
improves with the 2-D methods in both the calibration and validation periods, especially for northern sites
where the performance of the DirectSim scenarios is worse. (2) For both January and July daily data, the
1Dqm method does not push the modeled empirical copula densities toward the observed ones. (3) For
annual daily data, 1Dqm scenarios and observations have more similar empirical copula densities than
DirectSim scenarios and observations, but not as similar as those of 2-D scenarios and observations.

Finally, to generalize the results, grid plots were produced showing the ratios between the RMSEs of Figure 8
for each site/simulation pair (Figures 9 and 10 for calibration and validation statistics, respectively). In these
plots, ratios greater than one show site/simulation pairs for which the statistical adjustments improve the

Figure 5. Tmean-Pr correlation results. (a–c) Boxplots show Spearman’s rho values over the full calibration period in observations (black), and DirectSim (red), 1Dqm
(green), 2Dqm (blue), and 2Dcopula (violet) scenarios at each site for the ensemble of simulations. Stars on the top of Figures 5a–5c indicate that the correlation in
the observations is significant (p< 0.001). (d–f) Boxplots show differences in Spearman’s rho values between observations and scenarios over the three validation
periods at all sites for the ensemble of simulations (1014 values per box). (g) The verification rank histogram based onmonthly values. Each colored line represents the
frequency distribution of 156 cases (three periods × 26 sites × two months), whereas the horizontal black line represents the ideal distribution.
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Figure 6. Same as Figure 5, but here dry days were excluded. For scenarios with fewer dry days than observations, dry days were defined as the n days with lower
Pr values where n is the number of dry days in the observations.

Figure 7. Empirical copula densities of both observed and scenario daily January Tmean and Pr data over the full calibration period. Copulas for one model (MIROC-ESM)
and one site (Resolute) are shown as an example. (a) Observations, (b) DirectSim scenario, (c) 1Dqm, (d) 2Dqm, and (e) 2Dcopula. Two visualizations are visible for
each copula: grid plot and contour plot based on the gridded one. Days without rain in each time series are altered by adding a small noise uniformly distributed ranging
from 0mm to the minimum precipitation value. This last step is iterated 100 times, and the average of 100 empirical copulas is plotted.
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results relative to DirectSim scenarios (first three columns of plots in Figures 9 and 10) and for which 2Dqm
performs better than 2Dcopula (last column of plots in Figures 9 and 10). Once again, we can see that
although 2Dqm outperforms all other methods over the full calibration period, 2Dcopula has overall results
comparable to those of 2Dqm over the validation periods.

3.3. Impact of Modifications to 2Dqm

Figure 11 shows how the two main modifications applied to the adjustment methods (see section 2.4)
improve our scenarios’ plausibility. We have compared the linear trends of the mean annual temperatures
over the 1981–2035 period of DirectSim and 2Dqm scenarios calibrated over the 1981–2010 period. It is
known that quantile mapping can modify climate model simulated trends [Maurer and Pierce, 2014]. First,
our modified 2Dqm method significantly reduces the alterations introduced by the basic 2Dqm method in
the model simulated warming signals (Figure 11a). In our opinion, methods that do not specifically target
the trend as the statistical property to be adjusted should leave it unaltered because no change is better than
an uncontrolled one. Here we decided to constrain temperature to follow the model simulated trend, but not
to do the same for precipitation. The trend preservation for precipitation is more problematic because its
trends are more quantile dependent. That is why trends of adjusted precipitation quantiles can be different
from the original model trends even after applying a constraint on the average change. To avoid this problem
and to improve the preservation of “hydrological sensitivity” (percent change in precipitation per degree of
warming), the recently implemented univariate quantile delta mapping approach [Cannon et al., 2015] could
be tested in the 2Dqm scheme in future work. Second, our modified 2Dqm method, based on moving

Figure 8. RMSEs between observed and scenario empirical copula densities (see Figure 7 for an example) for (a and d) annual, (b and e) January, and (c and f) July
daily data over the full calibration period (Figures 8a–8c) and the three validation periods (Figures 8d–8f). Different colors indicate RMSEs between observations on
the one hand and either DirectSim (red), 1Dqm (green), 2Dqm (blue), or 2Dcopula (violet) scenarios on the other.
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windows to calibrate the transfer functions, avoids artificial jumps in a climate variable’s annual cycle at the
transition between two successive months compared to a frequently used scheme [e.g., Lafon et al., 2013]
calibrating the transfer functions for each month separately (see the spikes in the blue lines of Figure 11b).
The potential for jumps in downscaled response through the seasonal cycle has already been highlighted
by Hewitson et al. [2014].

4. Discussion

The tested 2-D methods, which are upgrades of the methods proposed by Piani and Haerter [2012] and Li
et al. [2014], can satisfactorily adjust individual distributions of Tmean and Pr time series relative to DirectSim
scenarios. In particular, the results of 2Dqm are as good as those of 1Dqm, where Tmean and Pr are adjusted
independently (Figures 4 and S2–S6). Furthermore, the 2-D methods realistically reproduce seasonal varia-
tions in the observed Tmean-Pr interdependence at the selected Canadian Arctic sites, thereby improving
the results of the DirectSim and 1Dqm scenarios. As has already been observed elsewhere [Isaac and
Stuart, 1992; Rajeevan et al., 1998], temperature and precipitation at our sites are in general positively
correlated during winter and negatively or not correlated during summer. This is because more snow falls
during winter when the temperature is just below 0°C, while rainy days are often cloudier and colder than
dry days during the summer. The DirectSim and 1Dqm scenarios are able to reproduce this tendency, but

Figure 9. Grids showing ratios between RMSEs of Figures 8a–8c (calibration statistics) for each site/simulation pair. (a, d, g, and j) Results for annual daily data. (b, e, h, and k)
Results for daily January data. (c, f, i, and l) Results for daily July data. For each grid plot, the percent of cells with a value greater than one (%> 1) is indicated.
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the spread among models and the offsets with the observational correlation coefficients are large,
especially for northern sites. Conversely, the 2-D methods push the correlation coefficients toward the
observed ones and reduce the spread among models in both the calibration and validation periods
(Figures 5 and S7). Nevertheless, the adjustments have limitations; for example, when correlations are ana-
lyzed for wet days only, the verification rank histogram shows that the 2Dqm ensembles of scenarios tend
to underestimate the correlation coefficients over the validation periods (Figure 6g). Because temperature-
precipitation interdependence is more complex than can be described by correlation coefficients alone,
copulas may be used as a complement [Cong and Brady, 2012; Schölzel and Friederichs, 2008]. Here we
employ empirical copula densities of daily Tmean and Pr values, and we compare these densities between
observed and scenario climatic data (Figures 7, S8, and S9). The results again show that the 2-D scenarios
outperform the DirectSim and 1Dqm scenarios in reproducing the observed temperature-precipitation
interdependence over the calibration period and improve the scenarios’ plausibility over the validation
periods (Figures 8–10).

When we compare the performance of the two 2-D methods, all our tests show that 2Dqm clearly outper-
forms 2Dcopula in reproducing the observational statistics over the full calibration period, but this does
not systematically lead to more plausible scenarios over the validation periods (Figures 4–6 and 8–10). This
is because 2Dqm is a nonparametric method and is not constrained by the fit between the data and some
parametric functions over the calibration period. Instead, over the validation periods, 2Dqm provides some

Figure 10. Grids showing ratios between RMSEs of Figures 8d–8f (validation statistics) for each site/simulation pair. Average RMSEs of the three validation periods are
used. The setup is the same as that of Figure 9.
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improvements relative to 2Dcopula
for the adjustment of the marginal
distributions (Figure 4), but not for
the adjustment of the correlation
coefficients (Figure 6).

As expected, all adjustment methods
produce scenarios which fit the
observations over the calibration
periods better than over the valida-
tion periods (Figures 4–6 and 8–10).
Indeed, the scenarios are forced to
achieve agreement in some chosen
statistical properties over the calibra-
tion period and to avoid discontinu-
ities at the junction between the
“past” and the “future” segments.
Instead, in the validation periods, sev-
eral causes for the lower agreement
of individual scenarios with observa-
tions can be considered: (1) the inter-
nal climate variability proper to each
scenario [Fischer et al., 2014], (2) inho-
mogeneities in the observational
time series [Mekis, 2005], (3) possible
drift in the simulated offsets over
time [Maraun, 2012], and (4) in cases
like ours, the length of the analyzed
period (10 year validation versus 20
or 30 year calibration periods). Thus,
over the validation periods we evalu-
ate not only the agreement of the
scenarios with the observations, as
in other studies [e.g., Lafon et al.,
2013; Li et al., 2010; Stoner et al.,
2013; Thrasher et al., 2012], but
also the sharpness of the scenario
ensembles and the equiprobability
of the observational ranks among
the scenario members.

An important limitation of the tested
statistical adjustment methods, which
is common to concurrent techniques,
is the assumption that the used
observational product provides a rea-
listic representation of intervariable
dependences. However, there is the
possibility that the analyzed statisti-
cal properties are misrepresented in
the observations. This is especially

true in the Arctic, where the station density is poor and crosschecking is more problematic. Furthermore, in
the Arctic more than elsewhere, gauge undercatch, regional variation in snowfall density, and trace events
can bias the observed precipitation records at the stations [Mekis, 2005]. Here to avoid temporal discontinu-
ities, we also use a gridded interpolated data set [McKenney et al., 2011] where precipitation and temperature

Figure 11. Improvements achieved with the two modifications applied to
the adjustment methods in this study. (a) A comparison of mean annual
Tmean trends over the 1981–2035 period between original simulations
(i.e., DirectSim scenarios) and 2Dqm scenarios calibrated over the 1981–2010
period. Trends are slopes of linear regressions fitted to the data. The trend
for 338 scenarios is represented (26 sites × 13 simulations). (b) June–August
mean daily Tmean anomalies relative to the preceding day (Tmeani � Tmean i�1ð Þ)
at the Hall Beach site over the 2001–2010 validation period when 2Dqm
scenarios are calibrated over the 1981–2000 period. Values for 13 scenarios
are represented.
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are interpolated separately with unknown effect on their interdependence. However, we have to recall
that for the moment we are only interested in the performance of the 2-D adjustment methods and that
when ready-to-use scenarios will be provided these aspects should be checked comparing different observa-
tional products.

5. Conclusion

In this paper we improve and compare two 2-D statistical adjustment methods to produce local climate
scenarios with more realistic temperature-precipitation interdependence at Canadian Arctic coastal sites.
The improvements consist of modifications previously proposed by univariate statistical adjustment studies
[Hempel et al., 2013; Themeßl et al., 2012; Thrasher et al., 2012; Wood et al., 2004] (see sections 2.4 and 3.3).
Among the proposed methods, 2Dqm outperforms 1Dqm and 2Dcopula over the calibration period
(1981–2010). However, better past skills do not necessarily imply better future skills, and indeed our approach
to show cross-validation results (see section 2.5) demonstrate that 2Dqm and 2Dcopula perform rather
similarly over three validation periods. We did not find any final evidence that would lead us to prefer one
method over the other. Future work could test these methods with other climatic variables (e.g., wind,
radiation, and humidity), and provide techniques for handling uncertainties in observed data and achieving
better characterization of extreme events. Such studies would offer invaluable tools for Arctic users and for
the development of appropriate climate change adaptation strategies.
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