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aUniversité Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME
UMR 8208 CNRS, 61 av du Général de Gaulle, 94010 Créteil Cedex, France
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Abstract

In this paper anisotropic and dispersive wave propagation within linear strain-gradient
elasticity is investigated. This analysis reveals significant features of this extended theory
of continuum elasticity. First, and contrarily to classical elasticity, wave propagation in
hexagonal (chiral or achiral) lattices becomes anisotropic as the frequency increases. Second,
since strain-gradient elasticity is dispersive, group and energy velocities have to be treated
as different quantities. These points are first theoretically derived, and then numerically
experienced on hexagonal chiral and achiral lattices. The use of a continuum model for the
description of the high frequency behavior of these microstructured materials can be of great
interest in engineering applications, allowing problems with complex geometries to be more
easily treated.

Keywords: Strain gradient elasticity , Anisotropy , Higher-order tensors , Chirality , Acoustical
activity , Wave propagation

1 Introduction

The study of wave propagation within Periodic Architectured Materials (PAM) is a topic of
increasing interest. This subject finds its origin in the field of electromagnetism, where it drove
the development of innovative materials and devices, e. g. smart wave guides or cloaking devices
[Schurig et al., 2006]. Indeed, materials with exotic properties (e. g. stop bands, energy focusing)
are obtained by exploiting the periodic nature of such materials. The same concept can be
successfully applied to elastic waves for designing materials capable of changing the direction
of propagation of the energy (e. g. wave beaming [Ruzzene et al., 2003]), to enhance the non-
destructive characterization properties of the material itself (e. g. materials with a specific
acoustic signature when damaged [Madeo et al., 2014].

The behavior of waves propagating in these media strongly depends on frequency. For
example some of them have an isotropic behavior at low frequencies and become anisotropic
at high frequencies. Well known is the case of hexagonal lattices, used in so-called honeycomb
structures, for which an isotropic (in 2D) or a transverse isotropic (in 3D) model is commonly
used. Indeed, when performing a simple wave propagation test, a breaking of symmetry occurs
when frequency increases. To illustrate this phenomenon, we use the results of a Finite Elements
simulation performed on the full honeycomb geometry modeled by clamped Timoshenko beams.
We observe the evolution of the total energy when shear pulses of different central frequencies
are applied at the center of the structure. Two snapshots at suitably chosen time instants are
plotted in Fig.1. In the case of low frequencies (we chose the value of 800 Hz, to avoid boundary
effects for longer wavelenghts) the propagation is isotropic (Fig.1(a)). However, when increasing
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the frequency up to 2 KHz, the breaking of symmetry occurs, revealing the inherent symmetries
of the hexagonal lattice (Fig.1(b)). We can also observe the effects of energy focusing at discrete
orientations corresponding to pure modes of propagation [Wolfe, 2005]. This phenomenon has
also been experimentally observed (e. g. in [Celli and Gonella, 2014]). In a perspective of a
homogenization procedure, this behavior should be reproduced by any Homogeneous Equivalent
Medium (HEM).

(a) Low frequency (800 Hz) (b) High frequency (2 kHz)

Figure 1: Time transient Finite Elements simulation of energy propagation in a hexagonal lattice
at a given instant for shear pulses of different central frequency (color online).

In its basic formulation, elastic wave propagation within PAM shares many aspects with
lattice dynamics. Indeed, tools classically used in condensed matter physics can be also em-
ployed for the study of such a class of materials [Dresselhaus et al., 2007, Gazalet et al., 2013,
Nassar et al., 2015b]. For example, dispersion curves of PAMs are usually obtained by complete
computations, following the Bloch theorem [Phani et al., 2006, Spadoni et al., 2009, Liu et al., 2011,
Liu et al., 2012], on the unit cell.

These dispersion curves are of prime importance for the conception of tailored meta-materials,
wave guides or sensors [Liu et al., 2015], since they allow to link the geometric properties of the
unit cell with the dynamic properties of the lattice. For understanding the richness of the
response of such materials, it is useful to consider an example. Among the multiple possible
choices we chose the hexachiral cell, depicted in Fig. 2(a). The dispersion diagram obtained
by a Finite Element (FE) computation is presented in Fig. 2(b). This plot represents the
dispersion relation computed on the edges of the irreducible Brillouin (IBZ) zone delimited by
the points O, A and B. It captures the essential propagation properties of the material. The
behavior is rich, and some key features can be highlighted: i) the presence of acoustic branches,
i.e. those starting from the origin; ii) the presence of optic branches, i.e. those exhibiting a
cut-off frequency; iii) the presence of frequency band gaps, or stop bands, where no wave can
propagate (the wavenumber k is complex); iv) the presence of dispersive behavior. Moreover,
since the graph is not perfectly symmetric, i. e. the path O-A-B-O is not the same as the path
O-B-A-O, the material is also experiencing directivity. This means that propagation constants
will depend on the direction of propagation. All these phenomena appear only when increasing
the frequency or reducing the wavelength, and may be of crucial importance according to the
sought application.

For practical applications, e. g. for simplifying the study of reflection/transmission problems
[dell’Isola et al., 2011, Rosi et al., 2015, Rosi et al., 2014, Gourgiotis et al., 2013], it is of interest
to determine a HEM as an approximation of the PAM, provided that some of the specific
aforementioned features are preserved. Classical Cauchy elasticity is a theory of the linear
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(a) Hexachiral lattice

O A B O
0.0

0.5

1.0

1.5

2.0

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y
Wavenumber in the reciprocal lattice along the 
boundary of the half Irreducible Brillouin zone

Acoustic branches

Optic branches

Band gaps

O A

B

(b) Dispersion analysis on a hexachiral material

Figure 2: Geometry and dispersion curves for a hexachiral material.

approximation of the acoustic branches. This theory is usually sufficiently accurate to describe
the behavior of a homogeneous or slightly heterogeneous anisotropic medium. However, when
increasing the frequency or wavenumber, this theory fails to capture almost all the key features
of PAMs, as highlighted in the example on hexagonal lattice. In Figure 3 the validity zone of
Cauchy model is approximately highlighted. A HEM that completely reproduces the dispersion
curve implies to use a highly non-local continuum, as the one introduced by Willis [Willis, 1985,
Willis, 1997, Nassar et al., 2015b]. But since its use is almost as complex and challenging as the
complete problem, local approximations are, in practice, preferred [Nassar et al., 2015a].

Local extensions of the classical continuum mechanics are basically of two types1 [Toupin, 1962,
Mindlin, 1964, Mindlin, 1965, Erigen, 1967, Mindlin and Eshel, 1968]:

Higher-order continua: the number of degrees of freedom is extended, and hence optical
branches can be modeled. The Cosserat model (also known as micropolar), in which local
rotations are added as degrees of freedom, belongs to this family [Cosserat and Cosserat, 1909].
This enhancement can be extended further to obtain the micromorphic elasticity [Green and Rivlin, 1964,
Mindlin, 1964, Germain, 1973, Erigen, 1967].

Higher-grade continua: the degrees of freedom are kept identical but higher-order gradi-
ents of the displacement field are involved into the elastic energy. Within this frame-
work no optical branch is present. Mindlin’s Strain-Gradient Elasticity (SGE) model
[Mindlin, 1964, Mindlin and Eshel, 1968, Mindlin, 1965] belongs to this family.

Strain gradient elasticity can be retreived as a Low Frequency (LF), Long Wave-length (LW) ap-
proximation of the micromorphic kinematic [Mindlin, 1964]. As a consequence, the parameters
needed to set up this model are limited compared to a complete micromorphic continuum. The
domain of validity of these extended theories are roughly estimated in Fig.3. In the case of mi-
cromorphic continua, band gaps can be modelled only when considering the relaxed formulation
presented in [Neff et al., 2014, Ghiba et al., 2015, Madeo et al., 2015b, Madeo et al., 2015a]. As
can be observed in Fig. 3, in the LF limit all the internal degrees of freedom are lost, as well
as all optical branches. In Long Wavelength (LW) limit the dispersion relation becomes linear,
and hence dispersive effects are lost.

1Those approaches can perfectly be combined.
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Figure 3: Dispersion analysis on a hexachiral material with superposed domains of validity of
the continuum models.

In the present paper, attention will be devoted to the modeling of anisotropic dispersive
elastic waves in the framework of strain-gradient elasticity. This approach can be seen as
a phenomenological reformulation of some pioneering works in physics of dispersive elasticity
[Portigal and Burstein, 1968, DiVincenzo, 1986]. This work follows some previous contribu-
tions, since the different anisotropic elasticity tensors involved in SGE have been studied in
[Auffray et al., 2009, Auffray et al., 2015b]. As will be shown, wave propagation within linear
SGE allows to capture some specific features that can not be modelled classically:

1. Chiral sensitivity;

2. Anisotropy of hexagonal lattices;

3. Distinction between group and energy velocities;

It has to be noted that the second point, cannot be modeled using a Cosserat (or Micropolar)
medium. All of these effects are controlled by the circular frequency ω and disappear, as it
should, in the LF limit, where classical Cauchy behavior is retrieved. These specificities will be
illustrated both analytically and numerically, and the results from the generalized continuum
model will be compared with full field simulations.

Organisation of the paper
The paper is organized as follows. In a first time, §.2, the basic equations of Strain Gradient
Elasticity are recapped. In §.3 plane wave propagation in SGE is discussed and the generalized
acoustic tensor is introduced. Then, in §.4 numerical studies are conducted on hexagonal and
hexachiral lattices in order to illustrate these different aspects. Finally, §.5 is devoted to conclu-
sions.

Notations
In this work tensors of order ranking from 0 to 6 are denoted, respectively, by a, a, a

∼
, a
'

, a
≈

, a
u
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and a
≈
∼

. The simple, double and fourth contractions are written ., : and :: respectively. In index

form with respect to an orthonormal Cartesian basis, these notations correspond to

a.b = aibi, a
∼

: b
∼

= aijbij , a
≈

:: b
≈

= aijklbijkl

where repeated indices are summed up. Spatial gradient will classically be denoted, in index
form, by a comma

Grad a = (a⊗∇)ij = ai,j

Divergence and curl will be denoted:

Div a = (∇ · a) = ai,i ; Curl a = (∇× a)i = εijkaj,k

where εijk is the Levi-Civita symbol. Vector spaces will be denoted using blackboard bold fonts,
and their tensorial order indicated by using formal indices. When needed index symmetries are
expressed as follows: (..) indicates invariance under permutations of the indices in parentheses,
while .. .. denotes invariance with respect to permutations of the underlined blocks. Finally, a
superimposed dot will denote a partial time derivative.

2 Strain-gradient dynamics

In this section the Strain Gradient Elasticity (SGE) model will first be recapped, then particular
attention will be devoted to the constitutive laws.

2.1 Dynamics

In this section the dynamic balance equations for a strain-gradient solid will be summed-up.
Our setting will be based on Mindlin type II formulation [Mindlin and Eshel, 1968]. Strain-
gradient elasticity can be considered as a long wave approximation of the micromorphic model
(see [Mindlin, 1964] for more details). The degrees of freedom of the model are the components
of the displacement field ui. Kinetic and potential energy densities, respectively denoted K and
P, are functions of the displacement and its gradients up to the second order:

K =
1

2
pivi +

1

2
qijvi,j , P =

1

2
σijεij +

1

2
τijkηijk,

where

• pi and qij are, respectively, the momentum and the hypermomentum tensors;

• vi and vi,j are the velocity (vi = u̇i) and its gradient;

• σij and τijk are the stress and the hyperstress tensors;

• εij and ηijk = εij,k, the infinitesimal strain tensor (εij = (ui,j + uj,i)/2) and its gradient.

By application of the least action principle on the action functional [Mindlin, 1964], and
neglecting body double forces, the following bulk equations are obtained

sij,j = ṗi − q̇ij,j (1)

where sij is the effective second order symmetric stress tensor, defined as follows:

sij = σij − τijk,k (2)

Consistent boundary conditions are also obtained from the least action principle, but as the
objective of this paper is to study free propagation we omit to list them here (for details see
[Mindlin, 1964, Auffray et al., 2015a]). To be well posed those equations have to supplemented
by a constitutive law.
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2.2 Constitutive law

In a spatio-temporal framework, the constitutive law reads

pi = ρδipvp +Kipqvp,q (3)

qij = Kijpvp + Jijpqvp,q (4)

σij = Cijpqεpq +Mijpqrηpqr (5)

τijk = Mpqijkεpq +Aijkpqrηpqr (6)

or, using a quadratic form 
p

q
∼
σ
∼
τ
'

 =


ρ I
∼

K
'

0 0

K
'
T J

≈
0 0

0 0 C
≈

M
u

0 0 M
u
T A

≈
∼




v
∇v
∼
ε
∼
η
'


where

• ρI(ij) is the macroscopic mass density;

• Kijk is the coupling inertia tensor;

• Jijqr is the second order inertia tensor.

• C(ij) (lm) is the classical elasticity tensor;

• M(ij)(lm)n is a fifth-order coupling elasticity tensor;

• A(ij)k (lm)n a six-order tensor.

As can be observed on the matricial form of the constitutive law (as presented in Eq. (2.2)),
we implicitly made the hypothesis that space and time are not coupled by the constitutive
law. Albeit being quite unusual, this coupling may appear under certain circumstances. Me-
dia in which such phenomena emerge are of Willis type, and more details can be found in
[Willis, 1997, Norris and Shuvalov, 2011, Nassar et al., 2015b]. In the present approach those
equations are postulated on phenomenological bases. It should be noted that they can be
also derived using a dynamic homogenization procedure [Bacigalupo and Gambarotta, 2014b,
Bacigalupo and Gambarotta, 2014a, Nassar et al., 2015a]

The study of the higher-order elasticity tensors involved in this law has been the object of pre-
vious papers [Auffray et al., 2009, Auffray et al., 2013, Auffray et al., 2015b]. The substitution
of the constitutive equations (5) and (6) into the Eq. (2) gives

sij = Cijlmεlm +M ]
ijklmεlm,k −Aijklmnεlm,kn

where the dynamic coupling tensor M ]
ijklm = Mijklm −Mklijm has been introduced. In physics

this tensor is known as the acoustical gyrotropic tensor and is responsible for the so-called
acoustical activity [Portigal and Burstein, 1968, Srinivasan, 1988, Auffray et al., 2015b]. Then,
using this result into the balance equation (1) gives

Cijlmul,jm +M ]
ijklmul,jkm −Aijklmnul,jkmn = ρüi +K]

ipqüp,q − Jipqrüq,pr (7)

where the dynamic coupling inertia tensor K]
ipq = Kipq −Kpiq has been introduced. It is impor-

tant to remark that only the dynamic tensors M
u
] and K

'
], which have stronger symmetry require-

ments than their static counterpart, are present in the balance equation. Hence, for some mate-
rial symmetries M

u
] and K

'
] may vanish while M

u
and K

'
are not null tensors [Auffray et al., 2015b].
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Those odd-order tensors vanish in 3D space for centro-symmetric media, and in 2D space for
media that are invariant by a rotation of even-order. To avoid cumbersome expressions this last
hypothesis will be assumed in the following. In 2D space, this assumption is not too restrictive
since M

u
and K

'
are null in many common situations, and does not preclude chiral behaviors

[Auffray et al., 2015b].
A major result from [Auffray et al., 2015b] is that in 2D there are 14 non equivalent types

of anisotropy that can be described by SGE2. Those different type of anisotropy, together with
their number of independent components, are reported in the following table:

Name Oblique Rectangular Digonal Orthotropic Trichiral Trigonal Tetrachiral Tetragonal

[GL] [Id] [Zπ2 ] [Z2] [D2] [Z3] [D3] [Z4] [D4]

#indep(L) 45 (44) 27 36 (35) 16 15 (14) 10 13 (12) 9

Name Pentachiral Pentagonal Hexachiral Hexagonal Hemitropic Isotropic

[GL] [Z5] [D5] [Z6] [D6] [SO(2)] [O(2)]

#indep(L) 9 (8) 7 9 (8) 7 7 6

Table 1: The names, the sets of subgroups [GL] and the numbers of independent components
#indep(L) for the 14 symmetry classes of L, where L is the constitutive law. The in-parenthesis
number indicates the minimal number of components of the law in an appropriate basis.

in which

• Zn, for cyclic groups, means that the object is only invariant by n-fold rotations. Zn-
invariant objects are said to be chiral ;

• Dn, for dihedral groups indicates a n-fold invariant object that possesses also mirrors
perpendicular to the rotation axis. Dn-invariant objects are achiral.

Hence, as can be read from the table, SGE is

1. anisotropic for materials that are 6-fold invariant;

2. sensitive to the chirality of the matter.

In the next sections we will investigate how these specific features influence wave propagation.

3 Plane wave propagation in an anisotropic strain-gradient con-
tinuum

Objective of this section is to study plane wave propagation in the framework of anisotropic
strain-gradient elasticity. To do so, the classic concept of acoustic tensor has to be revisited.
This novel generalized acoustic tensor will be used as main analysis tool. Before going into details
of the strain-gradient case, it is useful to make some broader considerations about the physical
meaning and the interpretation of the different velocities that characterize wave propagation.

3.1 Wave propagation and wave velocities in anisotropic dispersive media

When studying anisotropic materials, useful considerations can be drawn from the analysis of
bulk plane waves. This means to seek for solutions of the dynamic equation (1) in the following
form:

u = F (ωt− k · x) , (8)

2The same can be also given for 3D SGE, but the classification would be far more involved, and is not relevant
for the present discussion.
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where F is a vector function, ω the circular frequency, k the wave vector and x the position
vector. As well known, plane wave propagation is characterized by different notions of velocity.
A priori, these quantities may, or not, be identical. In full generality, four different physical
velocities emerge [Brillouin, 1960]:

• the phase velocity vp: this quantity is defined as the ratio of the circular frequency ω over
the wave vector k:

vp =
ω

k
ξ̂

where k = ‖k‖ is the wave number associated to k, and ξ̂ the unit vector in the direction

of k, so that k = kξ̂. This is a secant velocity that describes the speed of the wavefront of

single harmonic wave oscillations for a wave propagating toward the direction ξ̂.

• the group velocity vg: this second notion, which is a tangent one, describes, in 1-D, the
modulation of the signal:

vg =
∂ω

∂k
= ∇kω

This velocity is related to the modulation of the wave packet, and is a kind of ”particle”
related velocity.

• the energy velocity ve: this velocity deals with the energy flow within the medium and
hence is defined using the Poynting vector.

ve =
P

E

where P is the Poynting vector while E = K+P is the total energy density, sum of potential
and kinetic energy.

• the signal velocity vs: this velocity is related to the propagation of the information. This
notion, introduced by Sommerfeld in [Brillouin, 1960], is, contrary to the others, bound
by relativity principle.

In the classical situation of an isotropic, linear, homogeneous, non dispersive, non dissipative
medium these four velocities are identical. However, once one of these hypotheses is modified,
this equality is not true anymore. In the case of an anisotropic medium (all other hypotheses
being conserved), for example, the phase velocity differs from the 3 others, i.e.

vp 6= vg = vs = ve

A general summary of relationships between phase, group and energy velocities, in the case of
dispersive and non dispersive media, can be found in Table 2 and illustrated Fig.4. As it can
be noticed, in the case of dispersive media, group and energy velocity are not anymore equal
to each other. This must lead to a reinterpretation of group velocity with respect to the classic
non-dispersive case. At the end of Section 2 these properties will be verified analytically and
numerically for an elastic strain gradient continuum.

Isotropic Anisotropic

Non dispersive Dispersive Non dispersive Dispersive

vp = vg = ve vp 6= vg 6= ve vp 6= vg = ve vp 6= vg 6= ve

Table 2: Summary of relationships between velocities.
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Figure 4: Graphical representation of the respective values of phase, energy and group velocity
in different cases.
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3.2 The generalized acoustic tensor

To obtain the different velocities of a plane wave in the framework of SGE, let us consider the
following plane wave solution, equivalent to (8),

ui = UiA exp

[
ıω

(
t− 1

V
ξ̂ixi

)]
(9)

where V = ‖vp‖ is the norm of the phase velocity of the wave-front and ξ̂ the unit vector pointing
toward the direction of propagation, i.e. the normal to the wave-front. Moreover, Ui is a real
valued unitary vector representing the polarization (direction of motion) and A is a complex
amplitude. These quantities are both independent of xi and t. Phase velocity and wave-vector
can be conveniently summed-up in one quantity, namely the slowness vector ξi:

ξi =
1

V
ξ̂i.

The substitution of ansatz (9) into the balance equation (7) yields((
Cijlm − ω2Jijlm

)
ξ̂j ξ̂m +

ω2

V 2
Aijklmnξ̂j ξ̂kξ̂mξ̂n

)
Ul = ρV 2Ui,

which can be conveniently rewritten as

Q̂ilUl = ρV 2Ui, (10)

where the generalized acoustic tensor Q̂il is defined as follows:

Q̂il =
(
Cijlm − ω2Jijlm

)
ξ̂j ξ̂m +

ω2

V 2
Aijklmnξ̂j ξ̂kξ̂mξ̂n. (11)

As can be noticed, the classic definition of the acoustic tensor is retrieved (i. e. Qil = Cijlmξ̂j ξ̂m)
in the following situations:

• when the tensor Aijklmn vanishes, that is for a classic continuum;

• when ω → 0, that is for low frequencies.

From the solution of the eigenvalue problem associated to Eqn. (10), it is possible to obtain
useful information concerning phase velocity and polarization of plane waves propagating with
a wavefront perpendicular to a given direction ξ̂i. Moreover, from the polar plot of the slowness,
one can compute the so- called slowness surfaces (or curves in 2D).

3.3 Conservation of energy, Poynting vector and energy velocity

As previously discussed, energy velocity is usually considered as being equivalent to group veloc-
ity. Since we have pointed out that this interchangeability is no more true for dispersive media,
the two notions have to be distinguished. To that aim let us first compute the velocity at which
the energy carried by the plane wave is propagating.

Since we are working with harmonic plane waves, the energy velocity vector vg is defined by
the relation

vei =
〈Pi〉
〈E〉

(12)

where the definition

〈·〉 =
1

T

∫ T

0
· dt

10



is used to compute the mean values over the T -period. In terms of these two quantities, the
local form of the conservation of energy reads:

∂E
∂t

+ Pi,i = 0.

Using the constitutive equations (5) and (6), and the conservation of linear momentum (1) the
expression of P can be specified:

Pj = − (sij + q̇ij) u̇i − τikj u̇i,k.

Inserting the plane wave solution (9) into this last expression and performing a temporal aver-
aging, the following result is obtained

〈Pj〉 =
|A|2

2

ω2

V
Q[ijlUlUi,

in which the following tensors have been introduced

Q[ijl =
(
Cijlm − ω2Jijlm

)
ξ̂m −

ω2

V 2
A[ijklmnξ̂kξ̂mξ̂n,

with
A[ijklmn = (Aijklmn −Aikjlmn) .

For the kinetic energy and potential energy, the same computation leads to:

〈K〉 =
|A|2

4
ω2

(
ρδik +

ω2

V 2
Jijklξ̂j ξ̂l

)
UkUi, 〈P〉 =

|A|2

4

ω2

V 2
Q̃ilUlUi,

where

Q̃il = Cijlmξ̂j ξ̂m +
ω2

V 2
Aijklmnξ̂j ξ̂kξ̂mξ̂n. (13)

Using Eqn. (10), this last result can be transformed to

〈P〉 =
|A|2

4
ω2

(
ρδik +

ω2

V 2
Jijklξ̂j ξ̂l

)
UkUi = 〈K〉 ,

showing that the classical property of the equi-distribution of energy over the period between
potential and kinetic energy is verified also into the strain-gradient framework. Then the total
energy reads:

〈E〉 =
|A|2

2
ω2

(
ρδik +

ω2

V 2
Jijklξ̂j ξ̂l

)
UkUi.

Finally, using the definition (12), the expression for the energy velocity is finally obtained

vej =
Q[ijlUlUi

V
(
ρδik + ω2

V 2Jijklξ̂j ξ̂l

)
UkUi

. (14)

3.4 Group velocity

In this section we compute the group velocity, which we recall is defined as

vg =
∂ω

∂k
. (15)

From equation (11) it can be shown that

vgj =
Q]ijlUlUi

V
(
ρδik + ω2

V 2Jijklξ̂j ξ̂l

)
UkUi

(16)

11



where

Q]ijl =
(
Cijlm − ω2Jijlm

)
ξ̂m +

ω2

V 2
A]ijklmnξ̂kξ̂mξ̂n,

and
A]ijklmn = (Aikjlmn +Aijklmn) (17)

As expected, the expression of the group velocity, Eq. (16), is different from that of the energy
velocity(Eq. (14)). Moreover, their difference is easily computed, and reads

vgj − v
e
j =

2ω2

V 3
(
ρδik + ω2

V 2Jijklξ̂j ξ̂l

)
UkUi

AijklmnUlUiξ̂nξ̂kξ̂m (18)

This expression confirms that in strain gradient continua the energy and group velocities are
not identical and shows that the usual association between group velocity and energy velocity
is retrieved in the low frequency limit.

3.5 Synthesis

In this section it has been shown that for a SGE continuum group and energy velocity have to
be distinguished. In the case of a centrosymmetric medium, the difference between those two
notions is directly related to the second-order elasticity tensor A

≈
∼

. As a consequence, and since

SGE is a long wavelength approximation of the elasticity of heterogeneous materials, those two
notions should be kept different for architectured materials as soon as micro-structural effects
are involved.

4 Case studies

This section is devoted to the analysis of some common situations that have been chosen to
illustrate peculiar features of SGE. The following case studies will be analyzed:

• 3D isotropic (SO3) materials

• 2D hexagonal (D6) and hexachiral (Z6) materials

4.1 3D isotropic material

For isotropic SGE material the afore-introduced quantities can be made explicit3. Using index
notation, isotropic constitutive tensors have the following expressions4 [Mindlin, 1964]:

Cijlm = λδijδlm + µ(δilδjm + δimδjl)

Jijlm = J1δijδlm + J2δilδjm + J3δimδjl

Aijklmn = a1δijδklδmn + a2δilδjkδmn + a3δijδknδlm + a4δilδjmδkn + a5δinδjmδkl

As a consequence the generalized Navier equation reads

(λ+ µ)(1− b̃1∆)(∇⊗ (∇ · u)) + µ(1− c̃s∆)∆u = ρ
(

ü− J̃e(∇⊗ (∇ · ü))− J̃s∆ü
)

3The question of which microstructures can produce isotropy for strain gradient elasticity is interesting but
will not be considered here. It has to be noticed that periodic materials are unable to produce SGE isotropic
behavior [Auffray et al., 2009], hence answers has to be sought within classes of quasi-periodic, hyperuniform and
random materials [Zachary and Torquato, 2009].

4It has to be noted that for 2D strain gradient elasticity, only 4 components are independent while 5 are in
3D.
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with
b1 = a1 + a3 + a5 ; cs = a2 + a4, Je = J2 + J3, Js = J1

b̃1 =
b1

λ+ µ
, b̃s =

bs
µ
, J̃e =

Je
ρ
, J̃s =

Js
ρ

Using a classical vectorial identities last equation can be reshaped

(λ+ 2µ)(1− c̃p∆)(∇⊗ (∇·u))−µ(1− c̃s∆)∇×∇×u = ρ
(

ü− J̃p(∇⊗ (∇ · ü)) + J̃s∇×∇× ü
)

with
cp = a1 + a2 + a3 + a4 + a5, Jp = J1 + J2 + J3

c̃p =
cp

λ+ 2µ
, J̃p =

Jp
ρ

Taking the divergence and the curl of that equation, the following two equations are obtained{
(λ+ 2µ)(1− c̃p∆)∆(∇ · u) = ρ(1− J̃p∆)(∇ · ü)

µ(1− c̃s∆)∆(∇× u) = ρ(1− J̃s∆)(∇× u)

showing that (cp, Jp) are associated to the P-waves propagation, while (cs, Js) are associated to
S-waves. Let us now express the different speeds associated to the plane wave propagation. For
isotropic medium the canonical equation((

Cijlm − ω2Jijlm
)
ξ̂j ξ̂m +

ω2

V 2
Aijklmnξ̂j ξ̂kξ̂mξ̂n

)
Ul = ρV 2Ui

reduces to(
λ+ µ+

ω2

V 2

(
a1 + a3 + a5 − V 2(J1 + J3)

))
ξ̂iξ̂lUl +

(
µ+

ω2

V 2

(
a2 + a4 − V 2J2

))
Ui = ρV 2Ui

The different speeds share the same quantity for denominator

D(ω) =

(
ρδik +

ω2

V 2
Jijklξ̂j ξ̂l

)
UkUi = ρ+

ω2

V 2

(
J2 + (J1 + J3)(Upξp)

2
)

hence we have

V D(ω)vej =

(
λ+ µ− ω2

V 2

(
a3 + a5 + V 2(J1 + J3)

))
(Upξp)Uj

+

(
µ− ω2

V 2

(
(a3 − a5)(Upξp)2 + V 2J2

))
ξj

V D(ω)vgj =

(
λ+ µ− ω2

V 2

(
−2a1 − a3 − a5 + V 2(J1 + J3)

))
(Upξp)Uj

+

(
µ− ω2

V 2

(
−2a2 − 2a4 − (a3 + a5)(Upξp)

2 + V 2J2
))

ξj

V D(ω)(vgj − v
e
j ) =

2ω2

V 2

(
(a1 + a3)(Upξp)Uj + (a2 + a4 + a5(Upξp)

2)ξj
)

Starting from these expressions, the behavior of Shear and Pressure waves can now be specified:
Shear-Waves (S-Waves)

In such case Upξp = 0 and D(ω) = ρ+ ω2

V 2J2

V D(ω)vej =
(
µ− ω2J2

)
ξj ; V D(ω)vgj =

(
µ− ω2

V 2

(
−2cs + V 2J2

))
ξj

13



hence

V D(ω)(vgj − v
e
j ) =

2ω2

V 2
csξj

Pressure-Waves (P-Waves)

In such case Up = ξp and D(ω) = ρ+ ω2

V 2Jp

V D(ω)vej =
(
λ+ 2µ− ω2Jp

)
ξj ; V D(ω)vgj =

(
λ+ 2µ− ω2

V 2

(
−2cp + V 2Jp

))
ξj

hence

V D(ω)(vgj − v
e
j ) =

2ω2

V 2
cpξj

From these results, it can be observed that for SGE isotropic materials group and energy
velocities are colinear but of different amplitude.

4.2 2D hexagonal and hexachiral materials

Material and physical anisotropy
Hexachiral materials, whose unit cell is represented in Fig. 2(a), are well known for being auxetic,
as they possess a negative Poisson module [Prall and Lakes, 1997, Dirrenberger et al., 2013]. As
can be directly observed, the unit cell is only invariant by 6-fold rotations, but does not have
any line of mirror symmetry. The pattern is then said to be chiral. In the language of group
theory the point group of the pattern is conjugate to Z6 [Auffray et al., 2015b]. If mirrors are
added to the set of symmetry elements, the pattern becomes achiral and the classical hexagonal
honeycomb tiling is retrieved. The point group is now conjugate to D6. As already discussed in
section 2 the SGE behavior is different for these two cases and the associated ”shapes” for the
elastic operator are5 [Auffray et al., 2015b]

LZ6 =

(
CO(2) 0

0 AZ6

)
, LD6 =

(
CO(2) 0

0 AD6

)
In both case the classical elasticity is isotropic, and in any rectangular basis its tensor has the
following matricial expression:

CO(2) =

c11 c12 0
c11 0

c11 − c12

 (19)

For the second order elasticity tensors their matrix expression in bases adapted with the sym-
metry elements of the microstructure are6

AZ6 =



a11 a12
a11−a22√

2
−a23 0 a15 −a15√

2

a22 a23 −a15 0 −a15√
2

a11+a22
2

−a12 a15√
2

a15√
2

0

a44 a11−a44+a12 3a11−a22√
2
−a23−

√
2a44

a22+a44−a11
√
2(a44−a11)+a23

−3a11+a22
2

−a12+2a44


(20)

5The notation TG indicates that the tensor T is G-invariant, where G denotes a subgroup of the full orthogonal
group, i.e. G ⊆ O(2).

6We refer to [Auffray et al., 2015b] for a discussion on that topic, see also appendix A for details concerning
the orthogonal basis associated to the matrix representation.
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AD6 =



a11 a12
a11−a22√

2
−a23 0 0 0

a22 a23 0 0 0
a11+a22

2
−a12 0 0 0

a44 a11−a44+a12 3a11−a22√
2
−a23−

√
2a44

a22+a44−a11
√
2(a44−a11)+a23

−3a11+a22
2

−a12+2a44

 (21)

In both cases, the inertia tensor has been considered isotropic and has been replaced by the
scalar quantity ζ. In general, different values of micro inertia should be considered for shear and
pressure waves. However, given the qualitative nature of the present study, this approximation
will not affect our analysis.
Computational procedure
The parameters used in our computation are listed in Table 3. They were obtained by per-
forming FE computations on the unit cell using quadratic boundary conditions, and following a
procedure described in [Auffray et al., 2010]. These values should be considered as a qualitative
approximation of those of the actual material, but they allow us to verify basic properties of
the model [Forest and Trinh, 2011, Trinh et al., 2012]. A forthcoming study will be devoted to a
more precise estimation of those parameters. It should be noted that recently some experimental
identifications of those coefficient have been conducted using full field measurement and DIC
[Réthoré et al., 2015].
The computational procedure follows these steps:

1. the homogenized coefficients of the SGE are computed using FE simulations ;

2. equation (10) is put in the following form(
Q̂il − ρV 2δil

)
Ul = 0 (22)

and for a given circular frequency ω we compute the values of the phase velocity V for

which the determinant det
(
Q̂il − ρV 2δil

)
vanishes.

3. the nullspace of Q̂il for each couple (ω, V ) is computed to retrieve the polarization vectors
corresponding to each phase velocity at a given frequency.

4. from the phase velocity the dispersion curves are obtained;

5. phase velocities and polarization vectors are used in Eqs. (14) and (16) to obtain energy
and group velocities.

Since we are in a 2D representation, for each value of ω we find two eigenvalues related
to phase velocities of the two allowed wave solutions, along with the associated eigenvec-
tors representing their polarization. At low frequencies, the first solution (mode 1) corre-
sponds to a pure shear (S−) mode, and the second solution (mode 2) to a pure pressure (P−)
mode. For higher frequencies, and depending on the direction of propagation, veering effects
[Perkins and Mote Jr, 1986] may occur and these modes can be of mixed nature, or even switch.
It is important to remark that both velocity and polarization are now function of both the di-
rection of propagation and the frequency.

Result analysis
Let us start the analysis of the results from the dispersion curves. In Fig. 5, the dispersion
curves are computed following the edge of the half Irreducible Brillouin zone, within the limits
of validity of the model. As can be seen comparing Fig. 5 and Fig. 3, the long wave portion
of the acoustic branches is qualitatevely well captured. The estimation of the zone of validity

15



O a A bB O
0

1

2

3

4

5

6

O a

b
A

B

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y

Wavenumber in the reciprocal lattice along the 
boundary of the half Irreducible Brillouin zone

Figure 5: Dispersion curves for the hexachiral materials using the strain gradient model, at the
edge of the half Irreducible Brillouin zone.

for the SGE model is strongly related to that of the parameters, that is why we stress the fact
that the results here presented should be considered as qualitative. The circular frequency has
been normalized with respect to the resonance frequency Ω0 = 10.48 × 103 rad/s of the single
ligament of the hexachiral material.

Useful information can be retrieved from the polar plots of phase, group and energy ve-
locities. These quantities are plotted in Fig.6 for a Z6-invariant material and in Fig.7 for a
D6-invariant one, for both modes. In these plots, three specific values of frequency have been
considered: Ω1 = 0.01 Ω0, Ω2 = 0.8 Ω0, Ω3 = 1.3 Ω0. For simplifying the analysis, all velocities
have been normalized with respect to the low frequency value of the phase velocity of the first
mode. As can be observed, both for hexagonal and hexachiral symmetries, every velocity is
isotropic at low frequencies (solid gray lines in Figs. 6 and 7). Then, when increasing the fre-
quency, a breaking of symmetry occurs, and the specific features of each symmetry class emerge.
In particular, from the curves at Ω3 (solid black lines) one can easily distinguish a hexagonal-like
shape. In the case of the Z6 class, the chiral effect can also be observed, as each polar curve does
not possess any mirror symmetries, while the rotational symmetries are preserved. The chiral
effect is not particularly evident due to the qualitative estimation of the coefficients. These are
consistent with those obtained from Bloch analysis, e. g. in [Spadoni et al., 2009]. Concerning
the D6 class, the plot of the energy velocity is clearly in agreement with the plot presented
in Fig 1(b). Again, these results are consistent with those from Bloch analysis presented in
[Celli and Gonella, 2014]. It is of major importance to remark that energy and group velocities
do not share the same polar plot, thus confirming that they should be treated as two separate
quantities. Further studies will be devoted to this distinction, when a better estimation of the
coefficients will be available.

5 Conclusions

In the present paper some specific features of wave propagation in SGE media have been studied.
This model allows to produce the following effects that can not be modelled classically but which
can be experimentally observed and numerically simulated:

16



0

15 °

30 °

45 °

60 °

75 °90 °105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °

255 ° 270 ° 285 °

300 °

315 °

330 °

345 °

1

0.9

0.8

0.7

0

Phase Velocity

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Energy Velocity

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Group Velocity

0

15 °

30 °

45 °

60 °

75 °90 °105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °

255 ° 270 ° 285 °

300 °

315 °

330 °

345 °

1

0.9

0.8

0

Phase Velocity

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Energy Velocity

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Group Velocity

Figure 6: Phase, energy and group velocities for a Z6 material at Ω1 (solid gray), Ω2 (dashed),
Ω3 (solid black) for the mode 1 (up) and 2 (down).

Hexagonal D6

Parameter Value Unit

c11 7.3× 107 Pa
c12 −3.8× 107 Pa
a11 1.51× 103 Pa
a12 1.00× 103 Pa· m
a22 3.52× 103 Pa· m
a15 0 Pa· m
a23 −0.72× 103 Pa· m
a44 12.96× 103 Pa· m
ζ 0.0648 kg· m
ρ 249.32 kg/m3

Hexachiral Z6

Parameter Value Unit

c11 6.58× 107 Pa
c12 −3.5× 107 Pa
a11 1.14× 103 Pa
a12 0.75× 103 Pa· m
a22 2.64× 103 Pa· m
a15 −0.84× 103 Pa· m
a23 −0.54× 103 Pa· m
a44 9.72× 103 Pa· m
ζ 0.0648 kg· m
ρ 249.32 kg/m3

Table 3: Values of the parameters used in simulations for the hexagonal D6 (left) and hexachiral
Z6 (right) materials.
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Figure 7: Phase, energy and group velocities for a D6 material at Ω1 (solid gray), Ω2 (dashed),
Ω3 (solid black) for the mode 1 (up) and 2 (down)..
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1. Anisotropy of hexagonal lattices;

2. Chiral sensitivity;

3. Distinction between group and energy velocities;

It has to be noted that the first point can not be modelled using a Cosserat (or Micropolar)
medium.

Numerical results concerning free plane wave propagation in hexagonal (D6) and hexachiral
(Z6) materials are presented and discussed. These results are consistent with those obtained from
Bloch analysis of the unite cell and, concerning the honeycomb, in agreement with experiments.
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A Orthonormal basis and matrix component ordering

Let be defined the following spaces:

T(ij) = {T ∈ Tij |T =
2∑

i,j=1

Tijei ⊗ ej , Tij = Tji}

T(ij)k = {T ∈ Tijk|T =

2∑
i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik}

which are, in 2D, respectively, 3- and 6-dimensional vector spaces. Therefore

• the first-order elasticity tensor C
≈

is a self-adjoint endomorphism of T(ij);

• the second-order elasticity tensor A
≈

is a self-adjoint endomorphism of T(ij)k.

In order to express the Cauchy-stress tensor σ
∼

, the strain tensor ε
∼

, the strain-gradient tensor η
≈

and the hyperstress tensor τ
'

as 3- and 6-dimensional vectors and write C
≈

and A
≈
∼

as, respectively:

a 3× 3 and 6× 6 matrices, we introduce the following orthonormal basis vectors:

ẽI =

(
1− δij√

2
+
δij
2

)
(ei ⊗ ej + ej ⊗ ei) , 1 ≤ I ≤ 3

êα =

(
1− δij√

2
+
δij
2

)
(ei ⊗ ej + ej ⊗ ei)⊗ ek, 1 ≤ α ≤ 6

where the summation convention for a repeated subscript does not apply. Then, the aforemen-
tioned tensors can be expressed as:

ε̃ =

3∑
I=1

ε̃I ẽI , σ̃ =

3∑
I=1

σ̃I ẽI , η̂ =

6∑
α=1

η̂αêα, τ̂ =

6∑
α=1

τ̂αêα (23)

C̃ =

3,3∑
I,J=1,1

C̃IJ ẽI ⊗ ˜̂eJ M =

3,6∑
I,α=1,1

M IαẽI ⊗ êα, Â =

6,6∑
α,β=1,1

Âαβ êα ⊗ êβ, (24)
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so that the constitutive law can be written in the matrix form{
σ̃I = C̃IJ ε̃J

τ̂α = Ãαβ η̂β
(25)

The relationship between the matrix components ε̃I and εij , and between η̂α and ηijk are

ε̃I =

{
εij if i = j,√

2εij if i 6= j;
η̂α =

{
ηijk if i = j,√

2ηijk if i 6= j;
(26)

and, obviously, the same relations between σ̃I and σij and τ̂α and τijk hold. For the constitutive
tensors we have the following correspondences:

C̃IJ =


Cijkl if i = j and k = l,√

2Cijkl if i 6= j and k = l or i = j and k 6= l,

2Cijkl if i 6= j and k 6= l.

(27)

Âαβ =


Aijklmn if i = j and l = m,√

2Aijklmn if i 6= j and l = m or i = j and l 6= m,

2Aijklmn if i 6= j and l 6= m.

(28)

It remains to choose appropriate two-to-one and three-to-one subscript correspondences between
ij and I, on one hand, and ijk and α, on the other hand. For the classical variables the standard
two-to-one subscript correspondence is used, i.e:

I 1 2 3

ij 11 22 12

Table 4: The two-to-one subscript correspondence for 2D strain/stress tensors

with the following three-to-one subscript correspondence for strain-gradient/hyperstress ten-
sor:

α 1 2 3

ijk 111 221 122 Privileged direction: 1

α 6 7 8

ijk 222 112 121 Privileged direction: 2

Table 5: The three-to-one subscript correspondence for 2D strain-gradient/hyperstress tensors
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[Réthoré et al., 2015] Réthoré J., Kaltenbrunner C., Dand T.C.T., Chaudet P., and Kuhn M.
(2015). Gradient-elasticity for honeycomb materials : validation and identification from full-
field measurements. International Journal of Solids and Structures, vol. - n◦ 72, pp 108–117.

[Rosi et al., 2014] Rosi G., Nguyen V.-H., and Naili S. (2014). Reflection of acoustic wave at
the interface of a fluid-loaded dipolargradient elastic half-space. Mechanics Research Commu-
nications, vol. 56, pp 98–103.

[Rosi et al., 2015] Rosi G., Nguyen V.-H., and Naili S. (2015). Surface waves at the interface
between an inviscid fluid and a dipolar gradient solid. Wave Motion, vol. 53 n◦ 0, pp 51–65.

[Ruzzene et al., 2003] Ruzzene M., Scarpa F., and Soranna F. (2003). Wave beaming effects in
two-dimensional cellular structures. Smart materials and structures, vol. 12 n◦ 3, pp 363.

[Schurig et al., 2006] Schurig D., Mock J.J., Justice B.J., Cummer S.A., Pendry J.B., Starr
A.F., and Smith D.R. (2006). Metamaterial electromagnetic cloak at microwave frequencies.
Science, vol. 314 n◦ 5801, pp 977–980.

[Spadoni et al., 2009] Spadoni A., Ruzzene M., Gonella S., and Scarpa F. (2009). Phononic
properties of hexagonal chiral lattices. Wave Motion, vol. 46 n◦ 7, pp 435–450.

[Srinivasan, 1988] Srinivasan T.P. (1988). A description of acoustical activity using irreducible
tensors. Journal of Physics C: Solid State Physics, vol. 21, pp 4207–4219.

[Toupin, 1962] Toupin R.A. (1962). Elastic materials with couple-stresses. Archive for Rational
Mechanics and Analysis, vol. 11 n◦ 1, pp 385–414.

[Trinh et al., 2012] Trinh D.K., Jänicke R., Auffray N., Diebels S., and Forest S. (2012). Evalu-
ation of generalized continuum substitution models for heterogeneous materials. International
Journal for Multiscale Computational Engineering, vol. 10 n◦ 6.

[Willis, 1985] Willis J.R. (1985). The nonlocal influence of density variations in a composite.
International Journal of Solids and Structures, vol. 21 n◦ 7, pp 805–817.

[Willis, 1997] Willis J.R. (1997). Dynamics of composites. In : Continuum Micromechanics, ed.
Suquet P., chapter Dynamics o, pp 265–290. Springer-Verlag, New York.

[Wolfe, 2005] Wolfe J.P. (2005). Imaging phonons: acoustic wave propagation in solids. Cam-
bridge University Press.

[Zachary and Torquato, 2009] Zachary C.E. and Torquato S. (2009). Hyperuniformity in point
patterns and two-phase random heterogeneous media. Journal of Statistical Mechanics: Theory
and Experiment, vol. 2009 n◦ 12, pp P12015.

23


	1 Introduction
	2 Strain-gradient dynamics
	2.1 Dynamics
	2.2 Constitutive law

	3 Plane wave propagation in an anisotropic strain-gradient continuum
	3.1 Wave propagation and wave velocities in anisotropic dispersive media
	3.2 The generalized acoustic tensor
	3.3 Conservation of energy, Poynting vector and energy velocity
	3.4 Group velocity
	3.5 Synthesis

	4 Case studies
	4.1 3D isotropic material
	4.2 2D hexagonal and hexachiral materials

	5 Conclusions
	A Orthonormal basis and matrix component ordering

