
HAL Id: hal-01263639
https://hal.science/hal-01263639

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Annotation of rule-based models with formal semantics
to enable creation, analysis, reuse and visualisation

Goksel Misirli, Matteo Cavaliere, William Waites, Matthew Pocock, Curtis
Madsen, Owen Gilfellon, Ricardo Honorato-Zimmer, Paolo Zuliani, Vincent

Danos, Anil Wipat

To cite this version:
Goksel Misirli, Matteo Cavaliere, William Waites, Matthew Pocock, Curtis Madsen, et al.. Annota-
tion of rule-based models with formal semantics to enable creation, analysis, reuse and visualisation.
Bioinformatics, 2015, �10.1093/bioinformatics/btv660�. �hal-01263639�

https://hal.science/hal-01263639
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 International License

Newcastle University ePrints - eprint.ncl.ac.uk

Misirli G, Cavaliere M, Waites W, Pocock M, Madsen C, Gilfellon O, Honorato-

Zimmer R, Zuliani P, Danos V, Wipat A. Annotation of rule-based models with

formal semantics to enable creation, analysis, reuse and visualisation.

Bioinformatics 2015, DOI: 10.1093/bioinformatics/btv660

Copyright:

© The Author(s) 2015. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and

reproduction in any medium, provided the original work is properly cited.

DOI link to article:

http://dx.doi.org/10.1093/bioinformatics/btv660

Date deposited:

17/11/2015

http://creativecommons.org/licenses/by/4.0/
http://eprint.ncl.ac.uk/
javascript:ViewPublication(217204);
javascript:ViewPublication(217204);
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1093/bioinformatics/btv660

Annotation of rule-based models with formal semantics

to enable creation, analysis, reuse and visualisation

Goksel Misirli 1,∗, Matteo Cavaliere 2,*, William Waites 2,†, Matthew Pocock 3,
Curtis Madsen 1, Owen Gilfellon 1, Ricardo Honorato-Zimmer 2, Paolo
Zuliani 1, Vincent Danos 2,‡ and Anil Wipat 1,‡

1Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing
Science and Centre for Synthetic Biology and Bioexploitation, Newcastle University, Newcastle
upon Tyne, UK.
2School of Informatics, University of Edinburgh, Edinburgh, UK.
3Turing Ate My Hamster Ltd., Newcastle upon Tyne, UK.

ABSTRACT

Motivation: Biological systems are complex and challenging to

model and therefore model reuse is highly desirable. To promote

model reuse, models should include both information about the

specifics of simulations and the underlying biology in the form

of metadata. The availability of computationally-tractable metadata

is especially important for the effective automated interpretation

and processing of models. Metadata are typically represented as

machine-readable annotations which enhance programmatic access

to information about models. Rule-based languages have emerged

as a modelling framework to represent the complexity of biological

systems. Annotation approaches have been widely used for reaction-

based formalisms such as SBML. However, rule-based languages still

lack a rich annotation framework to add semantic information, such

as machine-readable descriptions, to the components of a model.

Results: We present an annotation framework and guidelines for

annotating rule-based models, encoded in the commonly used Kappa

and BioNetGen languages. We adapt widely adopted annotation

approaches to rule-based models. We initially propose a syntax

to store machine-readable annotations and describe a mapping

between rule-based modelling entities, such as agents and rules, and

their annotations. We then describe an ontology to both annotate

these models and capture the information contained therein, and

demonstrate annotating these models using examples. Finally, we

present a proof of concept tool for extracting annotations from a

model that can be queried and analyzed in a uniform way. The

uniform representation of the annotations can be used to facilitate

the creation, analysis, reuse and visualisation of rule-based models.

Although examples are given, using specific implementations the

proposed techniques can be applied to rule-based models in general.

Availability and implementation: The annotation ontology for rule-

based models can be found at http://purl.org/rbm/rbmo. The

*contributed equally

†developed krdf

‡to whom correspondence should be addressed

krdf tool and associated executable examples are available at

http://purl.org/rbm/rbmo/krdf.

Contact: anil.wipat@newcastle.ac.uk, vdanos@inf.ed.ac.uk

1 INTRODUCTION

The last decade has seen a rapid growth in the number of model

repositories (Li et al., 2010; Yu et al., 2011; Snoep and Olivier,

2003; Misirli et al., 2014; Moraru et al., 2008). Creating models

and populating these repositories is not a trivial task as it requires

expert knowledge and integration of different types of biological

data from multiple sources (Endler et al., 2009). Classically, these

data are used to derive the structure of, and parameters for, models.

However, biological data can also be used to annotate models and

their components. These annotations act as metadata to decorate a

model with links to biologically relevant information (Blinov et al.,

2010). Machine-readable annotations are also important to facilitate

the automated exchange, reuse and composition of complex models

from simpler ones. As the number and size of models increase,

the availability of informative annotations becomes more important.

Annotation techniques can then be applied to rule-based models that

can represent in a compact way the complexity inherent in biological

systems (Danos and Laneve, 2004; Blinov et al., 2008).

Rule-based languages, such as Kappa (Danos and Laneve, 2004;

Danos et al., 2007) and BioNetGen (Faeder et al., 2009), have

emerged as helpful tools for modelling biological systems (Köhler

et al., 2014). Rule-based modelling is widely used to concisely

represent the combinatorial explosion of the state space inherent

in modelling biological systems. Rule-based models comprise

agents representing biological molecules and rules representing

biological interactions between agents. These rules are sufficient

to allow models to be simulated, but the biological meanings of

the model entities are not directly accessible. These languages

do have facilities for comments that are intended for unstructured

documentation directed at the modeller or programmer. However,

these comments are not computationally accessible. Currently, there

1

Associate Editor: Dr. Jonathan Wren

© The Author(s) 2015. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

 Bioinformatics Advance Access published November 14, 2015
 at U

niversity of N
ew

castle on N
ovem

ber 17, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

is no standardised syntax to store annotations within models written

in rule-based languages.

Model annotation has already been widely applied in reaction-

based models. For example, Saint has been developed to enrich

models by identifying and integrating biological information (Lister

et al., 2009) in some cases fruitfully leading to new discoveries (Lister

et al., 2010). Based on existing model annotations, this tool

can suggest the addition of new entities to extend models.

Annotations can also be used to verify and merge models, and to

check for inconsistencies (Krause et al., 2010). Moreover, model

repositories can be searched using commonly used annotation terms.

BioModels (Li et al., 2009, 2010) is a repository of models and,

at the time of writing, includes 1379 models, 583 of which are

manually annotated1. These annotations can be used by tools such

as ReactionFinder (Neal et al., 2014) to search for reactions that can

be reused as modular components of larger models.

Model annotation is an ongoing research topic in synthetic

biology. The Virtual Parts Repository (Misirli et al., 2014) is

a repository of modular models of biological parts. Models

in this repository are defined with inputs and outputs, which

are annotated semantically. These annotations make the models

computationally composable and facilitate the model-driven design

of biological systems. When these models are annotated with

additional information such as nucleotide sequences and types of

biological parts, the resulting composed models can act as blueprints

to derive synthetic biological systems (Misirli et al., 2011; Roehner

and Myers, 2013).

Annotations can also be used to aid in the computational

conversion of models into a variety of other data formats.

For example, PDF documents (Li et al., 2010) or visual

graphs (Funahashi et al., 2007) can be automatically generated from

annotated models in order to aid human understanding. Annotations

can also help in the provision of the extra information necessary to

convert between modelling formalisms (Blinov et al., 2008).

1.1 Rule-based models

Biological entities are represented by agents in Kappa and molecule

types in BioNetGen2. In general, agents may include any number

of sites that represent the points of interactions between agents. For

example, the binding domain site of a transcription factor (TF) agent

can be connected to a TF binding site of a DNA agent. Moreover,

sites can have states. For instance, a TF could also have a site

for phosphorylation and the DNA binding can be constrained to

occur only when the state of this site is phosphorylated. For an

agent with two sites, of which one with two internal states and

the other with three, the number of possible combinations is six

(Figure 1A, B). A pattern is an (possibly incomplete) expression

of an agent in terms of its internal, and binding states. Rules, that

specify biological interactions, consist of patterns on the left hand

side which, when match, produce the result on the right hand side

(Figure 1C). Specific patterns of interest can be declared as an

observable of the model.

The need for annotations in rule-based languages has already

been acknowledged. Chylek and co-workers proposed guidelines for

1http://www.ebi.ac.uk/biomodels-main/

2We shall use ‘agent’ to generically refer to both agents and molecule

types in this paper.

A: An agent definition

A(site1˜u˜v, site2˜x˜y˜z)

B: Possible combinations of internal states

A(site1˜u,site2˜x)

A(site1˜u,site2˜y)

A(site1˜u,site2˜z)

A(site1˜v,site2˜x)

A(site1˜v,site2˜y)

A(site1˜v,site2˜z)

C: An example binding rule

A(site1˜v,site2˜z),A(site1˜v,site2˜y)

-> A(site1˜v!1,site2˜z),A(site1˜v!1,site2˜y) @kf

Fig. 1. A. An agent with two sites. site1 has two possible internal states

while site2 has three. B. This agent can be used in six different ways

depending on the internal states of its sites. C. A rule that specifies how agent

A forms a dimer when the state of site1 is v and the states of site2 are

z and y, respectively. The notation !n means that the sites where it appears

are bound together. The constant kf denotes the kinetic rate associated with

the rule.

visualising and annotating models (Chylek et al., 2011). Although

the authors suggest extending rule-based models to include

metadata, their study focuses upon documenting models with

biological information using comments to aid the understanding of

models for humans. Additionally, PDF documents, called model

guides, are made available. Using a similar approach, a model guide

for a large rule-based model has also been demonstrated in the

form of a wiki (Creamer et al., 2012). These guides include graphs,

depicting interactions of agents through rules, which are enriched

with further biological information. Creating a model guide is a

manual process and may not be time-efficient for large models.

Recently, Klement and co-workers demonstrated embedding more

structured comments into rule-based models (Klement et al., 2014).

Data are added in the form of property/value pairs using a specific

syntax; however, this study also focuses on presenting data for

humans.

Machine readable annotations have been applied to rule-based

models using PySB, a programming framework for writing rules

using Python (Lopez et al., 2013). A model object in PySB includes

lists of agents and rules and also a list for machine-readable

annotations. However, this approach is insufficiently general.

Annotations cannot be applied to sites, states or subrules. PySB

is a framework written in the Python programming language and

requires running a program to generate rulesets for the simulators.

This means that any processing of the annotations must also be

written in or have facilities for interpreting Python, and furthermore

that users must program their models in Python which is not always

desirable (Chylek et al., 2014).

1.2 Annotating rule-based models

Model annotation has already been widely applied in different

modelling formalisms. Existing annotation standards and approaches

can also be used in rule-based models by taking care of their specific

needs. Rule-based models are usually written in textual formats, in

which agents and rules are defined in single lines (Danos et al.,

2007). In general, the syntactic definition of an agent identifies

sites and states in rule-based models but the semantics of sites and

2

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

states is usually clear only to the modeller. For machine access, this

information must be exposed in a structured way. Moreover, it is not

straightforward to map sites and states to annotations directly, since

these entities are part of agents and not top level modelling entities.

Additionally, it is often desirable to annotate a specific pattern with a

particular subset of sites and states. Therefore, patterns should also

be annotatable. The issue of mapping annotations may also occur

for rules that contain subrules3. A subrule does not correspond to

a single entity so it is difficult to unambiguously refer to in order

to link biological information. Therefore, we extend the syntax of

rule-based models to incorporate annotations.

Existing metadata resources include machine readable controlled

vocabularies and ontologies, Web services providing standard

access to external identifiers and guidelines for the use of these

resources. For example, the Minimum Information Requested in

the Annotation of Models (MIRIAM) standard (Le Novère and

Finney, 2005) was proposed in order to standardise the minimal

information required for the annotation of models. In this proposal

entities in mathematical models are linked to external information

through the use of unique Uniform Resource Identifiers (URIs),

which are embedded within models and can be used to retrieve such

information. The uniqueness and global scope of these URIs are

important for disambiguation of model agents, variables and rules.

Annotations are composed of statements. A statement can link a

modelling entity to a value using a standard qualifier term, which

represents the relationship between the entity and the value. These

qualifiers often come from controlled vocabularies or ontologies in

order to unambiguously identify the meaning of modelling entities.

URIs are used as values to link these entities to external resources,

and hence to a wealth of biological information by keeping the

amount of annotations minimal. The links themselves are typed,

again with URIs. The qualifiers and resources that they refer to are

typically drawn from ontologies that encode a Description Logic4

for a particular domain.

Unifying semantics. There are several metadata standard initiatives

that provide controlled vocabularies from which standard terms

may be drawn. For example, metadata terms provided by the

Dublin Core Metadata Initiative (DCMI)5 or BioModels qualifiers

can be used to describe modelling and biological concepts (Le

Novère and Finney, 2005; Li et al., 2010). Ontologies such as the

Relation Ontology provide formal definitions of relationships that

can be used to describe modelling entities (Smith et al., 2005).

There are also several other ontologies and resources that are

widely used to classify biological entities represented in models

with standard values (Swainston and Mendes, 2009): the Systems

Biology Ontology (SBO) (Courtot et al., 2011) to describe types

of rate parameters; the Gene Ontology (GO) (The Gene Ontology

Consortium, 2001) and the Enzyme Commission numbers (Bairoch,

2000) to describe biochemical reactions; the Sequence Ontology

(SO) (Eilbeck et al., 2005) to annotate genomic features and unify

the semantics of sequence annotation; the BioPAX ontology (Demir

et al., 2010) to specify types of biological molecules and the

Chemical Entities of Biological Interest (ChEBI) (Degtyarenko

3For example, as part of Kappa hybrid rules, additional rules can be

defined.

4http://www.w3.org/TR/owl-features

5http://www.dublincore.org/documents/dcmi-terms

et al., 2008) terms to classify chemicals. URIs of entries from

biological databases, such as UniProt (Magrane and UniProt

Consortium, 2011) for proteins and KEGG (Kanehisa et al., 2008)

for reactions, can also be used to uniquely identify modelling

entities.

Unifying data access. Accessing external resources through URIs

can also be standardised using MIRIAM or Identifiers.org

URIs (Juty et al., 2012), although the former is not directly

resolvable and requires out of band knowledge to retrieve

information. These URIs consist of collections and their

terms, which may represent external resources and their entries

respectively. For example, the MIRIAM URI urn:miriam:

uniprot:P699056 and the Identifiers.org URI http://

identifiers.org/uniprot/P69905 can be used to link

entities to the P69905 entry from UniProt. The relationships

between modelling entities, annotation qualifiers and values can

be represented using the Resource Description Framework (RDF)7

graphs.

Unifying syntax. RDF represents knowledge in the form of

(subject, predicate, value) triples, in which the subject can be

an anonymous reference or a URI, the predicate is a URI and

the object can be a literal value, an anonymous reference or a

URI. Subjects and objects may refer to an ontology term, an

external resource or an entity within the model. RDF graphs

can be serialized in different formats such as XML or the more

human readable Turtle format8. Modelling languages such as the

Systems Biology Markup Language (SBML) (Hucka et al., 2003),

CellML (Cuellar et al., 2003; Hedley et al., 2001) and Virtual Cell

Markup Language (Moraru et al., 2008) are all XML-based and

provide facilities to embed RDF/XML annotations (Endler et al.,

2009). There are also other exchange languages, such as BioPAX

and the Synthetic Biology Open Language (SBOL) (Galdzicki et al.,

2012, 2014), that can be serialised in RDF/XML allowing custom

annotations to be embedded.

In this paper, we extend the use of RDF and MIRIAM

annotations for rule-based models. We describe a syntax to store

machine-readable annotations and an ontology to facilitate the

mapping between rule-based model entities and their annotations.

Annotations are then illustrated using terms from this ontology and

some examples of their use provided.

2 ANNOTATION APPROACH FOR RULE-BASED
MODELS

2.1 Syntax for storing annotations

A common approach, when trying to add additional structured

information to a language where it is either undesirable or infeasible

to change the language itself, is to define a special way of

using comments. This practice is long established for structured

documentation or “docstrings” in programming languages (Acuff,

6A dereferencable URI using the MIRIAM Web services is http:

//www.ebi.ac.uk/miriamws/main/rest/resolve/urn:

miriam:uniprot:P69905

7http://www.w3.org/TR/rdf-syntax-grammar

8http://www.w3.org/TR/turtle

3

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

1988)9 and has been used for extending otherwise fixed data formats

since punch cards were current technology (Buneman, 2015). We

adopt this approach so that models written using the conventions

that we describe here do not require modification of the modelling

software, KaSim10 and RuleBender (Xu et al., 2011), that is their

primary target.

We use the language’s comment delimiter followed by the ‘ˆ’

character to denote annotations in the textual representation of rule-

based languages. Kappa and BioNetGen use the ‘#’ symbol to

identify comment lines, so in the case of these languages, comments

containing annotations are signalled by a line beginning with ‘#ˆ’.

This distinguishes between comments containing annotations and

comments intended for human consumption. Annotation data for a

single modelling entity or a model itself can be declared over several

lines and each line is prefixed with the ‘#ˆ’ symbol.

2.2 Annotation format

Annotations are serialised in the RDF/Turtle format. This

representation balances the need for a machine-readable syntax

and a human readable textual representation. As the rule-

based modelling languages that we are annotating are themselves

structured text formats, RDF/Turtle is more suitable than the XML-

based representations of RDF.

Annotations for a single rule-based model entity are simply

a list of statements. Annotations may refer to other annotations

within the same model. When all the lines corresponding to a rule-

based model and the annotation delimiter symbols are removed,

the remaining RDF lines represent a single RDF document. This

enables annotations to be quickly and easily extracted without

special tools11.

2.3 Mapping between entities and annotations

XML-based modelling languages such as SBML and CellML

already provide opening and closing tags, and annotations are

encapsulated within the definition of a modelling entity. In textual

rule-based models, it is difficult to store annotations within a

modelling entity since Kappa and BioNetGen represent modelling

entities such as agents and rules as single lines of text. As a result,

there is no natural location to attach annotations to an entity. Here,

we propose to achieve the mapping between a modelling entity and

its annotation by defining an algorithm to construct a URI from the

symbol used in the modelling language. The algorithm used in this

paper generates unique and unambiguous prefixed names that are

intended to be interpreted as part of a Turtle document. To do this,

the algorithm constructs the local part of a prefixed name by joining

symbolic names in the modelling language with the ‘:’ character,

and prepending the empty prefix, ‘:’. This means that we must make

the requirement that the empty prefix be defined for this use. Using

this algorithm, a reference for the y internal state of site site2

of agent A is derived from A(site1˜u˜v,site2˜x˜y˜z) as

:A:site2:y. Since the empty prefix being defined to some base

URI for the model file, this is a globally unique reference to

9https://www.gnu.org/prep/standards

10https://github.com/Kappa-Dev/KaSim

11For example, on a UNIX system, the following pipeline can be used:

grep 'ˆ#\ˆ'| sed 's/ˆ#\ˆ//'

that particular state of that particular site and can then be used to

composed unambiguous URIs.

Although most of the entities in rule-based modelling languages

possess symbolic names, rules do not. In Kappa, each rule can

be preceded by free text surrounded by single quotes. To give the

rule a name, we require that this free text is conformant with the

local name syntax in Turtle and SPARQL12 languages. Identifiers

for subrules are created by adding their position index, based on

one, to the identifier for a rule (Figure 4B).

3 AN ANNOTATION ONTOLOGY FOR
RULE-BASED MODELS

Ontologies such as GO, SBO, and controlled vocabularies such as

BioModels.net qualifiers have already been widely adopted for the

annotation of quantitative models (Juty et al., 2013). BioModels.net

qualifiers are formed of model and biology qualifers. The former

offers terms to describe models. Examples include is to link a model

to a model repository and isDescribedBy to capture information

about the publication where a model has been described. The

latter provides terms to map entities in a model to biological

concepts. Examples include is to describe a modelling entity and

hasPart to describe parent-child relationships. In addition, SBO

provides a number of terms about biochemical parameters. The

BioModels.net qualifiers are also ideal to annotate rule-base models,

but additional qualifiers are needed to fully describe rule-based

models. These are specific to the annotation of rule-based models

and so we define a distinct ontology – the Rule-Based Model

Ontology – in the namespace http://purl.org/rbm/rbmo#

conventionally abbreviated as rbmo though for brevity we omit the

prefix in this text if there is no risk of ambiguity. Each qualifier is

constructed by combining this namespace with an annotation term.

A subset of significant terms are also listed in Table 1 and the full

ontology is available online at the namespace URI.

The Model classes such as Kappa and BioNetGen specify the type

of the model being annotated. Declarations of physical molecules,

which participate in rules, are identified with the term Agent. The

Agent class can represent agents and tokens in Kappa, or molecule

types in BioNetGen. Site and State represent sites and states in

these declarations respectively. The rules are identified using Rule.

The predicates hasSite and hasState and their inverses are used to

link amongst agent, site and internal state declarations. Rules can

also be composed of other rules, which are linked with the parent

rule using hasSubrule and its inverse.

Table 1 deals with terms related to the declaration of the basic

entities from which models are constructed. The terms that begin

with an uppercase letter are types13 for the entities in the model

which the modeller could be expected to explicitly annotate. The

predicates begin with a lowercase letter are used to link entities

to their annotations. Table 2 has terms to facilitate representation

of rules in RDF. This change of representation (materialization),

from Kappa or BioNetGen to RDF is something that can easily

be automated, and we have produced a tool to do this for

models written in Kappa. One would not like to materialise the

representation of the rules by hand as it is somewhat verbose –

12http://www.w3.org/TR/rdf-sparql-query

13In the sense of rdf:type, and also in this instance owl:Class.

4

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Table 1. Selected rbmo ontology terms for representing rule-based models.

Term Description

Kappa, BioNetGen Model types.

Agent Type for declarations of biological entities.

Site Type for sites of Agents.
State Type for internal states of Sites.
hasSite, hasState,

siteOf, stateOf

Predicates for linking Agents, Sites and

States.
Rule Type for interactions between agents.

hasSubrule, subruleOf Specifies that a rule has a subrule (i.e.,

KaSim subrules).

Observable Type for agent patterns counted by a

simulation.

Table 2. Selected rbmo ontology terms for representing rules in RDF.

Term Description

Pattern Type of a pattern as it appears in a Rule or Observable.
lhs, rhs Predicates for linking a Rule to its left and right hand

side Patterns.
pattern Predicate for linking an Observable to the patterns

that it matches.
agent Predicate for linking a Pattern and a site within it to

the corresponding Agent.
status Specifies a status of a particular Site (and State) in a

Pattern.
isStatusOf,

internalState

Predicates for linking a status in a Pattern to

corresponding Site and State declarations.
isBoundBy Specifies the bond that a Site is bound to in a

particular Pattern. Bonds are identified via URIs.
BoundState,

UnboundState

Terms denoting that a Site in a Pattern is bound or

unbound.

conciseness is a virtue of these modelling languages, not of RDF

– and it is not useful for simulation since the simulation tools do

not understand it. It is, however, useful for analysis of models

since it merges the model itself with the metadata in a uniform

way amenable to querying. We speculate that it may also be useful

as an intermediate language for transforming between modelling

languages.

Annotations that cannot be derived from the model and so must

be supplied externally are written explicitly in RDF/Turtle using the

terms from Table 1 embedded in comments using a special delimiter.

The model itself is written in the standard language designed for

this purpose. Additional statements can then be derived by parsing

and analyzing the model using terms from Table 2 and the same

naming convention from the algorithm described in Section 2.3.

These statements are then merged with the externally supplied

annotations to arrive at a complete and uniform representation of

all the information about the model.

The rbmo ontology fills a necessary gap for describing rule-based

models, but on its own it is not sufficient. Fortunately the open-

ended nature of the RDF data model means that it is possible to

freely incorporate terms from other ontologies and vocabularies,

including application-specific ones. Two such terms are of structural

importance here. The dct:isPartOf predicate from DCMI Metadata

Terms is used to denote that a rule or agent declaration is part

of a particular model (or similarly with its inverse, dct:hasPart).

There is likewise a need to link internal states of sites to indicate

biological meaning. The bqiol:is predicate from the Biomodels.net

Biology Qualifiers is used for this purpose. Table 3 lists useful

ontologies and vocabularies with their conventional prefixes that are

used to annotate of rule-based models in this paper. This list is not

exhaustive and can be freely extended.

Table 3. Conventional prefixes for ontologies and controlled vocabularies

used in this paper to annotate models.

Prefix Description

rbmo Rule-based modelling ontology (presented in this paper)

dct Dublin Core Metadata Initiative Terms (http://www.

dublincore.org/documents/dcmi-terms)

bqiol BioModels.net Biology Qualifiers (Li et al., 2010)

go Gene Ontology (The Gene Ontology Consortium, 2001)

psimod Protein Modification Ontology (Montecchi-Palazzi et al.,

2008)

so Sequence Ontology (Eilbeck et al., 2005)

sbo Systems Biology Ontology (Courtot et al., 2011)

chebi Chemical Entities of Biological Interest Ontology

(Degtyarenko et al., 2008)

uniprot UniProt Protein Database (Magrane and UniProt

Consortium, 2011)

pr Protein Ontology (Natale et al., 2011)

ro OBO Relation Ontology (Smith et al., 2005)

owl Web Ontology Language (http://www.w3.org/TR/

owl-features)

sbol The Synthetic Biology Open Language (Galdzicki et al.,

2012, 2014)

foaf Friend of a Friend Vocabulary (http://xmlns.com/

foaf/spec)

ipr InterPro (Mulder and Apweiler, 2008)

biopax Biological Pathway Exchange Ontology Ontology (Demir

et al., 2010)

4 ADDING ANNOTATIONS TO RULE-BASED
MODELS

Models start with a list of prefix definitions representing annotation

resources providing relevant terms for the annotation of all model

entities such as agents and rules. These definitions are followed

by statements about the title and description of the model being

annotated, using the title and description terms from Dublin

Core. Moreover, model level annotations can be expanded to include

model type, the creator, creation time, its link to an entry in a model

database and so on (Figure 2). Table 4 shows how different entities

5

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

in a rule-based model can be annotated using terms from rbmo and

other vocabularies.

#ˆ@prefix : <http://.../tcs.kappa#>.

#ˆ@prefix rbmo: <http://purl.org/rbm/rbmo#>.

... other prefixes elided ...

#ˆ@prefix dct: <http://purl.org/dc/terms/>.

#ˆ@prefix foaf: <http://xmlns.com/foaf/0.1/>.

#ˆ :kappa a rbmo:Kappa ;

#ˆ dct:title "TCS_PA Kappa model" ;

#ˆ dct:description

#ˆ "Two component systems and promoter

architectures" ;

#ˆ dct:creator "Goksel Misirli", "Matteo Cavaliere";

#ˆ foaf:isPrimaryTopicOf <https://.../tcs.kappa> .

Fig. 2. An example model annotation, with details about its name,

description, creators and online repository location. All the prefix definitions

required to annotate the model are also defined first, and the empty prefix is

defined for the model namespace itself.

Figure 3 shows examples of Agent annotations. In Figure 3A the

ATP token is annotated as a small molecule with the id of 15422

from CHEBI. Agents without sites can also be annotated similarly.

In Figure 3B, the agent is specified to be a protein using the

biopax:Protein value for the biopax:physicalEntity term. This

protein agent is annotated as P16497 from UniProt, which is a

sporulation kinase protein. It has a site with the phosphorylated and

unmodified states, which are annotated with corresponding terms

from the Protein Modification Ontology (Montecchi-Palazzi et al.,

2008). The ro:hasFunction term associates the agent with the GO’s

histidine kinase molecular function term GO:0000155. In Figure 3C,

a promoter agent with a TF binding site is represented. Both the

promoter and the operator agents are of “DnaRegion” type, and are

identified with the SO:0000167 and SO:0000057 terms. Although the

nucleotide information can be linked to existing repositories using

the bqbiol:is term, for synthetic sequences agents can directly be

annotated using the SBOL terms. The term sbol:nucleotides is

used to store the nucleotide sequences for these agents. A parent-

child relationship between the promoter and the operator agents can

be represented using an sbol:SequenceAnnotation RDF resource,

which allows the location of an operator subpart to be specified.

Patterns can also be annotated specifically. For example, this

approach could be used to annotate a pattern with a specific entry

from a database. Patterns can also be explicitly stated as observables

of the model. Figure 3D shows an example of such an observable.

Spo0A p represents the phosphorylated protein, which acts as a TF

and is defined as an observable.

Figure 4 demonstrates annotation of rules. The first rule

(Figure 4A) describes the binding of LacI TF to a promoter. This

biological activity is described using the GO:0008134 (transcription

factor binding) term. In the second example (Figure 4B), a

phosphorylation rule is annotated. The rule contains a subrule

representing ATP to ADP conversion. This subrule is linked to the

parent rule with the hasSubrule qualifier. The annotation of the

rate for this rule is shown in Figure 4C. Didactic fully annotated

Kappa and BioNetGen models for a two-component system (TCS),

Table 4. Annotating entities in rule-based models.

Term Annotation Values

Agent declarations:

rdf:type Agent

dct:isPartOf Identifier for the Model.
hasSite Identifier of a Site.
biopax:physicalEntity A biopax:PhysicalEntity term, e.g.

DnaRegion or SmallMolecule.
bqbiol:is A term representing an individual type of an

Agent entity, e.g. a protein entry from UniProt.

bqbiol:isVersionOf A term representing the class type of an Agent

entity, e.g. a SO term for a DNA-based agent.

Site declarations:

rdf:type Site

hasState Identifier for an internal state.

bqbiol:isVersionOf A term representing the type of the site, e.g.

A SO term for a nucleic acid-based site or an

InterPro term for an amino acid-based site.

Internal state declarations:

rdf:type State

bqbiol:is A term representing the state assignment, e.g. a

term from the PSIMOD or the PO.

Rules:

rdf:type Rule

dct:isPartOf Identifier for the Model.
bqbiol:is A term representing an individual type of a rule,

e.g. a KEGG entry.

bqbiol:isVersionOf A term representing a class type of a rule, e.g.

an EC number, a SO term or a GO term.

subrule Identifier for a Rule entity.

lhs
†
rhs

†
References to the patterns forming the left and

right hand side of the rule.

Observables:

rdf:type Observable

dct:isPartOf Identifier for the Model.

pattern
†

References the constituent patterns.

Patterns:

rdf:type Pattern

ro:hasFunction A GO term specifying a biological function.

agent
†

Reference to the corresponding Agent

declaration

internalState
†

Reference to a representation of a site’s state

isStatusOf
†

Reference from a site’s state to the

corresponding site

Variables:

rdf:type sbo:SBO:0000002 (quantitative systems

description parameter)
dct:isPartOf Identifier for the Model.
bqbiol:isVersionOf A term representing a variable type. If exists, the

term should a subterm of SBO:0000002.

Terms marked with † are used for machine-generated representations of rules and patterns,

and are not usually for annotating models.

controlling a simple promoter architecture are in the examples

directory14.

14Files tcs.kappa and tcs.bngl in the http://purl.org/

rbm/rbmo/examples directory respectively.

6

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Rule-Based Annotations

A:

#ˆ:ATP a rbmo:Agent ;

#ˆ bqbiol:isVersionOf chebi:CHEBI:15422 ;

#ˆ biopax:physicalEntity biopax:SmallMolecule .

%token: ATP()

B:

#ˆ:Kinase a rbmo:Agent ;

#ˆ rbmo:hasSite :Kinase:psite ;

#ˆ bqbiol:is uniprot:P16497 ;

#ˆ biopax:physicalEntity biopax:Protein ;

#ˆ ro:hasFunction go:GO:0000155 .

#ˆ:Kinase:psite a rbmo:Site ;

#ˆ rbmo:hasState :Kinase:psite:u, :Kinase:psite:p .

#ˆ:Kinase:psite:u a rbmo:State ;

#ˆ bqiol:is pr:PR:000026291 .

#ˆ:Kinase:psite:p a rbmo:State ;

#ˆ bqiol:is psimod:MOD:00696 .

%agent: Kinase(psite˜p˜u)

C:

#ˆ:pSpo0A a rbmo:Agent ;

#ˆ rbmo:hasSite :pSpo0A:tfbs ;

#ˆ bqbiol:isVersionOf so:SO:0000167 ;

#ˆ biopax:physicalEntity biopax:DnaRegion ;

#ˆ sbol:nucleotides "

ATTTTTTTAGAGGGTATATAGCGGTTTTGTCGAATGTAAACATGTAG" ;

#ˆ sbol:annotation :pSpo0A_annotation_28_34 .

#ˆ:pSpo0A:tfbs a rbmo:Site ;

#ˆ bqbiol:isVersionOf so:SO:0000057 ;

#ˆ biopax:physicalEntity biopax:DnaRegion ;

#ˆ sbol:nucleotides "TGTCGAA" .

#ˆ:pSpo0A_annotation_28_34 a sbol:SequenceAnnotation ;

#ˆ sbol:bioStart 28;

#ˆ sbol:bioEnd 34 ;

#ˆ sbol:subComponent :pSpo0A:tfbs .

%agent: pSpo0A(tfbs)

D:

#ˆ:Spo0A a rbmo:Agent .

%agent: Spo0A(psite˜p˜u)

#ˆ:Spo0A_p a rbmo:Observable ;

#ˆ ro:has_function go:GO:0045893 .

%obs: 'Spo0A_p' Spo0A(psite˜p)

Fig. 3. Examples of agent annotations for A. An ATP token agent. B. A

kinase agent with phosphorylated and unphosphorylated site. C. A promoter

agent with a TF binding site. D. An agent and an associated observable for

the phosphorylated Spo0A protein, which can act as a TF.

Figure 5 contains a fragment of a rule materialised using our

krdf tool (taken from the TCS Kappa model). The tool generates

a version of the rules themselves in RDF together with the

annotations. This process makes available the entire model in a

uniform way that can be then used as an intermediate representation

for further processing. One of the patterns involved is Sp0A(DNAb!1,

RR˜p) which is interesting enough to illustrate the salient features.

We can see that the left hand side of this rule contains a pattern

involving :Spo0A and that there are two pieces of state information

that are of interest. The first one refers to the :Spo0A:DNAb site, and

it is bound to something (we cannot know what without the rest of

the data not reproduced here). The second refers to the :Spo0A:RR

site, it has a particular internal state, and it is unbound. We can also

see that the rule has a title, “Cooperative unbinding”, which clearly

could not have been derived from the rule itself. This represents a

good example of merging the metadata supplied by the model author

with an RDF representation of the rule.

A:

#ˆ:LacI.pLac a rbmo:Rule ;

#ˆ bqbiol:isVersionOf go:GO:0008134 ;

#ˆ dct:title "Dna binding" ;

#ˆ dct:description "TF1 binds to the promoter" .

'LacI.pLac' Target(x˜p), Promoter (tfbs1,tfbs2) <->

Target(x˜p!1), Promoter (tfbs1!1,tfbs2) @kf,kr

B:

#ˆ:S_phosphorylation a rbmo:Rule ;

#ˆ bqbiol:isVersionOf sbo:SBO:0000216 ;

#ˆ dct:title "S Phosphorylation" ;

#ˆ dct:description "S is phosphorylated " ;

#ˆ rbmo:hasSubrule :S_phosphorylation:1 .

#ˆ:S_phosphorylation:1 a rbmo:Rule ;

#ˆ bqbiol:isVersionOf sbo:SBO:0000216 ;

#ˆ dct:title "ATP -> ADP" ;

#ˆ dct:description "ATP to ADP conversion" .

'S_phosphorylation' S(x˜u!1), K(y!1) | 0.1:ATP -> S(x˜p

), K(y) | 0.1:ADP @kp

C:

#ˆ:kp a sbo:SBO:0000002 ;

#ˆ bqbiol:isVersionOf sbo:SBO:0000067 ;

#ˆ dct:title "Phosphorylation rate" .

Fig. 4. Annotating rules and variables. A. TF DNA binding rule. B.

Phosphorylation rule with a subrule for the ATP to ADP conversion. C.

Annotation of a phosphorylation rate variable.

:As1As2Spo0A_to_As2Spo0A a rbmo:Rule ;

dct:title "Cooperative unbinding" ;

rbmo:lhs [

a rbmo:Pattern ;

rbmo:agent :Spo0A ;

rbmo:status [

rbmo:isBoundBy :As1As2Spo0A_to_As2Spo0A:left:1 ;

rbmo:isStatusOf :Spo0A:DNAb ;

a rbmo:BoundState ;

], [

rbmo:internalState :Spo0A:RR:p ;

rbmo:isStatusOf :Spo0A:RR ;

a rbmo:UnboundState ;

] ;

].

Fig. 5. Fragment of the RDF representation of a materialised rule.

5 APPLICATIONS

Though development of fully functional tools is outside the scope

of this paper, we demonstrate their computational feasibility and

the consistency of the approach by providing some simple tools

to recover and analyze the annotations embedded in a Kappa

model. In particular, our proof of concept krdf tool provides

enough information for simple checking of duplication of rules

and inconsistencies between different parts of the model – a sort

of logical type checking: these two issues are some of the basic

problems encountered when composing and creating biological

models (Blinov et al., 2008; Lister et al., 2009). Another use of

this information is to draw an annotated contact map visualising

the entities involved, the interactions and the biological information

stored in the annotations – this merges the classical notion of contact

map used in Kappa models (Danos and Laneve, 2004; Danos et al.,

2009) with biological semantics.

7

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

The krdf tool operates on Kappa models and has several modes

of operation that provide increasingly more information about the

model. The first, selected with the -a option, simply extracts the

modeller’s annotations and is equivalent to the unix grep command

line described in the footnote on page 4. The second, selected with

the -m option, materialises the information in the rules themselves

into the RDF representation as illustrated in Figure 5. Finally the -n

option normalises the patterns present in the rules according to their

declarations.

Annotated contact maps. Once a complete uniform representation

of the model in RDF has been generated, we can query it using

SPARQL with a tool such as roqet15. For example, a SPARQL

query can deduce a contact map – pairings of sites on agents

that undergo binding and unbinding according to the rules in the

model. These pairings form a graph that can be visualised using

tools such as GraphViz (Ellson et al., 2002). Indeed with an

appropriate query16, roqet can directly output the result in a

form that GraphViz consumes. An only slightly more sophisticated

manipulation17 can extract annotations as well from the RDF

representation of the TCS example model and easily create a richly

annotated contact map diagram as shown in Figure 6. In this figure,

biological information extracted from the annotations has been

added to the agents, sites and interactions (again using GraphViz

for rendering)18.

Duplicate rule detection. One of the first tasks when combining

different biological models is to detect duplicate rules. This can be

done in a simple manner using the claims made about rule identity

in the annotations. This approach does not introspect the rules to

find duplicates using a sophisticated notion of equality and can be

done without the need of any α-renaming (a renaming that would

guarantee that the same symbol consistently refers to the same agent

throughout the combined model). A SPARQL query such as in

Figure 7 can be used on the annotations. In this case it is a join

operation on the property of bqbiol:is, enforcing a stronger form

of identity semantics than this predicate is usually given. The filter

clause is necessary to prevent a comparison of a rule with itself. This

query is a building block for model composition and illustrates the

utility of annotations provided by the model author.

Inconsistency checking. A related query can form the basis for

finding inconsistencies by using the replacement semantics of

owl:sameAs. A statement of the form a owl:sameAs b means that

every statement about a is also true if a is replaced by b. In particular

if we have statements about the types of a and b, and these types are

disjoint, the collection of statements is unsatisfiable. In other words

the model has been found to be inconsistent. An OWL reasoner such

as HermiT (Shearer et al., 2008) or Pellet (Sirin et al., 2007) will

derive that a and b have type owl:Nothing in this circumstance.

To implement this work-flow we proceed as follows. First

generate the fully materialised RDF version of a model using,

e.g. krdf. For each use of bqbiol:is, add a new statement

using owl:sameAs. Next retrieve all ontologies that are used from

15http://librdf.org

16See the binding.sparql file in the krdf examples directory.

17See the contact.py script in the krdf examples directory.

18For simplicity, the tool assumes that only single instances of an agent

are involved in a rule. However, it can be easily generalized.

b0: Spo0A binding to Operator 1
b1: Spo0A binding to Operator 2

b2: Spo0A-KinA binding
u0: Cooperative unbinding: Spo0A unbinds from Operator 1
u1: Cooperative unbinding: Spo0A unbinds from Operator 2

u2: Spo0A unbinding from Operator 1
u3: Spo0A unbinding from Operator 2

u4: Spo0A(phosp)-KinA unbinding
u5: Spo0A(unphos)-KinA unbinding

Promoter (DnaRegion)

Spo0A (Protein)

KinA (Protein)

TTCGACA

DNAb

b0 u0 u2

AGTCGAA

b1 u1 u3

RR

H405

b2 u4 u5

Fig. 6. Contact map generated by a SPARQL query on the RDF

materialisation of the TCS example in Kappa. Biological information

concerning the agents, rules and sites, types of the molecules, DNA

sequences and typology of the interaction, have been extracted automatically

from the model annotations.

SELECT DISTINCT ?modelA ?ruleA ?modelB ?ruleB

WHERE {

?ruleA a rbmo:Rule;

dct:isPartOf ?modelA;

bqbiol:is ?ident.

?ruleB a rbmo:Rule;

dct:isPartOf ?modelB;

bqbiol:is ?ident.

FILTER (?ruleA != ?ruleB)

}

Fig. 7. Detection of duplicate rules.

the web. For each external vocabulary term with bqbiol:is or

bqbiol:isVersionOf retrieve a description and any ontologies that

it uses recursively. Merge all of these into a single graph. This graph

now contains the complete model and annotations, with entities now

linked using a strong form of equality to external vocabulary terms,

and we also have descriptions of the meaning of these vocabulary

terms. All that remains is to ask the reasoner to derive terms that are

equivalent to owl:Nothing. If there are any, an inconsistency has

been identified. Furthermore using the proof generation facilities

of OWL reasoners mean that given a conclusion, foo rdf:type

owl:Nothing, the sequence of statements required to arrive there

can be reproduced. In this way the source of the inconsistency – in

the model itself, or possibly in the external resources or even the

ontologies involved – can be narrowed down.

8

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Rule-Based Annotations

6 DISCUSSION

We present an extension of rule-based models to incorporate

annotations and a set of standardised terms, together with annotation

guidelines, that can constitute a general proposal for annotating rule-

based models. These terms can be used in a complementary manner

with existing metadata resources such as MIRIAM annotations and

URIs, and existing controlled vocabularies and ontologies. Such

metadata is important for models that are computationally generated

or served by model repositories, and opens up the possibility of

using rule-based models in complex workflows. Annotations can

also be used to link to human readable descriptions of models. Rules

are modular and combined with annotations, can be reused in many

applications.

Although, we have demonstrated the annotation of textual Kappa

and BioNetGen files, our approach can be easily applied to other

rule-based models. PySB (Lopez et al., 2013) already includes a list

of MIRIAM annotations at the model level, and can be extended to

include the type of annotations presented here. Moreover, SBML’s

multi19 package is being developed to standardise the exchange of

rule-based models. The entities in this format inherit the annotation

property from the standard SBML and can therefore include RDF

annotations. Such SBML models can thus be imported or exported

by tools such as KaSim or RuleBender in the future, avoiding

the loss of any biological information. Extensions of rule-based

models such as MetaKappa makes possible to define rules using

abstract agents and allowing agent inheritance (Danos et al., 2009).

Modularity is especially important in synthetic biology to build

complex models of intended biological systems from simple rules.

The proposed schema can be easily extended in that framework.

Annotations are also useful for automated conversions between

different formats. Conversion between rules and reaction networks

is already an ongoing research subject (Blinov et al., 2008), and the

availability of annotations can play an important role for reliable

conversion and fine-tuning of models (Tapia and Faeder, 2013;

Harris et al., 2015). As demonstrated above, annotations can be

used to derive contact maps, which are commonly used to visualise

rule-based models. Chylek and co-workers have already defined

a set of glyphs to represent different nodes and edges in these

graphs (Chylek et al., 2011). This mapping is carried out by creating

model guides which have contact maps enriched with information,

but this process is done manually. It is straightforward to use the

framework presented and automatically map agents and rules to

these glyphs or to convert models into other visual formats such

as SBGN or genetic circuit diagrams (Misirli et al., 2011). Models

annotated with SBOL terms can be read for subsequent analyses, for

example to produce genetic circuit diagrams using standard SBOL

Visual icons.

Model annotations are designed for machine readability and

ideally should be produced computationally, for example by model

repositories. The authors are currently developing APIs and tools

to facilitate this process and in particular the access to a set of

biological parts (Cooling et al., 2010; Misirli et al., 2014) that

will incorporate rule-based descriptions and will be annotated with

the proposed schema. Composing together models from these

repositories requires further research, and the annotations described

19http://sbml.org/Documents/Specifications/SBML_

Level_3/Packages/multi

here can provide sufficient additional information to make the

problem computationally tractable.

In general, automatic annotation of models can be challenging

where the meaning of modelling entities are not known to

computational tools and only the names of entities can be used to

infer their semantics. This issue is an ongoing research subject and

tools such as Saint (Lister et al., 2009) and SyBIL (Blinov et al.,

2010) could be extended to automate the annotation of rule-based

models. The extensive information available in biological databases

and the literature can thus be integrated and made available via rule-

based models, taking advantage of the syntax and the framework

presented in this work.

Enriching models through computationally tractable annotations

has many benefits. The computational feasibility of the proposed

annotation schema has been shown with the development of a

simple tool that, exporting the embedded annotations, can be used

to detect duplicate rules, inconsistencies and provide contact maps

annotated with biological semantics. Despite more work need to be

done in this direction and challenge large biological models, these

preliminary applications highlights that the proposed annotations

could constitute an important step towards the automation of the

model-based design and analysis of biological systems, and hence

to improve the utility of rule-based models in predictive biology. In

summary, the annotation framework and guidelines presented here

facilitates the annotation of rule-based models, and the development

of future applications for rule-based modelling.

ACKNOWLEDGEMENTS

Funding: Engineering and Physical Sciences Research Council

grant numbers EP/J02175X/1 (to A.W., V.R., G.M. and M.C.),

EP/K039083/1 (to C.M.), and the European Unions Seventh

Framework Programme for research, technological development

and demonstration grant number 320823 (to W.W.). We

acknowledge Alejandro Granados for helpful discussions on the

biological examples and Peter Buneman for insights into the nature

of annotation.

Conflict of Interest: none declared.

REFERENCES

Acuff, R. (1988). KSL lisp environment requirements.

Bairoch, A. (2000). The ENZYME database in 2000. Nucleic Acids Research, 28,

304–305.

Blinov, M.L. et al. (2008). Complexity and modularity of intracellular networks: a

systematic approach for modelling and simulation. Systems Biology, IET , 2, 363–

368.

Blinov, M.L. et al. (2010). Modeling without Borders: Creating and Annotating

VCell Models Using the Web. In M. Borodovsky, J. Gogarten, T. Przytycka, and

S. Rajasekaran, editors, Bioinformatics Research and Applications, volume 6053 of

Lecture Notes in Computer Science, pages 3–17. Springer Berlin Heidelberg.

Buneman, P. (2015). Personal correspondence.

Chylek, L.A. et al. (2011). Guidelines for visualizing and annotating rule-based models.

Molecular BioSystems, 7, 2779–2795.

Chylek, L.A. et al. (2014). Rule-based modeling: a computational approach

for studying biomolecular site dynamics in cell signaling systems. Wiley

Interdisciplinary Reviews: Systems Biology and Medicine, 6, 13–36.

Cooling, M.T. et al. (2010). Standard virtual biological parts: a repository of modular

modeling components for synthetic biology. Bioinformatics, 26(7), 925–931.

Courtot, M. et al. (2011). Controlled vocabularies and semantics in systems biology.

Molecular Systems Biology, 7.

9

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Creamer, M. et al. (2012). Specification, annotation, visualization and simulation of a

large rule-based model for ERBB receptor signaling. BMC Systems Biology, 6, 107.

Cuellar, A.A. et al. (2003). An Overview of CellML 1.1, a Biological Model

Description Language. SIMULATION, 79(12), 740–747.

Danos, V. and Laneve, C. (2004). Formal molecular biology. Theoretical Computer

Science, 325, 69–110.

Danos, V. et al. (2007). Scalable simulation of cellular signaling networks. In Z. Shao,

editor, APLAS, volume 4807 of Lecture Notes in Computer Science, pages 139–157.

Springer.

Danos, V. et al. (2009). Rule-Based Modelling and Model Perturbation. In C. Priami,

R.-J. Back, and I. Petre, editors, Transactions on Computational Systems Biology

XI, volume 5750 of Lecture Notes in Computer Science, pages 116–137. Springer

Berlin Heidelberg.

Degtyarenko, K. et al. (2008). Chebi: a database and ontology for chemical entities of

biological interest. Nucleic Acids Research, 36(suppl 1), D344–D350.

Demir, E. et al. (2010). The BioPAX community standard for pathway data sharing.

Nat Biotech, 28(9), 935–942.

Eilbeck, K. et al. (2005). The Sequence Ontology: a tool for the unification of genome

annotations. Genome Biology, 6(5), R44.

Ellson, J. et al. (2002). Graphvizopen source graph drawing tools. In Graph Drawing,

pages 483–484. Springer.

Endler, L. et al. (2009). Designing and encoding models for synthetic biology. Journal

of The Royal Society Interface, page rsif.2009.0035.focus.

Faeder, J. et al. (2009). Rule-Based Modeling of Biochemical Systems with

BioNetGen. In I. V. Maly, editor, Systems Biology, volume 500 of Methods in

Molecular Biology, pages 113–167. Humana Press.

Funahashi, A. et al. (2007). Integration of CellDesigner and SABIO-RK. In Silico

Biology, 7, 81–90.

Galdzicki, M. et al. (2012). Synthetic Biology Open Language (SBOL) Version 1.1.0.

Galdzicki, M. et al. (2014). SBOL: A community standard for communicating designs

in synthetic biology. Nature Biotechnology.

Harris, L.A. et al. (2015). BioNetGen 2.2: Advances in Rule-Based Modeling. ArXiv

e-prints.

Hedley, W.J. et al. (2001). A short introduction to CellML. Philosophical Transactions

of the Royal Society of London. Series A: Mathematical, Physical and Engineering

Sciences, 359, 1073–1089.

Hucka, M. et al. (2003). The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics, 19,

524–531.

Juty, N. et al. (2012). Identifiers.org and miriam registry: community resources to

provide persistent identification. Nucleic Acids Research, 40(D1), D580–D586.

Juty, N. et al. (2013). Controlled Annotations for Systems Biology. In M. V. Schneider,

editor, In Silico Systems Biology, volume 1021 of Methods in Molecular Biology,

pages 227–245. Humana Press.

Kanehisa, M. et al. (2008). KEGG for linking genomes to life and the environment.

Nucl. Acids Res., 36(suppl 1), D480–484.

Klement, M. et al. (2014). Biochemical Space: A Framework for Systemic Annotation

of Biological Models. Electronic Notes in Theoretical Computer Science, 306, 31–

44.

Köhler, A. et al. (2014). A rule-based model of base excision repair. In P. Mendes, J. O.

Dada, and K. Smallbone, editors, Computational Methods in Systems Biology - 12th

International Conference, CMSB 2014, Manchester, UK, November 17-19, 2014,

Proceedings, volume 8859 of Lecture Notes in Computer Science, pages 173–195.

Springer.

Krause, F. et al. (2010). Annotation and merging of SBML models with

semanticSBML. Bioinformatics, 26, 421–422.

Le Novère, N. and Finney, A. (2005). A simple scheme for annotating SBML with

references to controlled vocabularies and database entries.

Li, C. et al. (2009). BioModels.net Web Services, a free and integrated toolkit for

computational modelling software. Brief Bioinform, page bbp056.

Li, C. et al. (2010). BioModels Database: An enhanced, curated and annotated resource

for published quantitative kinetic models. BMC Systems Biology, 4, 92.

Lister, A.L. et al. (2009). Saint: a lightweight integration environment for model

annotation. Bioinformatics, 25, 3026–3027.

Lister, A.L. et al. (2010). Annotation of SBML models through rule-based semantic

integration. Journal of Biomedical Semantics, 1, S3.

Lopez, C.F. et al. (2013). Programming biological models in Python using PySB.

Molecular Systems Biology, 9.

Magrane, M. and UniProt Consortium (2011). UniProt Knowledgebase: a hub of

integrated protein data. Database, 2011.

Misirli, G. et al. (2011). Model annotation for synthetic biology: automating model to

nucleotide sequence conversion. Bioinformatics, 27, 973–979.

Misirli, G. et al. (2014). Composable Modular Models for Synthetic Biology. ACM

Journal on Emerging Technologies in Computing Systems.

Montecchi-Palazzi, L. et al. (2008). The PSI-MOD community standard for

representation of protein modification data. Nat Biotech, 26, 864–866.

Moraru, I.I. et al. (2008). Virtual cell modelling and simulation software environment.

Systems Biology, IET , 2, 352–362.

Mulder, N.J. and Apweiler, R. (2008). The InterPro Database and Tools for Protein

Domain Analysis. John Wiley and Sons, Inc.

Natale, D.A. et al. (2011). The protein ontology: a structured representation of protein

forms and complexes. Nucleic Acids Research, 39(suppl 1), D539–D545.

Neal, M.L. et al. (2014). A C library for retrieving specific reactions from the

BioModels database. Bioinformatics, 30, 129–130.

Roehner, N. and Myers, C.J. (2013). A Methodology to Annotate Systems Biology

Markup Language Models with the Synthetic Biology Open Language. ACS

Synthetic Biology, 3, 57–66.

Shearer, R. et al. (2008). Hermit: A highly-efficient owl reasoner. In OWLED, volume

432, page 91.

Sirin, E. et al. (2007). Pellet: A practical owl-dl reasoner. Web Semantics: science,

services and agents on the World Wide Web, 5(2), 51–53.

Smith, B. et al. (2005). Relations in biomedical ontologies. Genome Biology, 6(5),

R46.

Snoep, J.L. and Olivier, B.G. (2003). JWS Online Cellular Systems Modelling and

Microbiology. Microbiology, 149, 3045–3047.

Swainston, N. and Mendes, P. (2009). libAnnotationSBML: a library for exploiting

SBML annotations. Bioinformatics, 25, 2292–2293.

Tapia, J.J. and Faeder, J.R. (2013). The atomizer: Extracting implicit molecular

structure from reaction network models. In Proceedings of the International

Conference on Bioinformatics, Computational Biology and Biomedical Informatics,

BCB’13, pages 726:726–726:727, New York, NY, USA. ACM.

The Gene Ontology Consortium (2001). Creating the Gene Ontology Resource: Design

and Implementation. Genome Research, 11(8), 1425–1433.

Xu, W. et al. (2011). RuleBender: a visual interface for rule-based modeling.

Bioinformatics, 27, 1721–1722.

Yu, T. et al. (2011). The Physiome Model Repository 2. Bioinformatics, 27, 743–744.

10

 at U
niversity of N

ew
castle on N

ovem
ber 17, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

