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Abstract. We develop a new thermodynamic approach to stochastic graph-rewriting.
The ingredients are a finite set of reversible graph-rewriting rules G (called generating
rules), a finite set of connected graphs P (called energy patterns), and an energy cost
function ε which associates real values to each of these energy patterns. The idea is that G
defines the qualitative dynamics, by showing which transformations are possible, while P
and ε allow one to attach an energy to the reachable graphs and, thereby, describe their
long-term probability distribution π. Given G and P, we construct a finite set of rules GP
which (i) has the same qualitative transition system as G; and (ii) when equipped with
rates according to ε, defines a continuous-time Markov chain of which π is the unique fixed
point. The construction relies on the use of site graphs and a technique of ‘growth policy’
for quantitative rule refinement which is of independent interest.

This division of labour between the qualitative and long-term quantitative aspects of
the dynamics leads to intuitive and concise descriptions for realistic models (see §4). It also
guarantees thermodynamical consistency (aka detailed balance), otherwise known to be
undecidable, which is important for some applications. Finally, it leads to parsimonious
parameterizations of models, again an important point in some applications.

1. Introduction

Along with Petri nets, communicating finite state machines, and process algebras, models
of concurrent systems based on graphs and graph transformations (GTS) have long been
investigated as means to describe, verify and synthesize distributed systems [14]. Beyond
their visual aspect, which is often useful in modelling situations, there is a lot to like about
GTSs: there are category-theoretic frameworks to express them and encapsulate their syntax;
and the existence of a strong meta-theory [21] is a reassurance that methodologies developed
in specific cases can be ‘ported’ to other variants.

2012 ACM CCS: [Software and its engineering]: Software notations and tools—Formal language
definitions—Syntax / Semantics; [Theory of Computation]: Logic; Formal languages and automata theory—
Formalisms—Rewrite systems.
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Graph-rewriting rules are convenient for writing compact models and modifying them [8],
and lend themselves naturally to probabilistic extensions [18, 20]. However, for all their
flexibility, even rules can only do so much. We ask in this paper “what if we did not have
to write the rules?”. This is where we take a page from the book of classical statistical
mechanics. In such models, which often involve graph-like structures, as in the Ising model,
the dynamics is not described upfront. Instead, the system of interest is equipped with an
‘energy lansdcape’ which specifies its long run behaviour, be it deterministic as in classical
mechanics, or probabilistic in statistical physics. The dynamics just follows from the energy
data. In the eye of a computer scientist, this use of energy looks like a latent syntax. (This
is especially true in the application of these ideas to molecular dynamics.)

The broad aim of this paper is to make this syntax explicit by introducing energy patterns
and costs from which the total energy of a state of the system can be computed; and to define
a procedure whereby, indeed, the dynamics described as probabilistic graph-rewriting rules
can be derived from these energy data. Descriptively, this takes us to an entirely new level of
conciseness (as in the example shown in §4). It also guarantees thermodynamical consistency
by construction, a property known otherwise to be undecidable [11]. This property provides
a predictable equilibrium state for the system which can be used as a guide when writing
models by giving an intuitive understanding of favoured states and the (possibly overlapping)
subgraphs within them. But perhaps the nicest byproduct of this approach is the fact
that the methodology leads to parsimonious parameterizations. The parameter space which
usually scales as the number of rules (which in turn has at best a logarithmic impact on the
cost of a simulation event [5]), will now scale as the number of energy patterns provided in
the specification.

The particular GTSs we consider form a reversible subset of the Kappa site-graph
stochastic rewriting language. Kappa is used for the simulation and analysis of combinatorial
dynamical systems as typically found in cellular signalling networks [22, 26] and has been
predicted to “become one of the mainstream modelling tools of systems biology within the
coming decade” [1]. Similar graph formalisms where nodes have a controlled valence/degree
have been considered e.g. the BNG language [15, 19], Kissinger and Dixon’s quantum proof
language [13], and Kirchner et al. chemical calculi [3]. Site-graph rewriting has found recently
a ‘home’ both in the single-pushout GTS tradition [9] and the double-pushout one [6, 17].
This makes one hopeful that the thermodynamic methodology we propose can cross over
to other fields where quantitative GTSs can be used, e.g. in the modelling of adaptive
networks [16]. While our scalable energy-based parameterization is particularly important in
biological applications where parameters often need to be inferred, one can imagine it to be
useful in other modelling situations with uncertainty.

Outline: We start by introducing a running example that will help us illustrate the concepts
presented throughout the paper. Then we proceed with the definition and relevant properties
of the specific GTS we use, namely a simple reversible fragment of Kappa. Next, we introduce
growth policies (adapted from Ref. [25]), a tool which allows one to replace a rule with
an orthogonal set of refined rules while preserving the quantitative semantics. We use this
tool with a specific policy which refines a rule into finitely many rules, each of which has
a definite energy balance with respect to a given set of energy patterns. This leads to our
main theorem which guarantees that the stochastic dynamics of the obtained refined rule
set converges to an equilibrium distribution parametrized by the cost of each energy pattern.
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Throughout, the presentation is set in category-theoretic terms and mostly self-contained. A
substantial example concludes the paper.

1.1. Running example: Assembling triangles. The following example will be used to
show the intrincacies of our rule generation mechanism. We consider graphs with three types
of nodes where each can only bind nodes of a different type, and at most one thereof. As
generators, we consider simple binding and unbinding rules subject to this constraint (see
details in §2.4):

These rules, given an unbounded supply of the three types of nodes, can create chains
(of any length) and closed cycles (of length some multiple of three) as shown in Fig. 1. Given
the simplicity of the graphs that can be formed, we can describe them using a linear textual
notation where numbers are used to represent the three types of nodes, then chains are
simply written as words (e.g. 2312) while for cycles we indicate half-edges at both ends, e.g.
·123· is the triangle and ·123123· is the hexagon. We will use that shorthand notation in the
sequel.

Our goal here is to be able to favour the formation at equilibrium of certain structures
like the triangle by assigning a significantly negative energy to them (the convention is that
a lower energy means a higher probability).

2. Site graph rewriting

2.1. Site graphs and homomorphisms. A site graph G consists of finite sets of agents
(nodes) and sites (connection slots), AG and SG, a partial function σG : SG ⇀ AG, and a
symmetric edge relation EG on SG. The pair SG, EG form an undirected graph; sites not in
the domain of EG are said to be free. The role of the additional map σG is to assign sites to
agents; sites not in the domain of σG are said to be dangling, and will be used to represent
half-edges (see below). Usually one also endows agents and/or sites with states (as we do in
the example treated in §4); our main construction in §3 carries over readily to these.

One says G is realizable iff (i) sites have at most one incident edge; (ii) no dangling site
is free; and, (iii) edges have at most one dangling site. Note that point (i) implies that no
site has an edge to itself.

SG
hS //

σG

�

≤

SG′

σG′

�
AG

hA
// AG′

A homomorphism h : G→ G′ of site graphs is a pair of
functions, hS : SG → SG′ and hA : AG → AG′ , such that (i)
whenever hA(σG(s)) is defined, so is σG′(hS(s)) and they are
equal; and (ii) if s EG s′ then hS(s) EG′ hS(s′).

A homomorphism h : G→ G′ is an embedding iff (i) hA
and hS are injective; and (ii) if s is free in G, so is hS(s) in
G′. If h : G→ G′ is an embedding and G′ is realizable then G is also realizable.
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Site graphs and homomorphisms form a category SG with the natural ‘tiered’ composi-
tion; embeddings form a subcategory; if in addition, we restrict objects to be realizable, we
get the subcategory rSGe of realizable site graphs and embeddings.

Returning to our chains-and-cycles example, we can use sites as a means to enforce on
nodes our earlier constraint where a node can connect to at most one node of each other
type. Here we present a possible encoding of a simple chain of 3 nodes:

G = x y z
lx

rx
ly

ry
lz

rz

AG = {x, y, z} , σG = {sa 7→ a : s ∈ {l, r} , a ∈ AG} ,
SG = {lx, rx, ly, ry, lz, rz} , EG = {(rx, ly), (ly, rx), (ry, lz), (lz, ry)} .

Note that this site graph is realizable and the lx and rz sites are free. To complete the
encoding of our example we need types for nodes which we now introduce.

2.2. The category of site graphs over C. A homomorphism h : G → C is a contact
map over C iff (i) G is realizable, (ii) σC is total and (iii) whenever hS(s1) = hS(s2) and
σG(s1) = σG(s2), then s1 = s2. The third condition of local injectivity means that every
agent of G has at most one copy of each site of its corresponding agent in C; C is called the
contact graph.

G

h ��

ψ // G′

h′~~
C

Hereafter, we work in the (comma) category rSGeC whose
objects are contact maps over C, and arrows are embeddings
such that the associated triangle commutes in SG. We write
ΥC(h, h′) for the set of such embeddings between h, h′ contact
maps over C; we also write | | for the domain functor from
rSGeC to rSGe which forgets types. In particular, if h : G→ C
is a contact map, we write |h| for its domain G.

Note that in rSGe, an embedding h : G→ G′ may map a dangling site s of G to any
site s′ of G′ (provided hS is injective). In particular, s′ does not have itself to be dangling.
This means that dangling sites can be used as an “any site” wild card when matching G. In
the typed case, i.e. in rSGeC , the contact map h : G → C tells us which agent in C the
dangling site belongs to because σC is total, and this must be respected by h. Dangling sites
can now be used as “binding types” to express the property of being bound to the site s of
an agent of a given type.

The contact graph C is fixed and plays the role of a type: it specifies the kinds of agents
that exist, the sites that they may possess, and which of the |SC |(|SC |+ 1)/2 possible edge
types are actually valid. It also gives canonical names to the types of agents and their sites.

In our running example we use the triangle C = ·123· as contact graph:

AC = {1, 2, 3} , SC = {l1, r1, l2, r2, l3, r3} ,
σC = {sa 7→ a : s ∈ {l, r} , a ∈ AC} ,
EC = {(r1, l2), (l2, r1), (r2, l3), (l3, r2), (r3, l1), (l1, r3)}
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This contact graph constrains agents to bind only agents of a different type. The local
injectivity condition on contact maps restricts the number of sites available for each node to
two. Our simple chain of three nodes from the previous section (§2.1) can thus be typed
using a contact map h : G→ C with hA = {x 7→ 1, y 7→ 2, z 7→ 3} and hS = {sx 7→ shA(x) :
s ∈ {l, r} , x ∈ AG}.

We now extend the shorthand notation introduced in §1.1 to cover the case when hS is
not locally surjective. Specifically, when a node does not mention its two allowed sites, we
write ‘?’ for the missing site. A missing site can be introduced by an embedding and can be
free or bound. Sites do not explicitly show in this notation but they are implicitly positioned
at the left (l) and right (r) of each agent. Binding types are denoted by an exponent. Thus,
for instance, in 312? we have two agents u, v of type 1, 2, respectively, where u is bound to a
dangling site of type r3 on its lu site and bound to v’s lv site on its ru site. Similarly, v is
bound to u on its lv site and does not have any r site. Using this extended notation we can
write down our three rules in text: ?1 + 2? � ?12?, ?2 + 3? � ?23?, and ?3 + 1? � ?31?.

Recall that the goal of this example is to control the type of cycles which one finds at
equilibrium. To this effect, we introduce a set of energy patterns P consisting of one contact
map for each edge type (i.e. ?12?, ?23?, and ?31?), and one for the triangle ·123·. As we will
see, a careful choice of energy costs for each pattern will indeed lead to a system producing
almost only triangles in the long run (see Fig. 4 in Appendix A).

2.3. Multi-sums in rSGeC . The category SG has all pull-backs, constructed from those
in Set; it is easy to see that they restrict to rSGeC . SG also has all push-outs and all sums,
but these do not in general restrict to rSGeC . (Just as push-outs and sums in Set do not
restrict to the subcategory of injective functions.)

Figure 1: An example of a mixture of chains and 3n-gons which our three rules can reach
starting with 12 agents of each type.
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h1
θ1 //

γ1

��

si

∃!m

��

h2
θ2oo

γ2

��
h

However, rSGeC has multi-sums meaning that, for
all pairs of site graphs of type C, h1 : G1 → C and
h2 : G2 → C, there exists a family of co-spans θi1 : h1 →
si ← h2 : θi2, such that any co-span γ1 : h1 → h← h2 :
γ2 factors through exactly one of the family and does
so uniquely. In outline, given a co-span γ1 : h1 → h←
h2 : γ2, we first take its pull-back (which is guaranteed
to remain within rSGeC) and then the push-out of that: the fact that the original co-span
exists implies that this push-out also remains within rSGeC . The multi-sum is then a choice
of push-out for each (isomorphism class of) pull-back.

The idea is that the pairs θi1, θ
i
2 enumerate all minimal ways in which one can glue h1

and h2, that is to say all the minimal gluings of G1 and G2 that respect C. There are finitely
many, all of which factor through the standard sum in the larger slice category SGC .

The notion of multi-sum dates back to Ref. [12]; we will call them minimal gluings
in rSGeC according to their intuition in this concrete context, and use them in §3.3 to
construct balanced rules.

To illustrate this idea, let us consider, in the context of our example, the minimal gluings
of D1 = ?123? and D2 = ?231?. Computing them is a matter of computing all pull-backs.
One such pull-back is D1 ← ?23?→ D2, which gives us the minimal gluing ?1231?. On the
other hand, the span D1 ← ?3?→ D2 is not a pull-back since for all cospans that can close
the square, the span factors through D1 ← ?23? → D2. This is a consequence of ?3? not
being a maximal overlap of D1 and D2: whenever 3 is contained in a possible overlap of D1

and D2, 2 will also be there.

All minimal gluings of D1 and D2 are displayed in the following diagram with their
respective pullbacks. The left square has the empty graph as pullback and ?123? + ?231? as
pushout, the central square has ?23? and ?1231?, and the right square has ?23? + ?1? and
·123·. Each square uses arrows of different colour and style.

∅
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L

rL
��

I,I // R

rR
��

C

2.4. Rules. A rule r over C is a pair of contact maps rL :
L→ C, rR : R→ C which differ only in their edge structures,
i.e. AL = AR, SL = SR, σL = σR, rL,A = rR,A and rL,S =
rR,S .

For example, the unbinding rule g12 =?12? → ?1 + 2?
may be represented as:

AL = AR = {u, v}
SL = SR = {ru, lv}
σL = σR = {ru 7→ u, lv 7→ v}
rL,A = rR,A = {u 7→ 1, v 7→ 2}
rL,S = rR,S = {ru 7→ r1, lv 7→ l2}

with only the edge structures EL = {(ru, lv), (lv, ru)} and ER = ∅ differing.

A contact map h : G → C is a mixture iff σG is total (no dangling edge) and hS is
locally surjective, i.e. for all a ∈ AG, hS(σ−1G (a)) = σ−1C (hA(a)). In words, a mixture is a
fully-specified site graph with respect to the type C.

rL //

ψ

��

rR

ψ?

��
h // h?

(2.1)An embedding ψ : rL → h induces a rewrite of
the mixture h by modifying the edge structure of
the image of ψ from that of rL to that of rR. The
result of rewriting is a new mixture h?, where |h?| has
the same agents and sites as |h|, and an embedding
ψ? : rR → h?.

This type of rewriting can be formalized using double push-out rewriting [6], but with
the simple rules considered here, there is no need. The inverse of r, defined as r? := (rR, rL)
is also a valid rule; by rewriting h? with r? via ψ?, we recover h and ψ.

Given a finite set of rules G over C, we define a labelled transition system LG on mixtures
over C: a transition from a mixture h is a rewriting step determined and labelled by an
event (r, ψ), as in diagram (2.1), with r in G and ψ in ΥC(r, h). We suppose hereafter that
G is closed under rule inversion, i.e. G = G?. Hence, every (r, ψ)-transition has an inverse
(r?, ψ?), and LG is symmetric.

2.5. CTMC semantics. It is not difficult to see that for any rule r, |ΥC(rL, h)| ≤ |A|h||d(r)
where d(r) is the number of connected components in rL. Hence, LG has finite out-degree,
bounded by |G| · |A|h||d for some d. Also, as agents are preserved by rules, the (strongly)
connected components of LG are finite. Given a rate map k from G to R+, we can therefore
equip LG with the structure of a time-homogeneous irreducible continuous-time Markov
chain (CTMC), simply by assigning rate k(r) to an event of the form (r, ψ). We write LkG
for the CTMC thus obtained.

A finite time-homogeneous CTMC M has detailed balance for a probability distribution
π on M’s state space iff, for all states x and y, π(x) · q(x, y) = π(y) · q(y, x) where q(x, y)
is M’s transition rate from x to y. This implies, assuming M is irreducible, that π is the
unique fixed point of the action of M to which the probabilistic state of M converges,
regardless of the initial state.

In our case, the probability π(x) will be proportional to e−E(x), where E(x) is the energy
of the system as defined by a set of patterns and their associated costs.
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2.6. Extensions and rule refinement. We say an embedding φ : s → s′ is a prefix of

s
φ

��

φ′

~~
s′′ s′

θ
oo

φ′ : s → s′′ if there is some embedding θ : s′ → s′′ such that
θφ = φ′ and write ψ ≤ φ for this. We refer to a prefix of an epi
φ : s → s′ as an extension of s. In the category of extensions of
s, a morphism between objects φ : s → s′ and φ′ : s → s′′ is an
embedding θ : s′ → s′′ such that the triangle commutes. If θ is an
iso we write φ ∼=s φ

′.

Epis of rSGeC are characterized as follows [25]: suppose s : G → C and s′ : G′ → C
are contact maps then φ : s→ s′ of rSGeC is an epi iff every connected component of G′

contains at least one agent in the image of φA. Rule application preserves epis and in fact
also prefixes of epis:

Lemma 2.1. Let r = (rL, rR) be a rule and φ : rL → x be an embedding with rL, rR, and x
contact maps in rSGeC . The embedding φ? : rR → x? that results from applying r to φ is a
prefix of an epi iff φ is.

Proof. This amounts to proving that ψ? ≥ φ? is an epi if ψ ≥ φ is. For this it is enough
to consider the case where the rule adds or deletes exactly one edge. Rules that modify more
than one edge at a time can be decomposed as sequences of deletions and insertions of edges.
Given that each deletion and insertion preserves the property, the sequence will preserve it as
well. The case of adding an edge is easy, as the image of ψ? has fewer connected components
to “touch”. The case where r deletes an edge can introduce new connected components,
however in this case both ends u, v of the deleted edge must be in rL, so whether the
deletion disconnects or not the codomain of ψ, the components of ψ?(u) and ψ?(v) will have
a pre-image, namely u and v. �

It follows that the category of extensions of rL and rR are isomorphic. Indeed, because
we have chosen to restrict to reversible rules, the full categories under rL and rR are evidently
isomorphic, and by the lemma above this correspondence preserves being prefix-of-an-epi; if
φ is an extension of rL, we will write φ? for the corresponding extension of rR.

A family of epis φi : s → ti uniquely decomposes s, or is a refinement of s, if, for all
mixtures h and embeddings ψ : s→ h, there exists a unique i and ψ′ such that ψ = ψ′φi.
This is the basic requirement for a reasonable notion of rule refinement: it guarantees that
the LHS s of a given rule splits into a non-overlapping and exhaustive collection of more
specific cases ti.

In the next section, we will be constructing specific such decompositions in order to
produce families of subrules that are compatible with energy patterns, i.e. each subrule
should produce and consume the same number of energy patterns in each application,
regardless of the particular embedding ψ ∈ ΥC(rL, h) that the subrule is applied to.

To find such unique decompositions we first recall the growth policy method [25], which
works by detailing which agents and sites should be added to s. Specifically, a growth policy
Γ for s is a family of functions Γφ, indexed by all extensions φ : s → t, where Γφ maps

u ∈ A|t| to a subset Γφ(u) of σ−1C (tA(u)), i.e. each agent in |t| is allocated a subset of the
set of sites belonging to the agent tA(u) it is mapped to in C. An agent in |t| may cover
some, or all, of these sites or even completely extraneous sites: if the former, i.e. for all
u in A|t|, tS(σ−1|t| (u)) ⊆ Γφ(u), we say that φ is immature; if for all us, the inclusion is an

equality and φ is also an epi, we say that φ is mature; otherwise φ is said to be overgrown.
The functions Γφ must satisfy, for all extensions φ and φ′ ≥ φ, the faithfulness property,
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Γφ = Γφ′ ◦ ψA with ψ such that ψφ = φ′; so a site requested by φ must be requested by any
further extension. Additionally, this property forces Γ to eagerly ask for all sites that will
be eventually requested at any given agent in the codomain of φ. If φ is not overgrown then
no φ′ ≤ φ is overgrown either. Also, note that the union of two growth policies is itself a
growth policy.

Given an s and a growth policy Γ for s, we define Γ (s) by choosing one representative
per ∼=s-isomorphism class of the set of all extensions of s which are mature according to Γ .

The following theorem guarantees that factorizations through Γ (s) are unique when
they exist, but not that they necessarily do exist. In the next section, we will construct a
specific growth policy of interest for which this property of exhaustivity of the decomposition
can be proved by hand. As such, it fulfils our desired criteria of providing an exhaustive
collection of mutually exclusive sub-cases.

Theorem 2.2. Let s and x be contact maps and Γ a growth policy for s. If an embedding
ψ : s→ x in ΥC(s, x) can be decomposed in two ways as γ1φ1 and γ2φ2 with φi : s→ ti in
Γ (s) and γi : ti → x then φ1 = φ2 and γ1 = γ2.

s
φ1 //

φ2

��

φ
��

t1

γ1

��

θ1

��

p

π1

77

π2

��

m

  
t2 γ2

//

θ2

77

x

(2.2)
Proof. Suppose that γ1φ1 = γ2φ2, where

φ1 and φ2 are mature extensions of s accord-
ing to Γ and φ1 6= φ2. As shown in dia-
gram (2.2), we have an inner square formed
by the pull-back π1, π2, and the minimal
gluing θ1, θ2 of γ1 and γ2. Also θ1 and θ2
are epis, as every connected component of
m has a pre-image in t1 or t2 and so also in
s, since the φis are epis, and so also in the
other of t2 and t1.

If θ1, θ2 are not both isomorphisms then there must be a pair u, z, consisting of a node
in m with pre-images u1, u2 in t1, t2 and a site z of u, such that z has no pre-image in
exactly one of θ1, θ2. Say it is θ2. Since φ1 is not overgrown, z ∈ Γφ1(u1) and, by faithfulness,
z ∈ Γφ((u1, u2)), where (u1, u2) is the pull-back pre-image of u1 and u2. So again, by
faithfulness, z ∈ Γφ2(u2) which contradicts our original assumption. So θ1 and θ2 are isos. It
follows that φ1 = φ2 as there is only one representative per ∼=s-isomorphism class in Γ (s).
Finally, γ1 = γ2 because φ1 is an epi. �

Given a rule r and an extension φ : rL → t of rL, we write rφ for the refined rule
associated to φ; that is, rφ is the pair (t, t?) with t? the codomain of the extension φ?

corresponding to φ. Given Γ a growth policy for rL, we write Γ (r) for the family of rules
obtained by refining r according to Γ ; that is Γ (r) is the family of rules rφ, for φ ranging in
Γ (rL).

An example of growth policy is the ground policy which assigns all possible sites to all
agents. In this case, Γ (s) is simply the set, possibly infinite, of all epis of s into mixtures,
considered up to ∼=s; and Γ (r), the ground refinement of r, contains all refinements of r
along those epis, which therefore directly manipulate mixtures. It is easy to see that the
ground refinement for our running example is infinite, since each of the three rules can
trigger the extension of a chain of any length.
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3. Rule generation

We fix a finite set G of generator rules; and a finite set P of connected contact maps in
rSGeC ; these are our energy patterns.

A canonical set of generator rules can be derived from the contact graph C by constructing
a pair of binding/unbinding rules (and a full set of state changes if we were to use site graphs
with states as we do in applications) for each edge in EC . This set is maximally general in
that each generator rule asks for the least possible context to trigger a binding or unbinding
event. This is the set which we have chosen to use in our running example. In the next
example which we present in §4, we will consider a strict subset of this canonical generating
set. But, in general, there is no prescription regarding which rules one decides to incorporate
to G.

The goal is now to refine G into a new rule set GP where each refined rule is P-balanced,
which means that, however applied, it consumes or produces a fixed amount of each c in
P. The construction proceeds in two steps. Firstly, we characterize balanced refinements;
secondly, we define a specific growth policy with balanced mature extensions. Using Th. 2.2,
we show that these mature extensions obtain a proper finite refinement of G.

Note that ground extensions of g are trivially balanced but, in general, the ground
refinement is impractically large or even infinite; ours will always be finite.

3.1. Consumption and production of patterns. Consider c in P and a rule r. For an
r-event ψ to consume an instance γ of c in a mixture h, γS , and ψS must have images which
intersect on at least one site which is modified by r (by adding an edge if it was free, or

c
γ′ //

γ

��

m

��

rL
ψ′oo

ψ
~~

h

by deleting or changing an edge it was part of). This is the
case iff the associated minimal gluing (γ′, ψ′) (obtained by
restricting the co-span to the union of its images in h) has
the same property. Likewise, for an r-event to produce an
instance of c, the associated minimal gluing between c and
rR must have a modified intersection. We call such minimal
gluings relevant ; they are the ones which underlie events that
can affect the instances of c.

This notion can be illustrated by looking at the minimal gluings of the left-hand side of
the unbinding rule ?12?→ ?1 + 2? and energy pattern ?1231? (supposing for a moment that
we had ?1231? in P):

∅
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Of these, only the central square is a relevant minimal gluing since the image of the edge
consumed by the rule is contained in the image of the energy pattern in the minimal gluing.

3.2. P-balanced extensions. Given g in G with LHS gL and φ : gL → t an extension of
gL, we say that φ is P-left-balanced iff, for all relevant minimal gluings γ : c→ m← t : θ
with c ∈ P, θ is an isomorphism. This means that the image of c under γ is contained in t.

gL

φ
��

c

γ
��

t

θ

'

~~
m

(3.1)
Symmetrically, one says that φ is P-right-balanced iff φ?

is a P-left-balanced extension of r?. An extension φ is
P-balanced iff it is P-left- and P-right-balanced. We say
that a balanced extension φ is prime iff it is minimally so,
i.e. any prefix of φ that is P-balanced is isomorphic to φ
(as an extension). Prime extensions are epis since erasing
an ‘untouched’ connected component in the codomain
preserves balance.

If φ is a P-balanced extension of g, the refined rule gφ has a balance vector in ZP ,
written ∆φ, where, for each c ∈ P, ∆φ(c) is the number of copies of c produced by
any gφ-event, which is also the difference between the number of embeddings of c in the
RHS and the LHS of gφ. In other words, for any mixture h, balance of φ guarantees
∆φ(c) = |ΥC(c, h?)| − |ΥC(c, h)| = |ΥC(c, gφ,R)| − |ΥC(c, gφ,L)|. Conversely, if c in P violates
the condition of diagram (3.1), well-chosen applications of gφ will result in different and
context-dependent ∆φ(c). Thus, the notion of balanced extension characterizes the property
that we want.

To illustrate these definitions consider the unbinding rule g12 =?12? → ?1 + 2? with
the trivial extension φ = 1rL (the identity arrow of the left-hand side of rule g12). Define
P1 = {?12?, ?23?, ?31?} and P2 = {·123·}. On the one hand, φ is P1-balanced. Of all possible
gluings of patterns in P1 with φ’s codomain, only the trivial one of ?12? with itself is relevant
to g12. On the other hand, φ is not P2-balanced, because there is a gluing between ·123· and
?12? mapping the 12 edge to itself in the triangle. This gluing is relevant since applying g12
breaks the triangle; and clearly θ : ?12?→ ·123· is not an iso. Failure to be balanced reflects
in the fact that different applications of g12 incur different values of ∆φ(·123·): namely 1 or
0 depending on whether the broken edge belongs to a triangle.

The ideas introduced now are discussed in a detailed example in §3.5.

3.3. Absorb or Avoid. We have just seen how the property of being P-balanced charac-
terizes, among all extensions φ of gL, those with an unambiguous energy balance. The next
step is to define a growth policy with a set of mature extensions which are balanced and
form a unique decomposition of gL. If we return to diagram (3.1) in the case where θ is not
an isomorphism, the natural idea is to request the addition to the codomain of φ of these
sites which are in m and belong to nodes in the image of θA. In this way, we force φ to grow
further and make a decision about whether it wants to absorb the image of c in m, or would
rather avoid this by growing in a way that is incompatible with the γ, θ gluing.

Some care is needed to ensure faithfulness, i.e. Γφ = Γφ′φ φ
′
A, since relevant minimal

gluings on φ can disappear along a further extension φ′ so that a site that was requested at
φ may no longer be so after at φ′φ. To address this, we add site requests from all relevant
minimal gluings in the past of an extension.
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gL
φ1 �� φ

��

c

γ ##

t1 3 u1

θxx φ2 ''
m′ t 3 u

(3.2)
Given g in G we define a growth policy

Γ for gL. Suppose φ : gL → t is an exten-
sion of gL. We set Γφ to request a site s in

σ−1C (tA(u)) at agent u in A|t| iff either (i)
u = φA(u0) and s = φS(s0) for some u0 in
A|gL|, s0 in S|gL|; or (ii) φ factorizes as φ2φ1,
where φ1 : gL → t1, and there is a relevant minimal gluing γ : c→ m′ ← t1 : θ, with c in P,
and some u1 in A|t1| and a site s′1 in σ−1|m′|(θA(u1)) such that u = φ2,A(u1) and s = m′S(s′1).

We refer to the extension φ2 : t1 → t as a rewind of φ; we say that the request of s at u
originates from u1. The first clause simply ensures that all sites already covered in gL are
asked for; the second one adds in sites which appear by gluing at some point between gL
and t, and implements the absorb-or-avoid constraint explained beforehand.

Symmetrically, we define a growth policy Γ ? for gR by applying the same definition to
the reverse generator g?. Since extensions of gL and gR are isomorphic, we can, with a slight
abuse of notation, define ΓP := Γ ∪ Γ ?.

Theorem 3.1. The above ΓP is indeed a growth policy for gL; the induced refined family of
rules ΓP(g) is exhaustive, non-empty, P-balanced, and finite.

Proof. We take the same notations as in diagram (3.2).

Growth policy : Clearly, ΓPφ1(u1) ⊆ ΓPφ (u) as every request for a site in t1 will propagate
to t by definition. To prove the other direction, we need to verify that the requests generated
by rewinds do not depend on the choice of factorization. So, wlog, consider gluings on left
extensions of g, and let an alternative factorization of φ through t2 be given which gives rise
to a site request in u originating from some u2 in t2:

gL

φ1

�� ��

��
p 3 (u1, u2)

vv ((
t1 3 u1

φ2 ))

t2 3 u2

uu
t 3 u

Consider p the pull-back of the two rewinds (ie the lower co-span); by construction it
contains a pre-image for u1 and u2, say (u1, u2). The relevant minimal gluing of c and t2
that makes the site request restricts to another (minimal) gluing of c and p. This new gluing
is still obviously relevant (as it contains the same overlap with the original gL); as such, the
same site request is made by the pre-image (u1, u2) agent in p which then propagates to u1
in t1 as required.

Surjectivity : Let φ : gL → x be an embedding of gL into a mixture. We can restrict the
co-domain of φ to be the connected closure y of the image of φ in x, resulting in an epi
φy : gL → y. Let us further restrict y by removing: 1) all unneeded agents, i.e. those that
have no sites requested by the growth policy, 2) all sites not requested by the growth policy
except those bound to sites that are requested and, finally, 3) all connected components that
no longer have a pre-image in gL; call the result z. The non-requested sites left in z act as
binding types (see §2.2). We thus obtain an epi φz : gL → z which is mature with respect to
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ΓP since, by construction, it has all the sites requested by φy and so, by faithfulness, all
those requested by φz.

Non-empty : Clause (i) guarantees that we request at least the sites in g which implies
that g is not overgrown.

Balanced : If φ ∈ ΓP(g) is not balanced then there must be some relevant minimal gluing
inducing a further site request, hence φ cannot be mature.

Finite: A request for a site a at some node in an extension φ : gL → t, or φ? : gR → t,
originates from a relevant minimal gluing of some c in P with a prefix φ1 of φ. Because this
gluing is relevant, it must be that a is at a distance from the image of gL in the codomain of
φ1 which is at most δ(c), the diameter of c (else c would not intersect the image of gL). The
same bound holds in the codomain of φ, as distances can only contract by further extension.
Therefore any site requested in t has a distance to the image φ(gL) which is bounded by
maxc∈P δ(c). If φ is not overgrown, this sets a bound on the diameter of t. Hence there are
finitely many mature extensions. �

Therefore, given G and P, we obtain a finite P-balanced rule set which refines G
exhaustively, by setting GP := ∪̇g∈GΓP(g) (disjoint sum). To every refinement gφ, corresponds
an inverse refinement g?φ? ; hence, GP = G?P is closed under inversion like G.

3.4. Other options considered. As said earlier, there are other ways to generate a
balanced rule set. Beyond the ground extensions, one idea is to use primes, i.e. minimal
balanced extensions. Clearly, prime extensions factorize all balanced ones -including the
ones we generate by using the absorb-or-avoid growth policy presented above. The problem
is that this factorization is not unique: prime extensions do not define in general a valid
refinement as distinct sub-cases may overlap.

Another idea is to obtain balanced rules by gluing P directly onto a generator rule g,
in all possible maximal combinations, rather than on all extensions of g as in the above
growth policy. This always reveals enough of the context in which g is applied so as to get
P-balanced refinements because, by definition, no additional form can be glued further. The
problem with this approach is the opposite to that with primes: it does not in general build
enough rules; so the refinement is valid but not exhaustive.

3.5. Triangles in detail. We now discuss the concepts introduced in this section using the
example of the unbinding rule g12 = ?12? → ?1 + 2?. Of the four patterns in P, we need
only consider the triangle T = ·123· as the others all trivially glue or trivially don’t.

?12?

�� φ1,?

��

T

γ ##

?12?

θyy φ1,? &&
T 12?

We apply our growth policy to the extension
φ1,? : ?12?→ 12? whereby we reveal a new free site
in 1. The relevant minimal gluing T → T ← ?12?
disappears in this extension, as the new site is
bound in T . However, by rewinding back to ?12?,
our growth policy requires us to reveal additionally
the second site of 2; as such, φ1,? is not mature
despite being balanced (indeed minimally so).

Intuitively, the growth policy forces us to reveal additional sites of ?12? because an
instance of g12 may or may not consume a triangle and so has an ambiguous energy balance.
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The definition of the growth policy makes it explicit that we have to reveal both of the
hidden sites of ?12? and so there are four sub-cases to consider: 12, 312, 123 and 3123 (using
the notation introduced earlier for binding types). The first three cases all avoid the triangle,
thereby having definite energy balance, and are moreover mature with respect to the growth
policy; however, the case of 3123 requires further analysis as it covers both the case of a
triangle and of any chain of length at least 4.

?12?
φ?3,? ��

��

T

γ ##

?312?

θyy ''
T ?3123?

Consider then the case of the extension to
?3123? where the two binding types of 3123 have
been embodied in two distinct 3 agents. Any
rewind of interest has to go back far enough to
glue T ; there are two maximal such extensions:
φ?3,? : ?12? → ?312? and φ?,3? : ?12? → ?123?.
The former requests the hidden site of the left-
hand 3 agent of ?3123?; the latter (diagram not shown) requests the hidden site of the
right-hand 3 agent. As such, ?3123? is not mature with respect to the growth policy and we
must expand it into its four sub-cases: 3123, 23123, 31231, 231231.

Our final refinement, according to the growth policy, consists in the following extensions
12, 312, 123, ·123·, 3123, 23123, 31231, 231231.

If were to glue only on ?12?, not on all extensions thereof, we would only generate the rule
T → 231, i.e. the case where the bond happens to belong to a triangle. Clearly, this is a valid
refinement but is far from covering all cases. Note also that the extension φ1,2 : ?12?→ 12
is not a minimal balanced extension as it factors through either φ1,? : ?12? → 12? or
φ?,2 : ?12?→ ?12 which are both minimal. This illustrates the problem with prime extensions
discussed earlier: the candidate refinement {12?, ?12} is not valid precisely because it leads
to an ambiguous decomposition of the case of φ1,2 and will therefore generate rates that are
different for instances of g12 with the same balance vector ∆φ.

On the other hand, the subrules 3123, 23123, 31231, and 231231 all share the same
balance vector. In fact, they can be summarized by a single prime extension φ?3,3? : ?12?→
?3123? which, together with φT : ?12?→ T , mutually exclusively and exhaustively refines
φ3123 : ?12?→ 3123. Our growth policy is too local to see this optimisation, and has to refine
φ?3,3? into the above four explicit subcases.

That said, the output of the growth policy could be either optimized by hand or indeed
subjected to the procedure of rule compression which would automatically perform this
optimization for us. A working Kappa model where the generators of this example have
been fully expanded according to the growth policy and then manually compressed can be
found in Appendix A.

3.6. Rates. To equip GP with rates, we suppose given a P-indexed real-valued vector of
energy costs ε, and a rate map k : GP → R+ such that, for all gφ in GP :

log k(g?φ?)− log k(gφ) = ε ·∆φ (3.3)

with ∆φ in ZP , the balance vector of the refined rule gφ with respect to P, a well-defined
quantity by Th. 3.1.

We write P(x) for the P-indexed vector which maps c to |ΥC(c, x)|, and define the
energy E(x) of x as ε · P(x), i.e. the sum over all c ∈ P of the product of the number of
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instances of c in x and the energy cost of c. We also write LG(x) for the finite (strongly)
connected component of x in LG , and define a probability distribution (in Boltzmann format)
πx on LG(x) by:

πx(y) :=
e−ε·P(y)∑

z∈LG(x) e−ε·P(z)
(3.4)

We can now prove our main theorem.

Theorem 3.2. Let G, P, GP , k, and πx be defined as above; then (i) LGP and LG are
isomorphic as symmetric LTSs; and (ii) for any mixture x, the irreducible time-homogeneous
continuous-time Markov chain LkGP has detailed balance for, and converges to, πx on LGP (x).

Proof. Both LG and LGP offer transitions from a mixture x: the former are labelled by
pairs (g, ψ) with g in G, ψ in ΥC(gL, x); the latter by pairs (gφ, γ) with gφ the refinement of
g along a mature extension φ : gL → t, and γ in ΥC(t, x). Steps in the latter can be mapped
to steps in the former by transforming labels as follows: (gφ, γ) 7→ (g, γφ). As GP refines G
exhaustively (Th. 3.1), this correspondence is a bijection, which establishes the first claim.

(Pedantically, there is a full and faithful functor between the two corresponding free
categories which is the identity on objects —incidentally, this bijection is readily seen to
respect the symmetries on labels.)

Since we have multiple rules in LGP , each of which can be applied in several ways, there
can be more than one transition from x to the same y —each uniquely described by a
(gφ, γ) label. Each such (gφ, γ) has an inverse, (g?φ? , γ

?), where: g? is the rule inverse to g;
φ? corresponds to φ in the isomorphism between the categories of extensions of x and y,
with φA = φ?A; and γ? is the embedding corresponding to γ, also with γA = γ?A. One can
easily verify that φ? is an epi, and that φ? is also mature. Hence (g?φ? , γ

?) determines a valid

transition in LGP which is inverse to (gφ, γ), and we have a bijective correspondence between
transitions from x to y and those from y to x.

Consider a pair e, e? of such corresponding events due to gφ and g?φ? ; because e is a

transition from x to y, and φ is P-balanced (Th. 3.1), we have P(y) = P(x) + ∆φ, and hence
ε ·∆φ = ε · (P(y)− P(x)); so, by (3.3), the rates of e, e? are such that:

k(e?) e−ε·P(y) = k(e) e−ε·P(x)

and by summing this equation over all pairs, we obtain detailed balance for the probability
local to the component LGP (x) = LGP (y), defined above as πx = πy, since:

q(y, x) e−ε·P(y) = q(x, y) e−ε·P(x)

The convergence statement follows by standard results on finite CTMCs. �

Note that the subset of the state space which is reachable from x in LG , namely
LG(x), is finite; hence, the partition function Z(x) :=

∑
z∈LG(x) e−E(z) which figures in the

denominator of πx is also finite. In the presence of rules which increase the number of agents,
the components LG(x) can be infinite and Z(x) may diverge. For (mass action stochastic)
Petri nets, convergence is guaranteed if detailed balance holds, but it is not true in general
for Kappa [7, 11].

Another point worth making is that the result holds symbolically —regardless of the
energy costs ε. So ε can be seen as a set of parameters, an ideal support for machine learning
techniques if one were contemplating fitting a model to data.
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3.7. A linear kinetic model. We now ask: what of the actual rates of LkGP? Among all

possible choices which accord with (3.3), we delineate a tractable subset whose size grows
quadratically in |P|. This is a useful log-linear heuristic, which is common in machine
learning, but has no particular claim to validity.

Suppose we have, for every generating rule g in G, a constant cg ∈ R, and a matrix Ag
of dimension |P| × |P|. Subject to the constraints that cg? = cg, and Ag? +Ag = I, we can
define a log-affine rate map which satisfies (3.3) by:

log(k(gφ)) := cg −Ag(ε) ·∆φ (3.5)

The kinetic model expressed in (3.5) requires of the order of |P|2×|G| parameters. In practice,
one needs even fewer parameters, as only those energy patterns that are relevant to a given
g, i.e. have non-zero balance for at least one rule in ΓP(g), need to be considered when
building Ag. Typically, for larger models, this will be a far smaller number than |P|. This
relative parsimony is compounded by the fact that the number of independent parameters
will be often lower, because the ∆φ family often has low rank. It is to be compared with the
total number of choices which is far greater as it is of the order of the number of refinements,
that is to say

∑
g∈G |ΓP(g)|.

If we set cg? = cg = 0, Ag? = 0, Ag = I, we get: k(gφ) = e−ε·∆φ, k(g?φ?) = 1. As
ε ·∆φ is the difference of energy between the target and source in any application gφ, this
choice amounts to being exponentially reluctant to climb up the energy gradient. This is a
continuous-time version of the celebrated Metropolis algorithm [24].

Another particular case, completely symmetric and which can be a reasonable choice to
begin with, is obtained for Ag? = Ag = I/2:

kg(φ) = Cg e
−ε·∆φ/2

kg?(φ?) = Cg e
ε·∆φ/2

with Cg = ecg . As ∆φ? = −∆φ, this is indeed a symmetric definition.

Finally, it is fun to draw a comparison between the ascription given in (3.5) and the
Arrhenius rate law. This law posits a dependency of the rate constant k of a reaction of the
form log k = c−Ea/kT , where c is a constant (defining the basic time scale of the reaction),
Ea is the so-called activation energy of the reaction and T is the temperature. In our case,
we are not concerned with the effect of T on the (logarithm of the) rate but with the effect
of consuming and producing various energy patterns in P at the locus of the instance of
the generator rule g. In this view of things, (3.5) posits that the ‘activation energy’ of φ
depends linearly on the cost of the various patterns and the balance of φ.

3.8. Energy functions do not need to be linear. We now return to a key assumption
made in the preceding section and consider a more general situation where the energy
function E is no longer asked to be linear. For reasons to become clear shortly, we still
assume the much weaker property that E can be factored as v ◦ P( ) for some finite set of
patterns P.

rSGeC
P( ) // mSet(P)

v // R (3.6)

Note that if we see multi-sets as equipped with the usual point-wise partial order, P( ) is
evidently functorial.
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As an example, consider a divalent agent with contact graph X(a1, b1) —where the
shared superscript symbolizes an edge between sites a and b— with which one can form only
chains and cycles, and a single generator g which can create/delete the unique edge type.
Write c3 for a cycle of length 3 (a triangle), and t2 for an open chain of length 2. We define
the quadratic energy function E(x) = |ΥC(c3, x)|2, i.e. v(n) = n2. Applying g forward to a
chain t2 in a site graph of the form x = t2 + x′ will create a new copy of c3, and give the
following energy balance:

∆E = (|ΥC(c3, x)|+ 1)2 − (|ΥC(c3, x)|)2 = 2|ΥC(c3, x)|+ 1

Therefore, detailed balance forces the log-ratio K̂g of the backward/forward rates assigned
to an edge creation to depend on x. This is unlike the case of linear potentials where this
ratio is independent of x. However, this extension gφ of g (where it is applied to a chain
t2) is balanced with respect to P. This means, as we have seen, that the stoichiometric
P-vector ∆φ associated to gφ —where each component ∆φ(c) is defined as the difference of
|ΥC(c, y)|− |ΥC(c, x)| for a g-transition from x to y— is the same for all x, y. In the example
∆φ has only one component, which is constant ∆φ(c3) = 1 because the binding of the two
free extremes of an open chain t2 can only produce one triangle, regardless of the context in
which the refined rule gφ is applied.

In general, one can visualize the situation as follows.

x
g //

P
��

y

P
��

P(x)
+∆φ //

v

��

P(y)

v

��
R +∆E // R

and detailed balance amounts to asking for K̂g = v(P(x) + ∆φ(x))− v(P(x)). If v happens

to be linear then this is the usual condition K̂g = v(∆φ(x)). If v is not linear, the constraint
does not seem very helpful as a priori one has to know x to compute the right hand side.
But by the assumption (3.6) opening the paragraph, ∆φ factors through P, hence:

K̂g = v(P(x) + σg(P(x)))− v(P(x)) =: ψg ◦ P(x)

where the second equation defining ψg uniquely as a real-valued function from P-multisets.
With this rewriting, it is plain that the constraint depends not on full knowledge of x, but
only on P(x). Equivalently, we see that K̂g factors through P( ) just like E. In the example,

K̂g = 2|ΥC(c3, x)|+ 1, and ψg(n) = 2n+ 1.

This is good enough to define rates for a balanced gφ. For example, by analogy with the
earlier linear kinetic model, we can choose log-rates (seen as real-valued multi-set functions)
as follows:

k̂g = αg − βgψg (3.7)

with αg, βg real-valued functions on P-multisets such that αg? = αg and βg? + βg = 1. This
assignment solves the above constraint as, clearly, ψg? + ψg = 0.
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From the simulation point of view, this added generality requires two things: (i) that rates
can be made to depend explicitly on observables; (ii) that the internal state of the simulation
be extended to incorporate P(x). Both possibilities are already generically available in the
current version of the main Kappa simulator KaSim [4]. A slight modification of the engine
(not implemented) could obtain direct updates to P(x) as, by assumption, applying gφ leads
to a constant +∆φ update; and the same holds for propagating these updates to the rates
of the rules which depend on them, e.g. as in (3.7). Thus, the complexity properties of the
simulation algorithm are preserved [10].

4. Allosteric ring

We now put our methodology to use on a realistic example of a bacterial flagellar engine. In
this section, we will use the traditional syntax of Kappa to denote site graphs: subscripts
for states and shared superscripts for edges between sites, e.g. A(x10), B(y1). Unlike the
mathematical definitions of §2, agent and site types are indicated as explicit labels. Again,
we use KaSim (the standard Kappa engine) for the simulation shown below.

4.1. The model. The engine can rotate clockwise or anti-clockwise at high angular velocities,
and this will decide whether the bacterium tumbles or swims forward. One can build a
simple model of the switch between the two modes [2]. The engine is seen as a ring of n
identical components, P , with two possible conformations, 0 and 1. (In reality, each of the
n = 34 component protomers is itself a tiny complex made of different subcomponents, but
the model ignores this.) A ring homogeneously in state 0 (1) rotates (anti-) clockwise and
induces tumbling (straight motion). Importantly, neighbouring P s on the ring prefer to have
matching conformations. States of the ring with many mismatches thus incur high penalties.
In the absence of any Y molecule binding a P , its favoured conformation is 0; conversely,
in the presence of a Y, P favours 1. (Y stands for a small diffusible protein named CheY.)
To bind, Y has to be activated by an external signal. Hence the switch can be triggered by
a sudden activation of Y which then binds the ring and induces a change of regime. The
sharper the transition between the two regimes the better.

As each of the P s can be in four states, the ring has on the order of 1020 non-isomorphic
configurations which precludes any reaction-based (e.g. Petri nets) approach to the dynamics
where each global state is considered as one chemical species. At this stage, we could apply
the rule-based approach, or, better, we can obtain the rules indirectly by applying the
methodology of §3. This is what we now do informally.

First, we define our contact graph with two agent types: P (x, y, f0,1, s) with domains x,
y to form the ring, s to bind its signal Y , and f a placeholder for P ’s conformation; Y(su,p)
with two internal states to represent activity.

Motif Cost

P (fi, x
1), P (y1, fj) εPPij

P (fi) εPi
P (fi, s

1), Y (s1) εPYi

Second, we capture the informal statements in
the discussion above by defining the energy patterns
and associated costs. Note that the various motifs
overlap. Following §3, we associate to each ring
configuration x the occurrence vector P(x) and
total energy ε · P(x). For example, a ring of size
n uniformly in state 0 and with no bound Y s has

https://github.com/Kappa-Dev/KaSim
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total energy n(εPP00 + εP0 ). This, in turn, defines the equilibrium distribution of the ring,
namely x has probability proportional to exp(−ε · P(x)). (The convention is that the lower
the energy, the likelier the state.)

εPP00 , ε
PP
11 < εPP10 , ε

PP
01 (4.1)

εP0 < εP1 (4.2)

εPY0 > εPY1 (4.3)

In order to complete our energy landscape, we need
to pick energy costs which reward or penalize local con-
figurations as discussed above: the role of (4.1) is to
align the internal states of neighbours on the ring —an
Ising penalty term for mismatching neighbours which will
“spread conformation”; (4.2) makes 0 the favoured state,
while (4.3), which kicks in only in the presence of Y, makes 1 the favoured state.

The next step is to create the dynamics. The naive rule b for PY binding:

b := P (s), Y (sp)↔ P (s1), Y (s1p)

has a ∆E which is ambiguous as it will be either εPY0 or εPY1 depending on its instances;
hence, we have no hope of assigning rates to this rule that satisfy detailed balance —unless
εPY0 = εPY1 , which contradicts (4.3). To get a definite balance, one needs to refine this rule:

b0 := P (f0, s), Y (sp)↔ P (f0, s
1), Y (s1p)

b1 := P (f1, s), Y (sp)↔ P (f1, s
1), Y (s1p)

Now each rule bi specifies enough of the context in which it applies to have a definite energy
balance εPYi . Following the same intuition of revealing (just) enough context, we obtain a
balanced rule set for conformational changes:

fij := P (fi, y
1), P (x1, f0, y

2, s), P (x2, fj)↔ P (fi, y
1), P (x1, f1, y

2, s), P (x2, fj)
f ′ij := P (fi, y

1), P (x1, f0, y
2, s ), P (x2, fj)↔ P (fi, y

1), P (x1, f1, y
2, s ), P (x2, fj)

The first (second) group of rules represents the changes in the absence (presence) of a Y
bound to the middle P undergoing a change of conformation. (The fact that P ’s site s is
bound is indicated by the underscore exponent.)

These f -rules have respective balance:

εPPi1 + εPP1j − εPPi0 − εPP0j + εP1 − εP0
εPPi1 + εPP1j − εPPi0 − εPP0j + εP1 − εP0 + εPY1 − εPY0

As we have ten reversible rules, and only eight energy patterns, there must be linear
dependencies between the various balances. Indeed, in this case, it is easy to see that the
family of vector balances has rank six. Thermodynamic consistency induces relationships
between rates; a well-established fact in the case of reaction networks (e.g. see Ref. [7]).

With the rules in place, the final step is to choose rates which satisfy detailed balance.
This guarantees that the obtained rule set converges to the equilibrium specified by the
choice of the energy cost vector. Convergence will happen whatever ε is, i.e. symbolically.
If, in addition, ε follows (4.1–4.3), one can see in Fig. 2 that the ring (i) undergoes sharp
transitions when active Y is stepped up and down again; and (ii) has at all times very few
mismatches.
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Figure 2: The simulation steps up the amount of active Y at t = 100, and down again at
t = 200; this sends the entire ring into an homogeneously 1 conformation, and back
to 0. The number of mismatches (lowest curve) stays low, even during transitions.

4.2. How to generate the rules. Our set of balanced rules was based on two generators,
b for binding, f for flipping:

b := P (s), Y (sp)↔ P (s1), Y (s1p)
f := P (f0)↔ P (f1)

Note that there is a design choice here. In effect, we are saying that we are not interested in
forming/breaking the bonds between the P s in the ring. If we wanted to incorporate also
the ring assembly in the model, we would have to add P (x), P (y)↔ P (x1), P (y1) among
our generator set G. This would generate many more refined rules, as we will see. Recall
that our patterns fall in three subgroups: P (fi, x

1), P (y1, fj); P (fi); and P (fi, s
1), Y (s1).

Consider the extensions of b: clearly only the last pattern can glue relevantly on it; the
corresponding (unique) site request is for P to reveal f and its internal state. This gives the
first two rules b0, b1.

Consider now the more interesting extensions of f : the second pattern type glues
relevantly but does not generate any site request; the third one asks P to reveal its site s,
resulting in two possible extensions (s means that s is bound):

P (f0, s)↔ P (f1, s)
P (f0, s )↔ P (f1, s )

These extensions are not mature yet, as one can glue relevantly patterns of the first type on
both sides of P , inducing a further request for revealing P ’s sites x and y.

If we are in the component of an initial state where P s are arranged in a ring, then we
know that the neighbours on both sides exist and are P s; this gives the final refinement of
the above into the rules fij , f

′
ij described earlier. If, on the other hand, we do not know that,



THERMODYNAMIC GRAPH-REWRITING 21

t=500 t=1500 t=2500

Figure 3: Snapshots of the ring configuration are taken at time 500, 1500, and 2500. Solid
(green) circles indicate conformation 1, hollow ones conformation 0; a dot in the
centre indicates a bound (hence active) Y . At times 500, 2500, no Y is bound
(because they are all inactive) and the ring is globally in state 0, up to tiny
fluctuations; at time 1500, it is globally in state 1 as a consequence of the binding
of Y s.

we also have to add several rules where one or both of x, y are free, corresponding to open
P -chains. This demonstrates the sensitivity of the obtained rule set to the initial choice of
generators.

Hence, the rules we generated by hand are indeed the ones we would generate using our
general refinement strategy of §3.

We can visualize the obtained simulations by extracting snapshots before, after and
during the injection of active Y s, as in Fig. 3. Again we see few mismatches in both regime
because of the Ising interaction expressed by the εPP energy costs. The choice of rates made
in Ref. [2] for the f -generator is the symmetric version of (3.5).

5. Conclusion

We have presented a new ‘energy-oriented’ methodology for the development of site graph
rewriting models based on a set P of energy patterns; these patterns use a graphical syntax
which allows us to specify the energy landscape. Rewrite rules are implicitly defined by P
and generator rules G. The resulting rule set GP is guaranteed to be thermodynamically
correct and to converge to the probability distribution described by the energy landscape,
given suitable rates. The construction is entirely parametric in the energy costs ε, and
modular in G. This means that in a modelling context, one can sweep over various values for
ε without having to rebuild the model, and compositionally add new rule components to G.
Both features are clearly useful. We expect our construction to provide a broad and uniform
language to describe and analyse models of interacting biomolecules and similar systems of
a quantitative fine-grained and distributed nature.

There are no specific conditions bearing on this construction other than that energy
patterns should be local. It would be interesting to investigate whether suitable constraints
on patterns and generator rules can obtain optimized generated rule sets. Another interesting
extension would be to deal with non-local forms of energies expressing long-range interactions,
where the metric is read off the graph itself. In practice, there will be many more rules
generated, and beyond the descriptive aspects, simulations will need new ideas to be feasible.
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A ray of hope comes from the log-affine kinetic model presented in §3, as rules can be
partitioned by energy balances for faster selection.

Finally, as said in the introduction, there is a growing body of literature which turns
a theoretical eye to site graph rewriting [17, 13, 18, 6], and it is tempting to ask whether
our derivation can be replayed in more abstract settings; in particular, it would be very
interesting to investigate its integration with the abstract framework for rule-based modelling
developed in [23].
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Appendix A. Triangles model

A working model definition for our first example (introduced in §1.1) is spelled out in full
here. The syntax used is for KaSim version 4. As in the example of §4, we use the symmetric
linear kinetic model of §3.7.

A.1. Agents, Parameters and Initial State. We start by declaring agents together with
their sites. Then we declare the energy costs for T = ·123· (‘t’), ?12? (‘ab’), ?23? (‘bc’), ?31?
(‘ca’) as parameters. Subsequently the initial state is defined as containing 1000 agents of
each type.

# Agent signatures

%agent: A(l,r)

%agent: B(l,r)

%agent: C(l,r)

# Energy costs

%var: ’t’ -10

%var: ’ab’ 0

%var: ’bc’ 0

%var: ’ca’ 0

# Initial state

%init: 1000 (A(), B(), C())

A.2. Observables. Next we declare the graphs we would like to keep track of, i.e. those
graphs we would like to generate trajectories for plotting. Here we are interested in the
fraction of agents that are used to assemble triangles.

%obs: ’T’ |A(l!1, r!2), B(l!2, r!3), C(l!3, r!1)|

A.3. Rules. Finally, we write our set of rules. These have been grouped according to the
qualitative generator rule they refine. Note that these rules have been manually compressed
as explained in §3.5.

# A(r), B(l) -> A(r!1), B(l!1) refines into:

A(l,r), B(l,r) -> A(l,r!1), B(l!1,r) @ [exp] (-1/2 * ’ab’)

A(l!r.C,r), B(l,r) -> A(l!r.C,r!1), B(l!1,r) @ [exp] (-1/2 * ’ab’)

A(l,r), B(l,r!l.C) -> A(l,r!1), B(l!1,r!l.C) @ [exp] (-1/2 * ’ab’)

A(l!1,r ), B(l ,r!3), C(l!3,r!1) -> \

A(l!1,r!2), B(l!2,r!3), C(l!3,r!1) @ [exp] (-1/2 * (’ab’ + ’t’))

C(r!1), A(l!1,r ), B(l ,r!3), C(l!3) -> \

C(r!1), A(l!1,r!2), B(l!2,r!3), C(l!3) @ [exp] (-1/2 * ’ab’)

# A(r!1), B(l!1) -> A(r), B(l) refines into:

A(l,r!1), B(l!1,r) -> A(l,r), B(l,r) @ [exp] -(-1/2 * ’ab’)

A(l!r.C,r!1), B(l!1,r) -> A(l!r.C,r), B(l,r) @ [exp] -(-1/2 * ’ab’)

https://github.com/Kappa-Dev/KaSim
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A(l,r!1), B(l!1,r!l.C) -> A(l,r), B(l,r!l.C) @ [exp] -(-1/2 * ’ab’)

A(l!1,r!2), B(l!2,r!3), C(l!3,r!1) -> \

A(l!1,r ), B(l ,r!3), C(l!3,r!1) @ [exp] -(-1/2 * (’ab’ + ’t’))

C(r!1), A(l!1,r!2), B(l!2,r!3), C(l!3) -> \

C(r!1), A(l!1,r ), B(l ,r!3), C(l!3) @ [exp] -(-1/2 * ’ab’)

# B(r), C(l) -> B(r!1), C(l!1) refines into:

B(l,r), C(l,r) -> B(l,r!1), C(l!1,r) @ [exp] (-1/2 * ’bc’)

B(l!r.A,r), C(l,r) -> B(l!r.A,r!1), C(l!1,r) @ [exp] (-1/2 * ’bc’)

B(l,r), C(l,r!l.A) -> B(l,r!1), C(l!1,r!l.A) @ [exp] (-1/2 * ’bc’)

B(l!1,r ), C(l ,r!3), A(l!3,r!1) -> \

B(l!1,r!2), C(l!2,r!3), A(l!3,r!1) @ [exp] (-1/2 * (’bc’ + ’t’))

A(r!1), B(l!1,r ), C(l ,r!3), A(l!3) -> \

A(r!1), B(l!1,r!2), C(l!2,r!3), A(l!3) @ [exp] (-1/2 * ’bc’)

# B(r!1), C(l!1) -> B(r), C(l) refines into:

B(l,r!1), C(l!1,r) -> B(l,r), C(l,r) @ [exp] -(-1/2 * ’bc’)

B(l!r.A,r!1), C(l!1,r) -> B(l!r.A,r), C(l,r) @ [exp] -(-1/2 * ’bc’)

B(l,r!1), C(l!1,r!l.A) -> B(l,r), C(l,r!l.A) @ [exp] -(-1/2 * ’bc’)

B(l!1,r!2), C(l!2,r!3), A(l!3,r!1) -> \

B(l!1,r ), C(l ,r!3), A(l!3,r!1) @ [exp] -(-1/2 * (’bc’ + ’t’))

A(r!1), B(l!1,r!2), C(l!2,r!3), A(l!3) -> \

A(r!1), B(l!1,r ), C(l ,r!3), A(l!3) @ [exp] -(-1/2 * ’bc’)

# C(r), A(l) -> C(r!1), A(l!1) refines into:

C(l,r), A(l,r) -> C(l,r!1), A(l!1,r) @ [exp] (-1/2 * ’ca’)

C(l!r.B,r), A(l,r) -> C(l!r.B,r!1), A(l!1,r) @ [exp] (-1/2 * ’ca’)

C(l,r), A(l,r!l.B) -> C(l,r!1), A(l!1,r!l.B) @ [exp] (-1/2 * ’ca’)

C(l!1,r ), A(l ,r!3), B(l!3,r!1) -> \

C(l!1,r!2), A(l!2,r!3), B(l!3,r!1) @ [exp] (-1/2 * (’ca’ + ’t’))

B(r!1), C(l!1,r ), A(l ,r!3), B(l!3) -> \

B(r!1), C(l!1,r!2), A(l!2,r!3), B(l!3) @ [exp] (-1/2 * ’ca’)

# C(r!1), A(l!1) -> C(r), A(l) refines into:

C(l,r!1), A(l!1,r) -> C(l,r), A(l,r) @ [exp] -(-1/2 * ’ca’)

C(l!r.B,r!1), A(l!1,r) -> C(l!r.B,r), A(l,r) @ [exp] -(-1/2 * ’ca’)

C(l,r!1), A(l!1,r!l.B) -> C(l,r), A(l,r!l.B) @ [exp] -(-1/2 * ’ca’)

C(l!1,r!2), A(l!2,r!3), B(l!3,r!1) -> \

C(l!1,r ), A(l ,r!3), B(l!3,r!1) @ [exp] -(-1/2 * (’ca’ + ’t’))

B(r!1), C(l!1,r!2), A(l!2,r!3), B(l!3) -> \

B(r!1), C(l!1,r ), A(l ,r!3), B(l!3) @ [exp] -(-1/2 * ’ca’)

A.4. Results. We run this model using KaSim (version 4) to obtain trajectories for the
number of triangles during the simulation. From these numbers we can estimate what is
the expected number of triangles at equilibrium. In Fig. 4 the results of 4 different runs
with different energy costs for a unit triangle are displayed. When ε(T ) = −10, almost all

https://github.com/Kappa-Dev/KaSim
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Figure 4: Trajectories for T = ·123· when ε(T ) varies (this value is set by changing the value
of parameter ‘t’ in the KaSim file).

agents are used to build triangles. Instead, when ε(T ) = −2.5 only less than 5% is used.
Interestingly, in both cases the set of states that minimize the energy function is the same,
namely those states that maximize the amount of triangles. So then why is it that in the
latter case there are so few triangles? The reason is entropic: although the probability
of being in a state with few triangles is small, there are many such states and together
they outweigh the probability of being in the few states were the energy is minimized. By
further decreasing the energy of those few states we compensate for this mass effect, until at
ε(T ) = −10, order wins, and the effect is not noticeable anymore.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany
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