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Sequential FDIA for Autonomous Integrity
Monitoring of Navigation Maps on board Vehicles

Clément Zinoune1,2, Philippe Bonnifait1, Javier Ibañez-Guzmán2

Abstract—This paper addresses the problem of Fault Detection,
Isolation, and Adaptation (FDIA) in navigation systems on board
passenger vehicles. The aim is to prevent malfunctions in systems
such as advanced driving assistance systems and autonomous
driving functions that use data provided by the navigation system.
The integrity of the estimation of the vehicle position provided
by the navigation system is continuously monitored and assessed.
The proposed approach uses an additional estimate of vehicle
position that is independent of the navigation system and based
on data from standard vehicle sensors. First, fault detection
consists in comparing the two estimates using a sequential
statistical test to detect discrepancies despite the presence of noise.
Second, fault isolation and adaptation is introduced to identify
faulty estimates and to provide a correction where necessary. The
FDIA framework presented here utilizes repeated trips along the
same roads as a source of redundancy. Relevant properties of
this formalism are given and verified experimentally using an
equipped vehicle in rural and urban conditions and with various
map faults. Results show that sequential FDIA performed well,
even in difficult GNSS conditions.

I. INTRODUCTION

Among the innovations that are transforming today’s pas-
senger vehicles, navigation maps are an important component.
Maps were first introduced as part of navigation systems used
to provide guidance information to the driver. Now they are
used to provide context information to informative Advanced
Driving Assistance Systems (ADASs) and their use has been
extended to actuating ADASs [1]. Maps are also central
components in the autonomous vehicles that are currently under
development in the automotive industry [2]. Navigation maps
are therefore playing an increasingly significant role in vehicle
automation and progressively replacing the human driver as
regards inferring the current and future vehicle context.

In recent years maps have sometimes been seen by the
intelligent vehicle community as a perfect source of information.
This assumption originates from robotics-oriented maps that
were made manually with high accuracy, but this assumption
is no longer valid when using global maps. The imperfections
of a global map may not matter very much when the map is
interpreted by a human, but they can have serious consequences
as the degree of automation of the vehicle increases. Like any
other source of information, navigation maps must be treated
with caution.

How well the navigation map represents the geometry of
the road has a direct impact on the performance of intelligent
vehicle navigation systems. Knowledge of the geometry of the
road ahead of the vehicle is currently used to improve sensor
tracking (e.g., lane markings for lane-keeping functions, or a
leading vehicle for adaptive cruise control applications) and
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Figure 1. Framework for integrity monitoring in a passenger vehicle.

enables hazardous situations to be anticipated, by adapting
the vehicle speed (e.g., curve warning systems). Geometric
information contained in the navigation map is also essential
for some elements of highly automated driving, including path
planning, decision making and control functions [3].

This paper presents a new method for detecting, isolating,
and adapting geometrical errors in maps in order to avoid
dysfunctions in client systems. Fig. 1 shows the system archi-
tecture used in the proposed approach. In passenger vehicles
considered in this work, the navigation system provides context
information to client ADASs. Because of industrial constraints,
navigation systems cannot be modified for integrity monitoring
purposes. A new Integrity Monitoring function (Fig. 1) is
therefore added to monitor integrity in real time. The estimate
of the vehicle position provided by the navigation function
is continuously evaluated by comparing it to another position
estimate. This sensor estimate is computed independently of the
navigation system, using on-board vehicle sensors, and a fault
is detected when these two estimates differ. One contribution
of this work is to use Page’s sequential statistical test to detect
discrepancies between these two estimates despite the noise
resulting from the use of standard vehicle sensors. When this
test detects a discrepancy, ambiguity exists on the estimate
affected by the fault (i.e. either the navigation, the independent
estimate, or both can be faulty). This paper also develops a
complete framework for overcoming this ambiguity by making
use of repeated vehicle trips. Using a model of the effects of
faults on estimates, fault isolation and adaptation is performed
by comparing current and past position estimates. Structural
properties of this formalism demonstrate that fault isolation
capability improves as the number of trips increases, and that
adaptation (i.e. the identification of a fault-free estimate that
can serve as a correction) is possible when faults are isolated.
Finally, the proposed method is tested using real data provided
by a test vehicle in different driving conditions (rural and urban
areas).



This article is organized as follows. Section II provides the
theoretical context and background of this work. Section III
states the problem that is addressed. Section IV introduces our
fault detection method based on Page’s test. Section V presents
the proposed framework for fault isolation and adaptation,
and details important inherent properties for intelligent vehicle
applications. Experimental evaluation of the proposed method
is performed with a test vehicle and is presented in Section VI.
Conclusions of this work are discussed in Section VII.

II. BACKGROUND

This section provides definitions of the terminology used,
before describing work related to the evaluation of the integrity
of each component of the navigation function.

A. Definitions

The terms fault, error, and failure may have different
meanings according to the application domain. The following
definitions are used in the context of this research and are
based on those given in [4]:
• Fault: Error generative process. The presence of a fault

may not lead to an error. An incorrect representation of
the road network in the digital map of the navigation
system is a fault that leads to an error only when the
vehicle travels on the road where the fault is present.

• Error: A discrepancy between a computed, observed or
measured value and the true, specified, or theoretically
correct value.

• Failure: Instant in time when a required function exceeds
the acceptable limits or is terminated.

Integrity is an important feature when navigation functions
rely on Information technologies. Integrity can be defined as
the ability of a system to provide user with accurate timely,
complete and unambiguous information and warnings when
the system should not be used.

B. Navigation System Integrity Monitoring

In intelligent vehicles, the navigation function provides
relevant contextual information to client systems (ADASs
or autonomous driving functions) in real time. This might
be the distance to the next intersection, the curvature of the
road ahead, or the current speed limit. This function can be
schematized as having three parts, namely the localization
system, the map-matching process and the navigation map.
Map-matching consists in finding, within the navigation map,
the road on which the vehicle is travelling, according to the
position calculated by the localization system.

Localization in passenger vehicles is mainly based on Global
Navigation Satellite Systems (GNSS). A GNSS receiver uses
the time-of-flight measurements of electromagnetic signals
emitted by satellites whose positions can be reconstructed
using ephemeris data. The signals will sometimes be perturbed
or reflected (i.e. multipath), which induces errors in the
computation of position. The integrity risk arises from the
use of faulty pseudo-ranges in this process. Classical integrity
evaluation involves evaluating the coherency of the satellite

measurements (fault detection) and then computing a protection
level. This is Receiver Autonomous Integrity Monitoring
(RAIM) [5]. It is, however, assumed that there is at most one
faulty measurement at any one time, which is an unrealistically
optimistic assumption in complex environments such as urban
areas. Other approaches extend RAIM principles to a larger
number of faulty measurements, using interval-based methods
and relaxed intersections of constraints [6], [7] with fast
implementations for fault detections [8], or an isotropy-based
approach [9]. Terrain elevation models or building heights
provided by a three-dimensional navigation map can also be
used to determine the Non-Line-Of-Sight (NLOS) satellites, i.e.
satellites that must be ignored in the position calculation [10],
[11], [12]. The vehicle proprioceptive sensors (e.g., odometer,
speedometer, gyroscope) are finally used to estimate the vehicle
motion. However, since positional drift increases with time
and distance, this technique is combined with GNSS using, for
example, an extended Kalman filter [13], [14].

Integrity evaluation of a navigation map is a rather different
problem which, unlike RAIM approaches, is not metric. A
reference (i.e. ground truth) navigation map can be used to
evaluate the vehicle map (subject map). In [15], fuzzy logic
is used to compute an outlier index that expresses how a geo-
graphical object belongs to its spatio-temporal neighbourhood.
This approach aims at detecting faults as well as temporal
changes in maps. Studies were done on large-scale databases,
in particular by crowdsourcing geographical information, like in
the OpenStreetMap initiative [16], [17], [18]. Methods inspired
from the SLAM (Simultaneous Localization And Mapping)
domain can also be employed. The position information given
by the navigation map is treated as an observation analogous
to observations from other sensors [19]. To be considered as
a ground truth, the reference navigation map must be created
by an accurate, complete survey. In the literature some works
have used alternative sources of information such as aerial
imagery [20], [21], [22] or the mining of a large number of
GNSS tracks [23] to create the reference map. These approaches
assume that any disparities between the reference and subject
maps are due to faults in the subject map, and do not address
the possibility of faults in the reference map (due to an offset
in aerial imagery or recent changes in the road network) or in
both maps.

Integrity evaluation of the map matching process is highly
dependent on the method used for the choice of road candidates.
Monte Carlo-based approaches such as particle filters can be
used when available computational resources allow. A set of
particles (each representing a possible vehicle position) are
spread over the whole road network. The population changes
over time according to available measurements (e.g., GNSS
measurement, DR estimation) and finally yields a solution [24],
[25]. In [26], [27], the road candidates were represented by a
set of hypotheses. A Bayesian framework was used to choose
the most likely road. Evidence theory can also be used, since
it is a convenient way to handle conflict in data fusion [28].
Fuzzy logic may also be considered, to address the complexity
of the map-matching problem and the large number of criteria
involved in choosing the road candidate. In [29], [30], the
authors used a Sugeno fuzzy inference system to choose the



road in the navigation map based on position uncertainty, the
distance between the road and the vehicle position estimate,
and the angular difference between the road direction and the
vehicle heading. The vehicle navigation system usually provides
a confidence index associated with the map-matched vehicle
position. This corresponds to the final score of the optimization
process employed in the map-matching, according to a given
GNSS estimate and a given navigation map. However, this
index should not be taken as a measure of the quality of the
navigation map. In case of a sparse road network, the map-
matching function is likely to provide a high-confidence index
despite an offset of the road in the navigation map due to the
low number of road candidates.

The concept of user-level integrity was introduced in [31]
to emphasize the necessity of taking into account every step
of the positioning process (GNSS, navigation map and map-
matching) in the vehicle position integrity monitoring problem.
The authors presented a strategy based on successive evaluation
of GNSS integrity, map complexity and map-matching solution
integrity. However, this requires having access to the internal
data of every sub-function in the navigation system. In the
approach presented here, functions are treated as black boxes
due to industrial constraints. It is not possible for us to have
access to low-level data such as the time-of-flight measurements,
the complete navigation map data or internal variables of the
map-matching algorithm. Only high-level data is available,
such as the calculated vehicle position before and after map-
matching, and the contextual information related to the current
vehicle position. Consequently, system monitoring approaches
can be appropriate.

Observer-based system monitoring consists in comparing
outputs with estimations of the outputs based on the inputs. The
residuals are signals that result from the difference between
estimates and actual outputs [32]. These are null when the
system is not affected by any faults. If a fault is activated,
the residuals are non-null. When faults are detected, the
consequences they have on the system are observed. A look-up
table linking the different faults to their corresponding effects on
the system would enable them to be identified unambiguously
and therefore to be isolated and excluded and/or corrected from
the system to keep it operating correctly or at a different level of
performance. This kind of process is known as Fault Detection,
Isolation, and Adaptation (FDIA). Based on the system model
and the available measurements, a logical link between faults
and residual values can be established and summarized in a
signature matrix. A complete framework to detect multiple
faults in a system was presented in [33]. The sensitivity of
a set of residuals is determined using a system model, and
diagnoses to be applied are established, based on the observed
residuals. In this paper we develop a similar approach for
an FDIA navigation system. Some kind of processing of the
values of the residuals is essential when real signals are used.
Because of the noise affecting them, different change detection
strategies must be applied. An extensive description of the
mathematical tools available for signal change detection can
be found in [34].

The approach presented in [35] uses an architecture similar
to the navigation systems studied in the present work. It

showed that detecting unexpected large discrepancies between
estimated and measured positions is not sufficient, since the
noise associated with poor quality sensors creates an excessive
sensitivity to outliers. A Cumulative Sum (CUSUM) test is
therefore implemented to reduce the number of false alarms.

III. PROBLEM STATEMENT

A. Monitoring System

A systemic diagram of the proposed integrity monitoring
system in a vehicle is shown in Fig. 2. Relevant information
about the vehicle’s current and future road environment is
sent to the client systems. This information represents a set of
context events encountered by the vehicle as it travels, and is
consequently known as an Electronic Horizon (EH) [36].

The black box assumption that is made regarding the
navigation system means that the only available observation of
the road geometry is the map-matched position estimate denoted
as N . The purpose of the method presented in this paper is to
provide an indication of the integrity of the navigation system
(in particular where road geometry faults are present in the map)
to the systems that use this information. If a loss of integrity
is detected, a correction can be provided to the client systems.
To do so, an estimate of the vehicle position independent of
the navigation system is required. This estimated position is
denoted as G in the figure and computed using an additional
GNSS receiver GNSS2 based on a different technology than
GNSS1. Vehicle proprioceptive sensors (e.g. odometer and a
yaw rate gyroscope) can be employed to improve its accuracy
and availability. This estimation might also be affected by a
fault. If the two estimates differ, there is an ambiguity in the
faulty estimate. This ambiguity cannot be resolved, owing to
the low level of redundancy (the degree of freedom being only
one). The main idea behind this framework is to make use of
repeated vehicle trips to resolve this ambiguity. The output
Knowledge of fault (Fig. 2) has three possible values:
• Use. The estimate provided by the navigation function to

client systems is not affected by any fault.
• Unknown. A fault has been detected but has not been

isolated. The position estimate from the navigation system
is possibly affected by a fault.

• Don’t use. A fault affects the current estimate from the
navigation system and the method provides a fault-free
estimate to client systems through the output Correction.

Let us recall that the fault detection step is merely declaring
that at least one of the estimates is affected by a fault. The
isolation step is determining which estimate(s) is (are) affected
by a fault.

B. Spatial Sampling

In our proposed approach, the integrity of the vehicle position
estimate from the navigation system is spatially evaluated. Each
location on the road network is considered as an operating
point of the system to be monitored (i.e. the navigation system).
For a given location of the vehicle, the presence of a fault is
investigated using all the estimates recorded at this location
during the course of vehicle trips.
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Figure 2. Structure of fault detection isolation and adaptation in a
standard passenger vehicle.

5m 10m 15m

20m

35m

40m

Gk
s

Nk
s

P k
s

Figure 3. Illustration of the notational convention. The true (i.e. real) road is
in grey and its centreline in black. Here it is spatially sampled with a 5-metre
interval. The yellow arrow represents the true vehicle pose. The map is in
red. The vehicle position as estimated by the navigation (resp. by the vehicle
sensors) is the red (resp. blue) cross.

The method is spatially sampled with respect to the curvi-
linear abscissa of the road. The vehicle curvilinear abscissa on
a given road is the distance along the carriageway with respect
to its origin and is written s ∈ R+, as shown in Fig. 3.

Let K ∈ N denote the total number of trips made by the
vehicle on a given road. The true vehicle position at abscissa
s of a given road and at the kth trip is written P sk . This can
be encoded as a vector that contains the vehicle’s geographic
coordinates, that is to say longitude, latitude and ellipsoidal
height.

Using the same notational convention, Gsk and Ns
k are

estimates of the vehicle position P sk provided by the sensors
and the navigation respectively. Whenever the vehicle is at
abscissa s of a given road for the kth time, these two estimates
are recorded.

Faults may affect the navigation as well as the position
estimate from sensors, and cause their value to be significantly
different from the ground truth (if a multipath affects a GNSS
receiver for example). In this case, the estimates are said to
be faulty.

Let us define the faults fNs
k

and fGs
k

with:

fNs
k

def
=

{
1 if Ns

k 6= P sk
0 otherwise

(1)

fGs
k

def
=

{
1 if Gsk 6= P sk
0 otherwise

(2)

Fig. 3 illustrates the notational convention. Since physical
quantities cannot be strictly equal, a threshold on the distance
between the estimates is employed for implementation. Since
the true vehicle position is not measurable directly, the fault
detection and isolation are based on a pairwise comparison of
estimates.
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Figure 4. Navigation system fault and error characterization

C. Assumptions

A fault is an error generative process according to the
definition stated in Section II-A. An error is therefore the
discrepancy caused by the fault, and is measurable by an
appropriate external observer. A faulty navigation system (from
the client ADAS point of view) can result from a navigation
map fault. Map faults cause systematic errors. Every time the
vehicle traverses the area shown in Fig. 4a, the navigation
system will provide the same faulty position estimate.

A faulty state of the navigation system may not only be
a consequence of map faults. Map-matching may choose a
wrong road candidate because of a difficult road configuration
such as a junction, as shown in Fig. 4b. In this situation the
map-matching may or may not choose the right road segment
from one trip to another; faults are not systematic. Nevertheless,
it will be remarked that where there is a fault, the resulting
error is always the same, since the output of the navigation
estimate is constrained by the map. Errors by the navigation
system, when they occur, are therefore systematic.

In this work we do not address the problem of determining
the reason for an estimation error made by the navigation,
because this would require access to the internal variables of
the system.

The estimate of the vehicle position from the on-board
vehicle sensors G depends mainly on the GNSS estimation.
Given a location on the road network, faults on a G estimate
will have two principal causes: first, multipath (i.e. satellite
signal reflection on buildings, for instance) and, second, a



poor satellite configuration. The magnitude of the day-to-day
multipath correlation of a static receiver is typically around
85% [37]. We have no knowledge of correlation values for
a moving receiver, since the receiver motion mitigates the
multipath effects. Moreover, a GNSS multipath error can
repeat itself only at the same place with the same satellite
configuration (the ground track repeat is 23hr 56min for
GPS and 10 days for Galileo). Therefore, we believe that
a repetition of the same multipath errors and faults is very
unlikely from one trip to another. Errors and faults due to poor
satellite geometry (multipath aside) result from the propagation
of pseudo-range random measurement errors (dilution of
precision), and therefore also have weak correlation between
two vehicle trips. Errors on G are assumed to be different from
one trip to another.

The assumptions underlying the FDIA framework can be
summarized as follows:
• When travelling several times on a road, the vehicle

follows the same path with small deviations (which can be
compensated if necessary by lane marking measurements
from a front camera).

• Any fault affecting position estimates from sensors can
cause errors of any values. Errors on faulty vehicle position
estimates from sensors are different from one trip to
another at a given abscissa.

• The navigation map does not change from one trip to
another. Errors on the vehicle position estimates from the
navigation (when they occur due to a fault) are therefore
always the same at a given abscissa.

• Errors on the vehicle position estimates from sensors and
from the navigation are independent of each other at a
given abscissa.

Given these assumptions, we have:

P si = P si+1, ∀i ∈ {1, . . . ,K − 1} (3)

Where P is the true vehicle position, s is the curvilinear
abscissa, i is the trip index and K is the total number of trips
made on the road. In the sections below, the formalism is
developed from the system monitoring point of view, putting
temporarily aside the application to intelligent vehicles. The
estimates from sensors and from the navigation (G and N
respectively) are seen as estimates of the same physical quantity
P , which is in accordance with the assumptions above. The
curvilinear abscissa is understood as an operating point of the
system to be monitored and the vehicle trips are iterations of
this system.

IV. SEQUENTIAL FAULT DETECTION

The first step in FDIA consists in detecting faults by
comparing the two position estimates N and G. According
to the assumptions stated previously, a significant discrepancy
between the estimates indicates that a fault affects at least
one of them. However, noise on estimates may cause non-
faulty estimates to be different from each other and induce
false alarms in the detection process. For this reason, this
section details the mathematical formulation of a probabilistic

sequential test (called Page’s test) and its application to the
detection of discrepancies between position estimates.

Statistical tests are an appropriate tool for evaluating the
parameters of a probability law based on set of outcomes. In
our application, we seek to detect a change in the mean of the
probability density function (PDF) of a set of observed data,
while the standard deviation of this PDF is of the same order
of magnitude as the expected mean gap. Page’s test works
sequentially and is especially efficient for stream data. The
problem is therefore formulated as the detection of a change
in the mean of a random variable that represents the distance
between the estimates from sensors and from navigation.

Page’s test (also known as Page’s trend test) consists in
statistically detecting a change in the mean of a random
variable based on a likelihood ratio of hypotheses [34]. It
also identifies the sample at which the change in the mean
occurred. Formulation of this test in the context of map fault
detection is detailed in [38].

The random variable tested here is the distance between
estimates G and N . Let us see how the distance signal
is generated and described in terms of mean and standard
deviation. Let us consider the estimate N from the navigation
as the result of a random process based on the true vehicle
position P in a frame R1 aligned with the road:

N = P + α (4)

Σα =

[
σ2
a 0

0 0

]
R1

(5)

where α is a noise assumed to be zero-mean, with a diagonal
covariance matrix Σα. Since roads are represented in the
navigation map by zero-width poly-lines, the variance of the
navigation map-matched error normal to the road segment
is by definition null. However, a map-matched position error
along the road segment exists, and σa denotes the longitudinal
standard deviation of the navigation estimate.

The estimate of the vehicle position from sensors G can be
encoded as a two-dimensional point G = (x, y)

T in the East-
North plane R0 locally tangent to Earth with the covariance
matrix Σβ of the estimation error β provided by the localization
system:

G = P + β (6)

Σβ =

[
σ2
x σ2

xy

σ2
xy σ2

y

]
R0

(7)

In order to make the distance signal independent of the road
direction, an isotropic approach is used, and this consists in
using the outer circle of the ellipsoid. Its radius is η = max (ηi),
ηi being the eigenvalues of Σβ . So, the covariance matrix
expressed in R1 is η · I (with I being the identity matrix).

The vector L is defined to be the difference between the
map-matched and estimated positions as stated by the following
equation. L has two independent components, namely lateral
error d and longitudinal error e.



L =

[
d
e

]
= N −G = α− β (8)

Under the hypothesis of independent errors, the signals d
and e have the following variances:

σ2
d = η

σ2
e = η + σ2

a
(9)

The most relevant information is the lateral position of the
roads in the navigation map. The fault detection is therefore
done by detecting mean changes in the signal d using η.

V. FAULT ISOLATION AND ADAPTATION METHOD

Once a fault has been detected, the problem is now to
isolate the faulty estimates and perform adaptation according
to the assumptions made previously, using the repetition of
vehicle trips as a source of redundancy. The adaptation process
consists in providing a non-faulty estimate to a client system
so that it can continue to operate normally, even if the current
estimate is affected by a fault. Non-faulty estimates therefore
need to be identified unambiguously. The concepts of Sets
of Faults and Residuals are defined first. The mathematical
relationship between these two concepts is then demonstrated.
Finally, we show how a set of faults can be isolated, based on
the observation of residuals.

A. Definitions

1) Sets of Faults: Let the set of faults esK be composed of
all fGs

k
and fNs

k
for the considered iterations K at a given

abscissa s:

esK
def
=
{
fGs

i
, fNs

j

}
, ∀i, j ∈ {1, . . . ,K} (10)

The cardinality of esK is 2K. Each element of esK is a
boolean value so there are 22K possible sets written esK,n:{

esK ∈
{
esK,n

}
esK,n ∈ B2K , ∀n ∈

{
1, . . . , 22K

} (11)

Let us take an example with K = 2. There are 22·2 = 16
different sets. The cardinality of each one is 2 · 2 = 4.
For instance, es2,5 =

{
0 0 1 0

}
means

{
fGs

2
= 0

and fNs
2

= 0 and fGs
1

= 1 and fNs
1

= 0
}

.
2) Residual Processing: At a given abscissa s and at system

iteration K, every available estimate at the current iteration is
compared to all the others and the result is stored in a residual
vector RsK . The elements of RsK are defined as:

rGs
iG

s
j

def
=

{
1 if Gs

i 6= Gs
j

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j (12)

rGs
iN

s
j

def
=

{
1 if Gs

i 6= Ns
j

0 otherwise
∀i, j ∈ {1, . . . ,K} (13)

rNs
i Ns

j

def
=

{
1 if Ns

i 6= Ns
j

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j (14)

Equations (12) and (14) are restricted to i > j to avoid
useless redundant residuals.

RsK is therefore composed of C (2K, 2) boolean ele-
ments, where C (2K, 2) stands for the number of 2-
combinations from a given set of 2K elements. We know
that C (2K, 2) = K (2K − 1) so the residual vector therefore
contains K (2K − 1) elements.

For example, at the second iteration, the size of Rs2 is 6:

Rs
2 =

[
rNs

2Gs
2

rGs
2G

s
1

rNs
1Gs

2
rNs

2Gs
1

rNs
1Ns

2
rNs

1Gs
1

]
(15)

If, for example, the estimates are such that Gs1 6=
Ns

1 = Gs2 = Ns
2 then the residual vector is Rs2 =[

0 1 0 1 0 1
]
.

3) Relationships Between Faults and Residuals: Let ∨ and
⊕ denote boolean or and exclusive or operators respectively.

Proposition 1. The elements of the residual vector are the
result of boolean operations between the faulty states of the
estimates, according to the following equations:

rGs
iG

s
j

= fGs
i
∨ fGs

j
, ∀i, j ∈ {1, . . . ,K} , i > j (16)

rGs
iN

s
j

= fGs
i
∨ fNs

j
, ∀i, j ∈ {1, . . . ,K} (17)

rNs
i N

s
j

= fNs
i
⊕ fNs

j
, ∀i, j ∈ {1, . . . ,K} , i > j (18)

The demonstration of this proposition is developed in [39].
Eq. (16), (17) and (18) of Proposition 1 establish a link

between the available estimates (i.e. G and N ) and the faults
which affected them (i.e. fG and fM ). The first two equations
tell us that if there is at least one fault on the considered
estimates, then the residual is affected. In (18), the residual is
equal to one if there is a single fault among the two estimates.
It is now possible to deduce the presence of faults based on
observation and comparison of the estimates.

B. Fault Isolation Principles

The fault detection and isolation strategy involves listing
all the possible sets of faults for a given iteration K, and
calculating the corresponding theoretical residual vectors
with (16), (17) and (18). This forms the truth table for K. In
parallel, available estimates are used to compute the observed
residual vector based on (12), (13) and (14). This vector, present
in the truth table, allows the corresponding set of faults to
be determined. Faults affecting each estimate can finally be
deduced from this set. It will be remarked that the truth tables
are valid for every operating point, so the superscript s is
omitted in the tables.

Let us take the example given in Section V-A2. At the
first system iteration at operating point s, two estimates are
available: Gs1 and Ns

1 . The truth table for one iteration is shown
in Table I. It is assumed in this example that Gs1 6= Ns

1 is
observed, therefore rGs

1N
s
1

= 1, according to (12). Table I
shows that this residual can be due to three sets of faults: es1,2,
es1,3 and es1,4. After one system iteration, it can be concluded
that there is at least one faulty estimate among Gs1 and Ns

1 , but
it is not possible to determine which one. The fault is detected,
but not isolated.



Table I
TRUTH TABLE FOR ONE ITERATION (K = 1). THE FIRST RESIDUAL

rG1N1
= 0 APPEARS ONLY ONCE IN THE TABLE, AND SINCE THIS MAKES

ISOLATION POSSIBLE, IT IS SHOWN IN GREEN. CONVERSELY, rG1N1 = 1 IS
DUE TO MORE THAN ONE SET OF FAULTS AND IS SHOWN IN RED. THE

RESIDUAL USED AS EXPLANATION EXAMPLE IS IN BOLD.

Sets of faults eK,n Residuals
fG1 fN1 rG1N1 = fG1 ∨ fN1

e1,1 0 0 0
e1,2 1 0 1
e1,3 0 1 1
e1,4 1 1 1

At the second system iteration at the operating point s,
a new pair of estimates is available: Gs2 and Ns

2 . The truth
table for two system iterations is calculated with (16), (17)
and (18) and is shown in Table II. In this example and
similarly to Section V-A2, it is assumed that Gs1 6= Ns

1 =
Gs2 = Ns

2 is observed. This leads to the residual Rs2 =[
0 1 0 1 0 1

]
. Table II shows that this residual (in

bold) is exclusively due to the set of faults es2,5. After the second
system iteration, fault isolation is performed by concluding
that

{
fGs

2
= 0 and fNs

2
= 0 and fGs

1
= 1 and fNs

1
= 0
}

.

C. Conditions of Isolability
By definition, the truth table is exhaustive; the observed

residual vector is necessarily included within it. However, some
sets of faults induce the same residual vector, as shown by
the red colour in Tables I and II. In this case, isolation is not
possible. These are called Adverse sets. At least one more
system iteration is required to perform isolation.

Being adverse depends on the number of faults affecting the
estimates, as stated in Proposition 2.:

Proposition 2. A set of faulty states is adverse if and only if
it corresponds to one of the following conditions:
fNi

= 1 , ∀i ∈ {1, . . . ,K} and ∃!j ∈ {1, . . . ,K} such that
fGj

= 0
fGi

= 1 , ∀i ∈ {1, . . . ,K}

In other words, it is not possible to isolate faults if:
1) Every estimate N is faulty and there is a single fault-free

G.
2) Every G is faulty.

The proof of this Proposition can be found in [40].
It will be remarked in the example developed previously

that after the first system iteration (i.e. K = 1), the situation
corresponded to the second condition of this proposition
because fNs

1
= 0 and fGs

1
= 1. This is why fault isolation

was impossible. However, after the second iteration, the set
chosen for the example

{
fGs

2
= 0 and fNs

2
= 0 and fGs

1
= 1

and fNs
1

= 0
}

no longer corresponded to either of these
conditions. Fault isolation had therefore become possible.

Proposition 2 is fundamental for demonstrating the internal
formalism properties. These are detailed and demonstrated as
follows.

D. Formalism Properties
Once the bases of the formalism are established, we

have the properties shown below in the listed propositions.
Demonstrations of these properties can be found in [39].

Proposition 3. Guaranteed fault detection: The formalism
always detects the presence of faulty estimates. In other words,
each time there is a faulty estimate, the formalism detects it
(but may not be able to isolate the faulty estimate).

Proposition 4. Isolation convergence: The ratio of the number
of adverse sets of faulty states to the total number of sets tends
to zero as the number of iterations increases. In other words,
increasing K improves fault isolation capabilities.

Proposition 5. Conservation of isolability: Once fault isolation
is performed, fault isolation will be performed at any new
iteration.

Proposition 6. Adaptation: If fault detection and isolation are
performed, then adaptation is possible.

It should be recalled that adaptation consists in identifying
a fault-free estimate once detection and isolation have been
performed.

Proposition 7. Conservation of adaptation: If fault isolation
is achieved at the Kth iteration, adaptation is possible at
iteration K+ 1 whatever the faults affecting the new estimates.

These propositions have important consequences for the
application of the method in intelligent vehicles. First, Propos-
ition 3 shows that the presence of a fault among the available
estimates is always detected by the method. This means that
where there is no fault, the method is able to declare this fact
with certainty even at the first system iteration, allowing client
systems to function. Integrity monitoring is therefore possible
with this method. Second, Proposition 4 shows that a new
iteration will always contribute information for fault isolation,
which justifies multiple system iterations. Third, according to
Propositions 5 to 7, once a fault has been isolated, a fault-
free estimated can be provided to client systems at any future
iteration, allowing client systems to anticipate being able to
operate properly at any future iteration.

E. Illustrative Example

We now take the FDIA formalism proposed above and apply
it to monitoring the integrity of the navigation vehicle position
estimate as introduced in Fig. 2. Using a simple example, each
step is described in detail. The map contains an error and we
show how the method performs fault detection, isolation and
adaptation. In addition to detailing each step of our proposed
method, we illustrate the properties introduced in Section V-D.

In this example (depicted in Fig. 5), the real road is straight,
while the map’s representation of the road includes a bend. Let
us detail the proposed formalism at abscissa 25 m in the first
trip shown in Fig. 5a.

The first time the vehicle is at abscissa s = 25, position
estimates are provided by the vehicle state (G25

1 ) and by the
navigation (N25

1 ) functions. The observed residual can be
computed using (13):

G25
1 6= N25

1 ⇒ rG25
1 N25

1
= 1

This residual is found three times in the truth table for one
FDIA trip (Table I): the sets of faults e251,2, e251,3 and e251,4 give



Table II
TRUTH TABLE FOR TWO ITERATIONS (K = 2). RESIDUALS OCCURRING ONLY ONCE ARE IN GREEN, SINCE THEY MAKE ISOLATION POSSIBLE. CONVERSELY,

RESIDUALS THAT ARE DUE TO MORE THAN ONE SET ON FAULTY STATES ARE IN RED. THE RESIDUAL USED AS EXPLANATION EXAMPLES IS IN BOLD.

Sets of faults eK,n Residuals
fG2

fN2
fG1

fN1
rN2G2

rG2G1
rN1G2

rN2G1
rN1N2

rN1G1

e2,1 0 0 0 0 0 0 0 0 0 0
e2,2 1 0 0 0 1 1 1 0 0 0
e2,3 0 1 0 0 1 0 0 1 1 0
e2,4 1 1 0 0 1 1 1 1 1 0

e2,5 0 0 1 0 0 1 0 1 0 1
e2,6 1 0 1 0 1 1 1 1 0 1
e2,7 0 1 1 0 1 1 0 1 1 1
e2,8 1 1 1 0 1 1 1 1 1 1
e2,9 0 0 0 1 0 0 1 0 1 1
e2,10 1 0 0 1 1 1 1 0 1 1
e2,11 0 1 0 1 1 0 1 1 0 1
e2,12 1 1 0 1 1 1 1 1 0 1
e2,13 0 0 1 1 0 1 1 1 1 1
e2,14 1 0 1 1 1 1 1 1 1 1
e2,15 0 1 1 1 1 1 1 1 0 1
e2,16 1 1 1 1 1 1 1 1 0 1
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(a) First trip (blue line)
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(b) Second trip (purple line)

Figure 5. A faulty map area. Circular grey marks are for estimates where
the method has detected but not isolated a fault. Green squares are for true
estimates and red triangles are the faulty estimates.

rG1N1
= 1. The proposed method then detects a faulty estimate

among G25
1 and N25

1 but is not able to isolate it. The integrity
monitoring system cannot specify the faultiness of N25

1 , but
simply sends Knowledge of fault: Unknown to client systems,
as shown by circular grey marks in Fig. 5a.

The second time the vehicle traverses abscissa s = 25 of the
same road (Fig. 5b), a new pair of position estimates becomes
available: G25

2 and N25
2 . The dimension of the residual vector

increases to 6. The elements are calculated using (12), (13)
and (14):

N25
2 6= G25

2 ⇒ rN25
2 G25

2
= 1

G25
2 = G25

1 ⇒ rG25
2 G25

1
= 0

N25
1 6= G25

2 ⇒ rN25
1 G25

2
= 1

N25
2 6= G25

1 ⇒ rN25
2 G25

1
= 1

N25
1 = N25

2 ⇒ rN25
1 N25

2
= 0

G25
1 6= N25

1 ⇒ rG25
1 N25

1
= 1

Then R25
2 =

[
1 0 1 1 0 1

]
.

Table II is the truth table for two trips. Following the first trip
observation it is known that fG25

1
and fN25

1
are not both null,

and the first four rows of Table II may therefore be ignored.
The observed residual is found only once in this table (caused

by the set of faults e252,11). Consequently, it can be concluded
that fG25

2
= 0, fN25

2
= 1, fG25

1
= 0 and fN25

1
= 1.

The integrity monitoring system returns the instruction
Knowledge of fault: don’t use the navigation position estimate
(N25

2 ) and provides a fault-free estimate instead in the output
Correction (either G25

2 or G25
1 ). On Fig. 5b, faulty (resp. true)

estimates are represented by red triangles (resp. green squares).
From Proposition 7 we know that the integrity monitoring
system will be able to perform adaptation, i.e. provide an
error-free position estimate for all future trips along this road,
whatever the faults affecting the future estimates.

F. Complete Fault Detection, Isolation and Adaptation Method

The FDIA framework introduced previously is based on the
calculation of a residual vector RsK (s is the vehicle curvilinear
abscissa on the road and K is the number of trips on this
road). In practice, the elements of RsK are defined on the
basis of comparisons of the distance between each pair of
available estimates N and G with a threshold λd, and denoted
by rGs

iG
s
j
, rGs

iN
s
j

and rNs
i N

s
j

, ∀i, j ∈ {1, . . . ,K} which we
recall below:

rGs
iG

s
j
=

{
1 if dist

(
Gs

i , G
s
j

)
> λd

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j

(19)

rGs
iN

s
j
=

{
1 if dist

(
Gs

i , N
s
j

)
> λd

0 otherwise
∀i, j ∈ {1, . . . ,K}

(20)

rNs
i Ns

j
=

{
1 if dist

(
Ns

i , N
s
j

)
> λd

0 otherwise
∀i, j ∈ {1, . . . ,K} , i > j

(21)

Page’s test is used here instead of the distance measure for
comparing G and N . According to this new formulation, the
residual vector element rGs

KN
s
K

is zero if Page’s test gives the
mean of the signal d as zero. Reciprocally, rGs

KN
s
K

is one if
the test detects a mean change in d. The manner in which
the other residual elements (rGs

iG
s
j

and rNs
i N

s
j

) are calculated
remains unchanged.
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(a) The vehicle is at abscissa s = 15. Page’s decision variable is greater than
0 and lower than the threshold. The FDIA is then delayed since s = 13.
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(b) Page’s decision variable exceeds the threshold at s = 16. FDIA is run
for abscissas 13 to 16 with rG1N1

= 1. This results in Knowledge of fault:
Unknown.

Figure 6. Example of the use of Page’s test with the FDIA framework. The
road as recorded in the navigation map is the red poly-line. The estimates
from navigation Ns

1 are the red crosses and the estimates from sensors Gs
1 are

the blue crosses. The vehicle is travelling from left to right, so its curvilinear
abscissa is denoted by the axis S. The decision variable used in Page’s test is
plotted on the middle graph. The result of FDIA with Page’s test is shown in
the lower parts of the figures.

As shown in Section IV, Page’s test may require a few
samples before it is able to give definitive results. This is
highlighted by the distance-to-alert and distance-to-recovery
metrics. In such a situation, the estimates are buffered until
Page’s test provides a definitive output. The FDIA framework
is then run on each estimate, taking the result of the test as an
input.

As an example, Fig. 6 shows the progression of Page’s test
as the vehicle advances, and illustrates the strategy employed
here for the FDIA. We are looking at the first trip along this
road. The method is detailed step by step, as shown in this
figure. When the vehicle is at abscissa s = 10, the estimates
from sensors G10

1 and N10
1 are very close to each other. The

Page’s test decision variable equals zero, and therefore the
estimates are considered to be equal. The FDIA framework
is run with rG10

1 N10
1

= 0: this residual is found only once

Figure 7. Test vehicle

in the truth table so it is not necessary to use previous trips,
and the FDIA concludes that the estimates are fault-free. At
abscissa s = 11, the Page’s test decision variable is not null, but
has not yet reached the threshold γ. A discrepancy between
the estimates G and N is likely, but not yet detected. The
estimates that correspond to abscissa s = 11 (i.e. G11

1 and
N11

1 ) are stored in the memory buffer until the Page’s decision
variable either exceeds the threshold or returns to zero. When
the vehicle reaches abscissa s = 12, the estimates G12

1 and
N12

1 make the decision variable return to zero, which indicates
that Page’s test gives no discrepancy for the two last abscissas.
The FDIA is run at every abscissa in the memory buffer: at
s = 11 with rG11

KN11
K

= 0, the FDIA concludes that there is no
fault affecting G11

1 and N11
1 ; at s = 12 with rG12

KN12
K

= 0, the
FDIA concludes that there is no fault affecting G12

1 and N12
1 .

The memory buffer is cleared. At s = 13 to s = 15, the
estimates are such that the decision variable is not null so
these are buffered as shown by black marks on Fig. 6a. At
abscissa s = 16 the decision variable finally exceeds γ, and
so Page’s test now declares that a discrepancy, starting at
s = 13, is detected. The FDIA is then successively run at
s = 13, s = 14, s = 15 and s = 16 with rG13

1 N13
1

= 1,
rG14

1 N14
1

= 1, rG15
1 N15

1
= 1 and rG16

1 N16
1

= 1 respectively.
Since these residuals are adverse and there are no previous
trips available, the FDIA outputs Unknown for the estimates,
as shown by orange marks on Fig. 6b. The memory buffer
is emptied and the decision variable is set to zero for the
following evaluation points.

VI. EXPERIMENTAL EVALUATION

A. Test Vehicle

Experiments were done in real conditions using the Renault
Espace passenger vehicle shown in Fig. 7. The navigation
system used in the vehicle is fed by a standard single frequency
Ublox 6T GPS receiver (corresponding to GNSS1 in Fig. 2).
The GNSS receiver denoted by GNSS2 in Fig. 2 is a Ublox 4T
GPS receiver. The vehicle odometer, speed, rear wheel speed
difference and yaw rate are production-standard sensors and are
available on the vehicle CAN-bus. An extended Kalman filter
is used to compute the position estimate from sensor G, based
on the vehicle sensors and the Ublox 4T GPS receiver [38].
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Figure 8. Metrics employed for method evaluation. The columns are the
output of the method and the lines are the actual state of the navigation map.

An Ixsea LandIns Inertial Navigation System (INS) tightly
coupled to a Novatel GPS receiver provides position estimates
with an error of less than 1 m and is considered as position
ground truth for the experiments.

B. Metrics

We saw above that our proposed method has three possible
output states that refer to the current navigation estimate
integrity, namely Use, Unknown, Don’t use. The navigation
map can be correct or faulty. A set of metrics is introduced
as follows and illustrated in Fig. 8. These are evaluated with
respect to the number of vehicle trips so that the performance
of our method can be evaluated precisely.

The overall efficiency corresponds to the number of relevant
diagnoses made by the method, equal to the sum of True
Validations (TV) and True Isolations (TI). A TV occurs when
a correct point of the navigation map has been declared with no
fault. A False Validation (FV) occurs when the method trusts a
faulty navigation estimate. A False Isolation (FI) occurs when a
correct navigation estimate is classified as faulty by the method.
The Overall Efficiency Rate (OER) is:

OER
def
=

TV + TI

Ω− Ωunknown
(22)

where Ω is the number of navigation points evaluated by the
method and Ωunknown is the number of navigation estimates
for which the method outputs Unknown. An OER close to one
would indicate that whenever the method provides an output
different from Unknown, this diagnosis is reliable.

The output Unknown does not provide information on the
integrity of the navigation estimate from the point of view
of client systems. From the applicative point of view, this
output should occur as little as possible. The performance of
the method in terms of information availability is measured by
the Information Availability Rate (IAR):

IAR
def
=

Ω− Ωunknown
Ω

(23)

This is expected to converge to one as the number of trips
increases.

C. Urban Test Track

In this experiment, the vehicle was driven close to large
buildings. The GPS receiver was perturbed by multipath effects

Building

50m

Figure 9. GNSS tracks on the correct navigation map. Clockwise (blue) and
anticlockwise (purple)

caused by signals reflecting off buildings. These measurements
are expected to be isolated by the method. As shown in Fig. 9,
over parts of the circuit conditions are good, and the deviation
of the GPS measurements is less than the width of the road. It
will be remarked that for testing the method, these experimental
conditions are challenging. The length of each trip is 1100 m
and the spatial sampling has been done along the map with
a 10 m period, and the tolerance on the vehicle curvilinear
abscissa is λs = 2 m. Hence, Ω = 110 points on the navigation
map need to be evaluated at each trip. This value varies by a
few points from one trip to another because data recordings
were not started and stopped rigorously at the same positions.
The threshold on the distance between the estimates must be
chosen according to two criteria. First, it must be as small as
possible to comply with assumptions made as bases for the
method. Second, it must be greater than the tolerance on the
vehicle abscissa λs, so that two estimates from navigation that
correspond to the same abscissa are considered as equal by
the method. Page’s test is therefore set to detect a discrepancy
of δm = λs = 2 m between the estimates with the detection
threshold γ = 4.σ/δm.

Faults were generated randomly in five different maps using
dedicated software. The performance of the complete FDIA
method is evaluated using the metrics introduced previously
and detailed in Fig. 10 and 11.

Fig. 10 shows the ratio of correctly identified points to the
number of isolated or validated points. At the first vehicle
trip the method cannot perform isolation. The OE is then only
composed of TV. The OER at the first trip is therefore favoured
by the absence of false validation; the OER of five of the ten
tests therefore equal one. It will be noted that the OER of
map 1 anticlockwise is especially low at the first trip (50%),
but this is not significant since it is calculated using only four
points. The OER tends to remain constant from the second to
the third trip with medians equal to 84% and 83% respectively.

Fig. 11 summarizes the ratio of the number of validated or
isolated points to the number of points considered Unknown.
The IAR increases with the number of trips for all the tests and
exceeds 90% at the third trip. The FDIA method is therefore
seen to converge as stated by Proposition 4.
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D. Rural Test Track

Here we look at how the method performed in an area where
real map errors were present. The road had been modified when
a new motorway was built. A 2008 Navteq navigation map
was used to run the FDIA method. Fig. 12 shows that this map
contains three major faults, described below from left to right.

The first fault is where the road now deviates as it passes
over the motorway. The second is where a completely new
stretch of road has been created, deviating significantly from
the old one. For these two cases the confidence accorded
to the estimates both from the sensors and from navigation
are high. In a rural environment, many satellites are in the
receiver line-of-sight, which increases the level of confidence
and reduces the position standard deviations and Dilution of
Precision. Moreover, the road network is quite simple, so the
map-matching algorithm provides a high level of confidence
even if the GNSS measurement is a few metres away from
the road. The challenge is therefore to determine precisely the
reason for any disparity between estimates from sensors and
from navigation, that is to determine which estimate is affected
by a fault. When the real road is too far from the map road,
the map-matching confidence index suddenly decreases and

500m

Area 1

Area 2
Area 3

Figure 12. Rural test track. The navigation map used in the experiment is in
yellow, the correct map is in grey in background. The vehicle goes from left
to right. The estimates from sensors of the first (resp. second) trip is in blue
(resp. purple).

the navigation function switches to off-road mode and stops
providing navigation estimates. The FDIA method consequently
stops until a new estimate is provided by the navigation system.

The third fault is where a new road now exists parallel to the
old one. Even if the estimate from navigation is relatively close
to the true vehicle position in this area, the method should
identify the fault. Fig. 12 also shows the estimates from sensors
for the two trips used in this experiment.

Fig. 13a shows the result of the FDIA applied to this dataset
after the first trip. The green stretches are where the method
returned Use and the black stretches are where the output was
Unknown. There is no FI, since the method cannot isolate a
fault at the first trip, as described above. It will nevertheless be
noted that there is no FV of 0% and the OER is 100%. This
means that the method correctly identified situations where
estimates were not affected by faults and consequently provided
the output Use, and also that it detected situations where at
least one fault affected the estimates and consequently provided
the output Unknown to client systems. The IAR of this first
trip is 77% which corresponds to the proportion of erroneous
roads in the navigation map.

The results obtained after the second vehicle trip in this
area are shown in Fig. 13b. Here again, OER = 100 % which
means that every estimate not declared Unknown at the second
trip was correctly identified. Moreover, every point traversed
during the course of two trips was declared either Use or Don’t
use, and so the Information Availability Rate equals 100%.

This experiment shows that the method performed well
when using real vehicle data and a real navigation map with
faults. The absence of False Isolations and particularly False
Validations, and the high Information Availability in these
conditions indicate that the FDIA framework is a realistic
option for navigation integrity monitoring.

E. Discussion

These results, obtained using map faults that were either
injected or real, show that the isolation convergence property
is verified, since the number of points for which the method
cannot perform isolation decreases and can reach zero. The
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Figure 13. Results of the FDIA for the rural test track. The road sections
for which the method outputs Use are in green, those for which the method
outputs Don’t use are in red, and those for which the method outputs Unknown
are in black. The true navigation map is in the background in grey.

information availability rate increases and can reach one as the
number of trips increases.

Faults that are not correctly isolated by the method (i.e.
False Validations and False Isolations) result mainly from the
trade-off between spatial re-sampling tolerance of sensor data
and the comparison threshold used for the computation of
residuals.

The design of the method is based on several assumptions
(random faults in the observer estimates, systematic faults in
the map, and independence between them). The results confirm
experimentally the validity of these assumptions. Faults in the
observer are essentially due to the additional GPS receiver
and can arise from multipath. If at a given abscissa, the same
multipath induces the same error on the receiver computation
fix at two different trips used by the FDIA method, the first
assumption is violated. In this case, the method fails to isolate
faults. Nevertheless, this requires two conditions to be fulfilled:
first, the same satellite geometry at the same abscissa during
two different trips, and, second, the same position fix error
after filtering. For these reasons, we believe that the violation
of the first assumption is very unlikely. This situation was
never encountered during the course of our experiments.

VII. CONCLUSIONS

This paper introduces a framework for monitoring the
integrity of navigation map geometry by detecting and isolating
faults on the estimate of the vehicle position from the navigation
system. We showed that the context of intelligent vehicles in
which this work takes place limits the quality of the sensors
and the redundancy of the sources of information. The FDIA

framework detailed in this work fills this gap by making use
of repeated vehicle trips.

The framework is based on a pairwise comparison of
spatially-sampled vehicle position estimates between the current
and past vehicle trips that gives rise to residual vectors. We
demonstrate that under the assumptions made the proposed
FDIA framework is theoretically always able to perform fault
detection. However, depending on the number of faults that
affect the estimates and on the number of vehicle trips, it
may not be possible to perform isolation, that is, to determine
without ambiguity which estimate(s) is (are) affected by a fault.
By defining such sets of faults mathematically, we demonstrate
that the fault isolation and adaptation capabilities of the method
improve as the number of vehicle trips increases. The proposed
framework was tested using real sensor data and navigation
map faults. Performance was excellent in open sky areas and
promising in urban conditions. This highlights the interest of
using this FDIA approach in intelligent vehicles.
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