Isabelle Albert 
email: isabelle.albert@paris.inra.fr
  
Jean-Baptiste Denis 
email: baptiste.denis@jouy.inra.fr
  
Sophie Ancelet 
  
Natalie Commeau 
  
Clémence Rigaux 
  
Dirichlet and multinomial distributions: properties and uses in Jags

Keywords: 

Some properties of the Dirichlet and multinomial distributions are provided with a focus towards their use in Bayesian statistical approaches, particularly with the jags software.

Notations

p, q, r refers to probabilities. u, v, w refers to random counts. m, n, N, M refers to sample sizes. i, j refers to generic supscripts and h, k to their upper value. Di () , Be () , Ga () , M u () , Bi () , P o () will respectively denote the Dirichlet, Beta, Gamma, Multinomial, Binomial and Poisson probability distributions.

1 The Dirichlet distribution 1.1 Denition (p 1 , ..., p k ) is said to follow a Dirichlet distribution with parameters (a 1 , ..., a k ) (p 1 , ..., p k ) ∼ Di (a 1 , ..., a k ) if the following two conditions are satised:

1. p 1 + p 2 + ...p k = 1 and all p i are non negative.

[p

1 , p 2 , ..., p k-1 ] = Γ( k i=1 a i) k i=1 Γ(a i ) k-1 i=1 p a i -1 i 1 -k-1 i=1 p i a k -1
It is important to underline some points:

Due to the functional relationship between the k variables (summation to one), their joint probability distribution is degenerated. This is why the density is proposed on the rst k -1 variables, the last one being given as p k = 1 -k-1 

1 p i .
But, there is still a complete symmetry 1 between the k couples (p i , a i ) and the density could have been dened on any of the k subsets of size k -1.

All a i are strictly positive values2 .

When k = 2, it is easy to see that p 1 ∼ Be (a 1 , a 2 )3 , this is why Dirichlet distributions are one of the possible generalisations of the family of Beta distributions. We will see later on that there are other links between these two distributions.

A helpful interpretation of this distribution is to see the p i variables as the length of successive segments of a rope of size unity, randomly cutted at k -1 points with dierent weights (a i ) for each. The most straightforward case being when all a i are equal to a: then all random segments have the same marginal distribution and greater is a less random they are.

When all a i = 1, the Dirichlet distribution reduces to the uniform distribution onto the simplex dened by i p i = 1;

p i > 0 into R k .
Possibly a super-parameterization of this distribution could be convenient for a better proximity with the multinomial

(a 1 , ..., a k ) ⇐⇒ (A, π 1 , ..., π k )
where A = i a i and π i = a i A .

Moments

Let denote A = k i=1 a i .

E (p i ) = a i A V (p i ) = a i (A -a i ) A 2 (1 + A) Cov (p i , p j ) = -a i a j A 2 (1 + A) ∀i = j
as a consequence

Cor (p i , p j ) = - a i a j (A -a i ) (A -a j ) ∀i = j and V (p) = 1 A (1 + A) diag (a) - 1 A aa (1)
as a consequence, one can check that V ( i p i ) = 0 as expected. Also when all a i are greater than one, the vector a i -1 A-k is the mode of the distribution. When r i are non negative integers, a general formula for the moment is given by:

E k i=1 (p i ) r i = k i=1 a [r i ] i A [ k i=1 r i]
where the bracketted power is a special notation for

p [n] = n-1 j=0 (p + j) = p (p + 1) (p + 2) ... (p + n -1)

Marginal distributions (and distribution of sums)

When h < k, if (p 1 , ..., p k ) ∼ Di (a 1 , ..., a k ) then (p 1 , ..., p h , (p h+1 + ... + p k )) ∼ Di (a 1 , ..., a h , (a h+1 + ... + a k ))
As a consequence:

Generally ((p 1 + ... + p h ) , (p h+1 + ... + p k )) ∼ Di ((a 1 + ... + a h ) , (a h+1 + ... + a k ))
(2) a Dirichlet of dimension two, and S h = p 1 + ... + p h follows a Beta distribution with the same parameters.

As a particular case: p i ∼ Be (a i , A -a i ).

Conditional distributions When

h < k, if (p 1 , ..., p k ) ∼ Di (a 1 , ..., a k ) then 1 h i=1 p i (p 1 , ..., p h ) | p h+1 , ..., p k ∼ Di (a 1 , ..., a h )
An important consequence of this formulae is that 1 h i=1 p i (p 1 , ..., p h ) is independent of (p h+1 , ..., p k ) since the distribution doesn't depend on its value. So we can also state that

1 h i=1 p i (p 1 , ..., p h ) ∼ Di (a 1 , ..., a h )
with the special case of the marginal distribution of the proportion of the sum of g < h components among the h:

g i=1 p i h i=1 p i ∼ Be ((a 1 + ... + a g ) , (a g+1 + ... + a h )) (3) 
A specic property of this kind is sometimes expressed as the complete neutral property of a Dirichlet random vector. It states that whatever is j (p 1 , p 2 , ..., p j ) and

1 1 -(p 1 + ... + p j ) (p j+1 , ..., p k ) are independent.
Then p 1 , p 2 1-p 1 , p 3 1-p 1 -p 2 , ...,

p k-1
1-p 1 -p 2 ...-p k-2 are mutually independent random variables and

p j 1 -j-1 u=1 p u ∼ Be a j , j-1 u=1 a u .
Of course, any order of the k categories can be used for the construction of this sequence of independent variables.

1.5 Construction

1.5.1 With independent Gamma distributions Let λ i , i = 1, ..., k a series of independently distributed Ga (a i , b) variables 4 . Then (p 1 , ..., p k ) = 1 k i=1 λ i (λ 1 , ..., λ k ) ∼ Di (a 1 , ..., a k )
4 Here we use the parameterization of bugs, the second parameter is the rate, not the scale so that

E (λ i ) = ai b and V (λ i ) = ai b 2 .
Remind that a Ga (a, 1) distributed variable is no more than a 1 2 χ 2 2a . Note that the second parameter is a scaling parameter, so it can be set to any common values to all λs, in particular it can be imposed to be unity (b = 1) without any loss of generality.

1.5.2

With independent Beta distributions Let q i , i = 1, ..., k -1 a series of independently distributed Be (α i , β i ) distributions. Let us dene recursively from them the series of random variables

p 1 = q 1 p i = q i i-1 j=1 (1 -q j ) i = 2, ..., k -1 p k = k-1 j=1 (1 -q j ) then (p 1 , ..., p k ) ∼ Di (a 1 , ..., a k )
when for i = 1, ..., k -1 :

α i = a i β i = k u=i+1 a u .
That implies that the following equalities must be true:

β i = β i-1 + α i ∀i = 2, ..., k -1.

The multinomial distribution

In a Bayesian statistical framework, the Dirichlet distribution is often associated to multinomial data sets for the prior distribution 5 of the probability parameters, this is the reason why we will describe it in this section, in a very similar way.

Denition

(u 1 , ..., u k ) is said to follow a multinomial distribution with parameters (N, p 1 , ..., p k ) (u 1 , ..., u k ) ∼ M u (N, p 1 , ..., p k )
if the following conditions are satised:

1. p 1 + p 2 + ...p k = 1 and all p i are non negative.

2. u 1 + u 2 + ...u k = N and all u i are non negative integers.

3.

[u 1 , u 2 , ..., u k-1 ] = Γ(N +1) k i=1 Γ(u i +1) k-1 i=1 p u i i (p k ) N -k-1 1 u i
It is important to underline some points: 5 for conjugation properties, cf. 3.1

Due to the functional relationship between the k variables (summation to N , a known value), their joint probability distribution is degenerated. This is why the density is proposed on the rst k -1 variables, the last one being given as

u k = N -k-1 1 u i .
There is a complete symmetry between the k couples (u i , p i ) .

When P = 2, it is easy to see that u 1 ∼ Bi (N, p 1 ), this is why the multinomial distribution is a generalisation of the binomial distributions. We will see later on that there are other links between these two distributions.

Moments

The expectations are given by

E (u i ) = N p i
The variances are given by

V (u i ) = N p i (1 -p i )
The covariances are given by Cov (u i , u j ) = -N p i p j So the variance matrix reads

V (u) = N (diag (p) -pp )
and V ( i u i ) = 0 as it must be since i u i = N , a constant. Finally, the correlation is

Cor (u i , u j ) = - √ p i p j (1 -p i ) (1 -p j )
for i = j

Marginal distributions (and distributions of sums)

When h < k, if (u 1 , ..., u k ) ∼ M u (N, p 1 , ..., p k ) then (u 1 , ..., u h , (u h+1 + ... + u k )) ∼ M u (N, p 1 , ..., p h , (p h+1 + ... + p k ))
As a consequence:

Generally

((u 1 + ... + u h ) , (u h+1 + ... + u k )) ∼ M u (N, (p 1 + ... + p h ) , (p h+1 + ... + p k )) (4)
a multinomial of size two, and S h = u 1 + ... + u h follows a binomial distribution with the parameters (N, (p 1 + ... + p h )).

As a particular case: u i ∼ Bi (N, p i ).

Conditional distributions

When

h < k, if (u 1 , ..., u k ) ∼ M u (N, p 1 , ..., p k ) then ((u 1 , ..., u h ) | u h+1 , ..., u k ) ∼ M u N - k i=h+1 u i , p 1 h i=1 p i , ..., p h h i=1 p i (5) 
An important consequence of this formulae is that (u 1 , ..., u h ) depends on (u h+1 , ..., u k ) only through their sum, (u h+1 + ... + u k ). From this, it is not dicult to see that when g < h:

g i=1 u i | h i=1 u i ∼ Bi h i=1 u i , g i=1 p i h i=1 p i (6) 
It can also be shown that

u 1 , (u 2 | u 1 ) , (u 3 | u 1 + u 2 ) , ..., (u k-1 | u 1 + ... + u k-2
) are independent and follow binomial distributions:

u j | j-1 u=1 u u ∼ Bi N - j-1 u=1 u u , p j 1 -j-1 u=1 p u . ( 7 
)
2.5 Construction

With independent Poisson distributions

Let w i , i = 1, ..., k a series of independently distributed P o (λ i ) variables, then

w 1 , ..., w k | k i=1 w i = N ∼ M u N, λ 1 k i=1 λ i , ..., λ k k i=1 λ i .
So the (u i ) can be seen as a set of Poisson variables constrained to sum to N and having parameters proportional to the probabilities p i .

Notice that this kind of condition (the sum be equal to a given value) is not aordable with bugs softwares.

With conditional Binomial distributions

From (7), let u i , i = 1, ..., k -1 a series of successive conditional random variables distributed as

u 1 ∼ Bi (N, p 1 ) u 2 | u 1 ∼ Bi N -u 1 , p 2 1 -p 1 ... u i | u 1 , u 2 , ..., u i-1 ∼ Bi N -u 1 -... -u i-1 , p i 1 -p 1 -... -p i-1 then (u 1 , ..., u k ) ∼ M u (N, p 1 , ..., p k ) .
Notice that, with a positive probability, N can be attained with less than k positive u i , so the last binomial can be of size zero. This limit case is perfectly handled in jags.

Table 1: Probability distributions associated to the dag of Figure 1.

(1.a)

(a) → (p) (p) ∼ Di (a) (1.a) ((p) , N ) → (u) (u) ∼ M u (N, p) (1.b) (a) → (λ) λ i ∼ Ga (a i , 1) (1.b) (λ) (p) p i = λ i λu (1.b) ((p) , N ) → (u) (u) ∼ M u (N, p) (1.c) (a) → (λ) λ i ∼ Ga (a i ) (1.c) (λ) (p) p i = λ i λu (1.c) ((λ) , N ) → (u) (u) ∼ M u N, λ i λu (1.d) (a) → (λ) λ i ∼ Ga (a i 1) (1.d) (λ) (p) p i = λ i λu (1.d) (λ) → (w) w i ∼ P o (λ i ) (1.d) (w) (u) (w) = (u) (1.d) (w) N N = w u 3 A global scheme 3.1 Standard results of conjugation Beta-Binomial p ∼ Be (a 1 , a 2 ) and (u | N, p) ∼ Bi (N, p) imply that (p | N, u) ∼ Be (a 1 + u, a 2 + N -u) .
Dirichlet-Multinomial (p 1 , ..., p k ) ∼ Di (a 1 , .., a k ) and (u 1 , ..., u k | N, p 1 , ..., p k ) ∼ M u (N, p 1 , ..., p k ) imply that (p 1 , ..., p k | N, u 1 , ..., u k ) ∼ Di (a 1 + u 1 , ..., a k + u k ) .

Gamma-Poisson λ ∼ Ga (a, b) and (w | λ) ∼ P o (λ) imply that

(λ | w) ∼ Ga (a + w, b + 1) .
These results emphasize the relationships between the probability distributions we have previously considered.

Global presentation

Indeed, we can embed all the previously described distributions in the same framework allowing a better view of the relationships; four ways to attain the joint distribution of ((p) , (u)) are given in Figure 1 and detailed in Table 1.

The construction 1.a is the direct construction while 1.d is associated to the Gamma-Poisson modelling conditionned with the total number (N) giving rise with simple derivations to the desired random variables. 

More intricated situations

It can occur that the multinomial vector is partially observed. Let us consider the case of k = 3, and suppose that we only know D = (u 1 , u 2 + u 3 ) that is we are not able to distinguish between the last two categories. The point is to derive the posterior. The model is :

prior (p 1 , p 2 , p 3 ) ∼ Di (a 1 , a 2 , a 3 ) likelihood ((u 1 , u 2 + u 3 ) | (p 1 , p 2 , p 3 )) ∼ M u (N, p 1 , p 2 + p 3 )
Standard posterior computation provides

[(p 1 , p 2 , p 3 ) | (u 1 , N )] ∝ 3 i=1 p a i -1 i p u 1 1 (p 2 + p 3 ) N -u 1 = p u 1 +a 1 -1 1 N -u 1 i=0 (N -u 1 )! i! (N -u 1 -i)! p i+a 2 -1 2 p N -u 1 -i+a 3 -1 3 = N -u 1 i=0 (N -u 1 )! i! (N -u 1 -i)! p u 1 +a 1 -1 1 p i+a 2 -1 2 p N -u 1 -i+a 3 -1 3
The posterior is a mixture of Dirichlet distributions,

Di (u 1 + a 1 -1, i + a 2 -1, N -u 1 -i + a 3 -1), for i = 0, ..., N -u 1 with binomial coecients (N -u 1 )! i!(N -u 1 -i)! .
This could have been seen directly since it is a mixture of the completely observed cases associated to the partial observation, each being weighted with the probability of its occurrence:

[(p 1 , p 2 , p 3 ) | (u 1 , N )] = N -u 1 i=0 [(u 2 = i, u 3 = N -u 1 -i) |u 1 ] [(p 1 , p 2 , p 3 ) | (u 1 , u 2 = i, u 3 = N -u 1 -i)]
and

[(u 2 = i, u 3 = N -u 1 -i) |u 1 ] = (N -u 1 )! i! (N -u 1 -i)! .
4 Implementation with jags Here, we will consider how the above considerations could be used with jags to perform some statistical computations. The main R script used to obtain the presented results is provided in A. There are two series of calculations : simulations and inferences. For the sake of the number of les, inferences have been performed in the same run which constrains to duplicate the data to get independent inferences.

Simulating a multinomial vector

In bugs the multinomial distribution is available with dmulti and it can be also obtained with nested binomial (see 2.5.2) as examplied in the following model code. 

Density of p2[1]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0 4 8 N = 100000 Bandwidth = 0.001479

Density of p2[2]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0 4 8 N = 100000 Bandwidth = 0.001734 Notice that no information is born by empty data set and that a natural solution is to exclude

Density of p2[3]

  model { # (1) direct simulation mult.dir ~dmulti(p[],N);

Figure 2 :

 2 Figure 2: Simulating a multinomial vector in two dierent ways. First column with Bi () and second column with M u ().

Figure 3 :Figure 4 :

 34 Figure3: Simulating a Dirichlet vector in three dierent ways. First column: with Be (); second column with Di () and third column with Ga ().

Figure 5 :

 5 Figure 5: Inferring the probability vector of multinomial data in two dierent ways.

  in 1:nbds) { YY2[ii,1] ~dbin(pp[1],nb2[ii]); for (jj in 2:(k-1)) { YY2[ii,jj] ~dbin(pp[jj],nb2[ii]-sum(YY2[ii,1:(jj-1)])); } } }Results are proposed in Figure5. Both ways produce the same inference.

Figure 6 :

 6 Figure 6: Inferring the probability vector of multinomial data when one of them is of size zero.

  the parameters p2 ~ddirch(a[]); lambda2 ~dunif(lin,lax); # likelihood of the data for (ii in 1:nbds) { nb2[ii] ~dpois(lambda2); } pp[1] <-p2[1]; for (i in 2:k) { pp[i] <-p2[i]/(1-sum(p2[1:(i-1)]));} # for (ii in 1:nbds) { YY2[ii,1] ~dbin(pp[1],nb2[ii]); for (jj in 2:(k-1)) { YY2[ii,jj] ~dbin(pp[jj],nb2[ii]-sum(YY2[ii,1:(jj-1)])); } } # }

  Figure 1: Dierent constructions of the joint density of ((p) , (u)).. Fixed values are in squared boxes, random variables in circles; parentheses indicate vectors; dashed arcs indicate deterministic links, solid arcs random ones. Relationships are provided in

	Table 1
	(a)

Indeed notice that 1 -k-1 i=1 p i is p k .

If not the Γ function are not dened.

and that p 2 ∼ Be (a 2 , a 1 ) plus p 1 + p 2 = 1.

If the sum of the gamma variables was known, we could multiply the p i by it, but it is not the case.

The binomial way requires some care. The obtained results are proposed in Figure 2: the two ways of simulation are not distinguishable.

Simulating a Dirichlet vector

In bugs the Dirichlet distribution is available with ddirch and it can be also obtained with percentages of independent Gamma (see 1.5.1) or nested beta (see 1.5.2) as examplied in the following model code. 

Density of diri.bet[1]

The beta way is quite tricky to implement. The obtained results are proposed in Figure 3: the three ways gave very similar results.

Inferring from multinomial vectors with xed sizes

Using the dierent ways of simulating multinomial distributions, ones can try some inference about the probability parameter when some multinomial data have been observed. Here is the proposed bugs model when the size of the multinomial is considered as xed. 

Results are graphically presented in Figure 4. The posterior distributions looks identical.

Inferring from multinomial vectors with random sizes

The same exercice can be made when the size of the multinomial data is supposed random (not been monitored by the experimenter). To do so, to comply bugs requirements, the sizes are duplicated to give direct likelihood to the multinomial vectors and to the sizes; this has no consequence on the statistical analysis as far as no stochastic dependence is introduced between the parameter of the two parts. We will distinguish two cases because the results are dierent.

4.4.1

Every multinomial has got a non null size

Here is the bugs model code. 

them from the statistical analysis, making the dmult solution always available.

Inferring from a Dirichlet vector

Even if not a so frequent situation, we can check what occurs when the observations are at the level of the Dirichlet variables. This implies an additional level in the model to focus the inference on the a parameter. An example is given in the following bugs model code considering the three identied ways : (i) the direct ddirch use, (iii) the dbeta construction theoritically exact and (iii) a dgamma approximation. The dbeta construction implies the computation of q i , direct transformations of the observed p i (see 1.5.2) and the code in the Appendix for the details. The dgamma construction is only an approximation. There is no way for a transformation of the observations as done for the dbeta construction 6 . Here the parameterization of the gammas variables is dened such that their expectations and variances be equal to those of a Dirichlet vector, forgetting the existing covariance of (1). More precisely, with the notations of 1.1 and the denition of gamma distributions in Footnote 4 we use

for the ith probability. Higher will be the dimension k of the Dirichlet, better we can imagine will be the approximation. 

The obtained results are displayed in Figure 7 , it can be seen that (i) as expected ddirch and dbeta ways are very similar and (ii) the dgamma approximation is quite good even if the dimension of the Dirichlet (k = 4) is not very high. 

Density of a3[3]
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Density of a3[4]

A Main R script Here is the complete R script used for all calculations related to 4. The called les to describe the model were given in the text above: dirimul.mulsim.jam in 4.1, dirimul.dirsim.jam in 4.2, dirimul.mulinf1.jam in 4.3, dirimul.mulinf2.jam in 4.4.1, dirimul.mulinf3.jam in 4.4.2 and dirimul.dirinf1.jam in 4.5, # 12_06_06 12_06_07 12_06_20 12_06_21 12_07_18 library(rjags) # initialization nbsimu <-100000; nbburnin <-10000; #nbsimu <-1000; nbburnin <-100; files <-TRUE; fitext <-"dirimul.res.txt"; if (files) { sink(fitext); sink();} fifi <-function(nom) { res <-rep(NA,2); res[1] <-paste("dirimul",nom,"jam",sep="."); res[2] <-paste("dirimul",nom,"pdf",sep="."); res; } # Simulating a multinomial vector ".RNG.state" <-c(19900, 14957, 25769); set.seed(1234); nom <-"mulsim"; ff <-fifi(nom); p <-1:4/sum(1:4); k <-length(p); N <-12; tomonitor <-c("mult.dir","mult.bin"); constants <-list(p=p,k=k,N=N); modele <-jags.model(file=ff[1],data=constants); update(modele,10); resultats <-coda.samples(modele,tomonitor,n.iter=nbsimu); if (files) { sink(fitext,append=TRUE); cat("\n\n\n",nom,"\n\n"); } print(summary(resultats)); if (files) { sink();} if (files) { pdf(ff[2]);} par(mfcol=c(4,2)); densplot(resultats,show.obs=FALSE); if (files) { dev.off();} cat(nom,": <Enter> to continue\n"); if (!files) { scan();} # Simulating a Dirichlet vector ".RNG.state" <-c(19900, 14957, 25769); set.seed(1234); nom <-"dirsim"; ff <-fifi(nom); a <-1:4; k <-length(a); tomonitor <-c("diri.dir","diri.gam","diri.bet"); constants <-list(a=a,k=k); modele <-jags.model(file=ff[1],data=constants); update(modele,10); resultats <-coda.samples(modele,tomonitor,n.iter=nbsimu); if (files) { sink(fitext,append=TRUE); cat("\n\n\n",nom,"\n\n"); } print(summary(resultats)); if (files) { sink();} if (files) { pdf(ff[2]);} par(mfcol=c(4,3)); densplot(resultats,show.obs=FALSE); if (files) { dev.off();} cat(nom,": <Enter> to continue\n"); if (!files) { scan();} # Inferring multinomial vectors of fixed sizes ".RNG.state" <-c(19900, 14957, 25769); set.seed(1234); nom <-"mulinf1"; ff <-fifi(nom); a <-rep(1,4); k <-length(a); tomonitor <-c("p1","p2"); YY1 <-matrix(c(1,0,2,7, 70,2,1,27),byrow=TRUE,2,k); nbds <-nrow(YY1); nb <-apply(YY1,1,sum); YY2 <-YY1; if (files) { sink(fitext,append=TRUE); cat("\n\n\n",nom,"\n\n"); } print(YY1); if (files) { sink();} constants <-list(a=a,k=k,nbds=nbds,nb=nb, -c(19900, 14957, 25769); set.seed(1234); nom <-"mulinf2"; ff <-fifi(nom); a <-rep(1,4); k <-length(a); lin <-1; lax <-100; tomonitor <-c("p1","lambda1","p2","lambda2"); YY1 <-matrix(c(1,0,2,7, 0,1,0,0, 5,2,1,3),byrow=TRUE,3,k); nbds <-nrow(YY1); nb1 <-apply(YY1,1,sum); YY2 <-YY1; nb2 -c(19900, 14957, 25769); set.seed(1234); nom <-"mulinf3"; ff <-fifi(nom); a <-rep(1,4); k <-length(a); lin <-1; lax <-100; tomonitor <-c("p2","lambda2"); YY1 <-matrix(c(1,0,2,7, 0,0,0,0, 5,2,1,3),byrow=TRUE,3,k); nbds <-nrow(YY1); nb1 <-apply(YY1,1,sum); YY2 <-YY1; nb2 -c(19900, 14957, 25769); set.seed(1234); nom <-"dirinf1"; ff <-fifi(nom); p <-c(5,1,1,2); k <-length(p); lin <-1; lax <-1000; tomonitor <-c("a1","a2","a3"); p <-p/sum(p); p1 <-p2 <-p3 <-p; q2 <-p2[-4]; q2[2] <-q2[2]/(1-q2[1]); q2[3] <-q2[3]/(1-q2[1])/(1-q2[2]); constants <-list(k=k,lin=lin,lax=lax,p1=p1,q2=q2,p3=p3)