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Abstract

Using available data from a consumption survey and contamination data on ochratoxin A (OA) in food, a sensitivity analysis

(SA) for high quantiles (95th and 99th quantiles) of OA exposure distribution was carried out, obtained by a Monte Carlo

simulation in French children. Exposure assessment for food contaminants is important to control the risk of foodborne

diseases. Risk assessors are interested in high quantiles of contaminant exposure distributions. As these exposure distributions

are generally very asymmetrical, it is difficult to obtain relevant and stable high quantiles in such a context. Determining OA

exposure distribution is complex because it is based on the sum of elementary exposure distributions (eight foodstuffs are

analysed here), and each one of these is the product of a consumption distribution and a contamination distribution. The SA

enables us to quantify the influences of the parameter variability of the consumption and contamination probability density

functions (pdf ) which have been fitted to the data, our simulation model inputs, on the 95th and 99th quantiles of the output

exposure distribution. After some preliminary trials, we have postulated a quadratic polynomial regression model for the

quantiles of OA exposure distribution in view of undertaking this SA. This regression model comprises 32 main factors, their

496 two-factor interactions and their 32 quadratic terms. The 32 factors are the parameters of the fitted pdf: 16 parameters of

Gamma distributions relative to the eight consumed foods and 16 parameters of Gamma distributions relative to the eight food

OA contaminations. For an optimal parameter estimation of such a large model, we used an experimental design approach

depending on a resolution-V fractional factorial design of 6561 experiments. The factor ranges are established by a preliminary

study of bootstrap sampling. From the bootstrap samples, the factor ranges are obtained taking into account the correlation

between the two parameters of the fitted Gamma pdf. A full exposure distribution is simulated for each of the 6561 experiments.

The consumption dependencies are taken into account by the Iman and Conover method. On the basis of this analysis, validated

and useful models for each desired quantile are obtained showing a major influence of the parameters of ‘‘Cereals’’

(consumption and contamination) and slightly less so for parameter of ‘‘Pork’’ consumption in the sensitivity of the quantiles.
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1. Introduction

Ochratoxin A (OA) is a mycotoxin produced by

fungi of the genera Aspergillus and Penicillium. This

mycotoxin may be a contaminant of grain stored in

poor conditions, especially in Europe, and through the

food chain also contaminates other foodstuffs, espe-

cially pork and poultry meat. Several toxicological

studies (e.g. Pfohl-Leszkowick, 1999; JECFA, 1995;

CCFAC, 1999) have shown this mycotoxin is an acute

kidney toxin in humans. For these reasons, this myco-

toxin remains under the close surveillance of the

«Conseil Supérieur d’Hygiène Publique» in France

and thus evaluating human exposure to this mycotoxin

is an important public health question.

A consumption survey (ASPCC, 1999)—was con-

ducted from June 1993 to June 1994 on 1161 French

individuals (children, women and men) to estimate

risk assessment exposure to OA in food. During 7

days, the participants were questioned on their con-

sumption of several types of food. Our sensitivity

analysis (SA) was restricted to children (individuals

younger than 15) and to eight types of food, given in

Table 1, keeping in mind that certain cover several

foods, consumed by children. Table 2 gives descrip-

tive statistics of these data for child consumers and

non-consumers, and for men and women descriptive

statistics are given in Verger (1999) and Gauchi (in

press).

From consumption and contamination data, several

exposure statistics have been computed by a non-

parametric method—the NP–NP method—and a

parametric method—the MP–P method (Gauchi, in

press). In this paper, we use the MP–P method to

evaluate the high quantiles of the OA exposure dis-

tribution in the SA. Indeed, the parametric method

(the mixed parametric/parametric method, named the

MP–P method in the text) seems to be very suitable

for estimating relevant and stable high quantiles. This

MP–P method, based on a Monte Carlo simulation,

depends on the random samplings from fitted pdf

(mixed parametric pdf for consumption and paramet-

ric pdf for contamination). The 95th and 99th quan-

tiles of the exposure distribution are the model outputs

(the responses) of our SA. The inputs are the param-

eters of the pdf fitted to the data. The SA enables us to

quantify the influences of these parameters (and their

interactions) on the responses via a quadratic poly-

nomial model postulated for modelling the variation

of these responses. For an optimal estimation of the

parameters of the polynomial model, we used an

experimental design approach depending on a reso-

lution-V fractional factorial design of 6561 experi-

ments. The factors of this design are the fitted pdf

parameters. To simulate a meaningful range for each

factor, we determine it by a parametric bootstrap

approach (Efron and Tibshirani, 1993) carried out

on the consumption and contamination samples. In

Table 1

Definition of the eight types of food analysed

Cereals: rice, wheat, corn starch, bread, pasta, flour, crispbread,

breakfast cereals, crackers, biscuits, pastries, croissants and the like,

popcorn, cornflakes, cooked sweet corn

Raisins: dried raisins

Other dried fruits: apricots, bananas, dates, figs, prunes

Pork: kidneys, cutlets, fillet, roast, ribs, loin, black pudding, ham

pâté, salami, rillettes, andouillettes, bacon, sausages, foie gras

Poultry: chicken liver, chicken, duck, goose

Fruit juices: fruit juices

Wines: several different wines

Coffee: dry coffee (correction by a dilution coefficient of 17)

Table 2

Consumption in grams over an average day for all children (French

children) and only those who consume a particular type of food

Food n Mean Standard

deviation

Minimum Maximum

All the children

Cereals 232 165.36 89.87 26.14 619

Raisins 232 0.25 1.19 0 11.71

Other

dried fruit

232 0.41 2 0 17.14

Pork 232 39.12 25.98 0 140

Poultry 232 16.38 16.78 0 95.71

Fruit juices 232 81.67 149.72 0 1497.14

Wines 232 0.53 2.47 0 23.86

Coffee 232 0.34 1.47 0 12.57

The children who consume:

Cereals 232 195.36 89.87 26.14 619

Raisins 17 3.39 3 0.43 11.71

Other

dried fruit

15 6.29 5.12 1.29 17.14

Pork 219 41.44 24.87 0.57 140

Poultry 167 22.76 15.68 1.43 95.71

Fruit juices 157 120.69 168.68 1.43 1497.14

Wines 25 4.94 6 0.43 23.86

Coffee 24 3.33 3.36 0.14 12.57
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order to consider the correlation between the pdf

parameters, three experimental domains of variation

were designed inside a 95% concentration ellipse.

This type of SA should be distinguished from

marginal analysis: what is the effect of infinitely small

changes (perturbations)? The effects in the SA are

measured by the parameter vector b of the postulated

quadratic polynomial regression model.

In Section 2, we present how we obtain the OA

exposure distribution and the methodology of our SA.

In Section 3, we give the results, and we conclude in

Section 4 by a discussion.

2. Methods

The contamination data (mg kg�1 OA in food)

come from elements independent of the consumption

survey: they originate from SCOOP task 3.2.7. (see

detailed reference). Table 3 gives descriptive statistics

of OA contamination in the eight types of food. For

poultry contamination data, the only information

available was 31 values between 0 and 0.03, and 62

values between 0.03 and 0.18: the mean of 0.075

(Table 3) is calculated by the weighted arithmetic

mean of the two means calculated from the two

uniform distributions on [0; 0.03] and [0.03; 0.018].

On the other hand, the standard deviation of the

unknown data is estimated by the Bienaymé–Tcheby-

sheff inequality by supposing that the range [0; 0.18]

encompasses 100% of the data. This inequality indi-

cates that 75% of the data are contained in the interval

[lF2r], which, with an estimation of 0.075 for l,

leads here to an estimation of 0.0342 for r. In the

following, poultry contamination data are simulated

by a Gamma distribution with mean = 0.075 and stand-

ard deviation = 0.0342 corresponding to a shape

parameter = 4.81 and a scale parameter = 64.12. Histo-

grams of consumption and contamination data are

given in Figs. 1, 2 and 3.

Several methods and tools are needed to carry out

this SA. First, we present the MP–P method used for

estimating an exposure distribution and the quantiles

that we are interested in. We refer the reader to

previous work (Gauchi, in press) for more detailed

information about this method. Second, for the SA,

we expose the four-step methodology used to attain

our objectives: (i) postulation of a polynomial regres-

sion model; (ii) construction of the appropriate exper-

imental design; (iii) determination of the factor

ranges; (iv) validation of the model.

2.1. Construction of the exposure distribution

2.1.1. Definition of exposure

Determining OA exposure distribution is rather

complicated because it is based on the sum of eight

elementary exposure distributions (one per type of

food analysed), and each one of these is the product of

a consumption distribution and a contamination dis-

tribution. Let us give a rigorous definition of the

exposure in our context. Consider the consumption

Cj of one food j, divided by the individual weight, i.e.

a normalized consumption, and the contamination Tj
in OA of this food. Then, for p foods consumed per

day, we define the normalized global exposure E as

the sum of the p normalized products consump-

tion�contamination: E ¼
Pp

j¼1 CjTj , expressed in

nanograms per kg of body weight per day, i.e. in

ng�bw�1�day�1 units.

2.1.2. The MP–P method

The MP–P method, described in detail previously

(Gauchi, in press), is essentially parametric in the

sense that a mixed pdf is adjusted on each food con-

sumption and a parametric pdf is adjusted on each

food contamination. For consumption, apart from

cereals, the typical histogram that can be plotted for

each foodstuff is shown in Fig. 4, where two zones

appear corresponding to the two sub-classes: non-

consumers (sub-class of proportion h, represented by

Table 3

Descriptive statistics of the contamination data (mg kg�1) for each

food

Food n Mean Standard

deviation

Minimum Maximum

Cereals 183 0.65 0.98 0.20 7.20

Raisins 13 0.71 1.16 0.10 4.30

Other

dried fruit

33 0.28 0.29 0.10 1.60

Pork 1011 0.30 0.29 0.10 6.10

Poultry 93 0.075 0.0342 0.00 0.18

Fruit juices 19 0.25 0.78 0.02 3.45

Wines 104 0.16 0.26 0.00 1.64

Coffee 155 1.12 1.70 0.02 3.10
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the tall bar on the left) and consumers (sub-class of

proportion (1�h), represented by the asymmetrical

part). In this situation, we propose for each consumed

foodstuff j to fit a mixed distribution defined by a

continuous uniform distribution for the non-consum-

ers and a Gamma distribution for the consumers. An

example of such a mixed pdf has been given by Vose

(1996). The Gamma distribution has been validated

by means of the Anderson–Darling statistic (D’Agos-

tino and Stephens, 1986) among several asymmetrical

Fig. 1. Consumption histograms (relative frequencies) for children studied (French children).
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Fig. 2. Normalized consumption histograms (relative frequencies) and fitted Gamma pdf for children consumers (French children).
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distributions. In the same way, this statistic has been

used to decide Gamma distributions for contamina-

tion data.

The Gamma pdf for a continuous random variable

X defined in [0, +1>]
�
is: f ðx; r; kÞ ¼ ½1=CðrÞ�k�1

ðk�1ðx� hÞÞr�1
e�

ðx�hÞ
k

�
, where r, k, h are the shape,

Fig. 3. Contamination histograms (relative frequencies) and the fitted Gamma pdf.
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scale and threshold parameters, respectively, and C(r)
is the usual Euler’s integral. The mean and variance of

the Gamma distribution are connected to r and k in the

following way:

EðX Þ ¼ rk and V ðX Þ ¼ rk2: ð1Þ

The estimated parameters of the corresponding pdf are

given in Table 4. The fitted Gamma distributions are

presented in the histograms Figs. 2 and 3.

An exposure value is calculated as follows:

Ê
ðSÞ
i ¼

Xp

j¼1

c̃i;j t̃i;j; ð2Þ

where:

- c̃i,j is a random normalized consumption for

the foodstuff j, drawn from the corresponding

cumulative density function (cdf ) of the

above-mentioned mixed distribution, whose

density parameters are given in Table 4;

- t̃i,j is a random contamination for the foodstuff

j, drawn from the fitted Gamma cdf, whose

density parameters are given in Table 4.

Then, with N = 10,000 outputs of form (2), we obtain

an exposure simulation set S. The eight vectors of the

N consumption random deviates have been arranged

by means of the Iman and Conover (1982) method to

be correlated with the aim of respecting the consump-

tion dependencies. The N outputs lead to calculate

various usual statistics and notably the 95th and 99th

quantiles. Fig. 5 shows the simulated output exposure

histogram.

2.1.3. Calculation of quantiles

The ath theoretical exposure quantile is here re-

ferred to as Qa and defined by: FE(Qa) =a, where FE

is the theoretical cdf of the exposure of the population

studied. The ath empirical exposure quantile Q̂a
(S) is

defined by:

#½ÊðSÞ
i VQ̂ðSÞ

a �=N ¼ a, ð3Þ

where the notation #[xiVK] means the number of xi
less than or equal to K. For example, if N = 10,000, the

estimate of the 0.95th quantile is the 9500th largest

value of all the Êi
(S). If aN, is not an integer, the

Fig. 4. Typical consumption histogram.

Table 4

Parameters of the Gamma pdf fitted to the normalized consumption

data (only to those who consume) and parameters of the Gamma pdf

fitted to the contamination data

Food Parameters of the fitted Gamma pdf

Consumption Contamination

(h=̂0)

Cereals r̂ = 2.594; k̂ = 0.480; ĥ = 1.610 r̂ = 0.439; k̂ = 0.674
Raisins r̂ = 0.701; k̂ = 5.484; ĥ = 0.010 r̂ = 0.375; k̂ = 0.530
Other

dried fruit

r̂ = 0.582; k̂ = 2.286; ĥ = 0.043 r̂ = 0.998; k̂ = 3.503

Pork r̂ = 1.714; k̂ = 1.127; ĥ = 0.041 r̂ = 1.085; k̂ = 3.591
Poultry r̂ = 1.813; k̂ = 2.499; ĥ = 0.080 r̂ = 4.810; k̂ = 64.12
Fruit juices r̂ = 0.939; k̂ = 0.209; ĥ = 0.083 r̂ = 0.108; k̂ = 0.423
Wines r̂ = 0.764; k̂ = 5.594; ĥ = 0.092 r̂ = 0.413; k̂ = 2.404
Coffee r̂ = 0.784; k̂ = 8.961; ĥ = 0.033 r̂ = 0.431; k̂ = 0.386

Fig. 5. Exposure output histogram (relative frequencies) with the

MP–P method.
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following procedure can be used. Assuming aV 0.5,

let k = [(N+1)a], the largest integerV (N+1)a. Then, we
define the empirical ath and (1�ath quantiles by the

kth largest and (N+1�k)th largest values of all the

Êi
(S), respectively. These quantiles are known as the

empirical quantiles.

2.2. Methodology of the SA

The SA used is based on two main joint tools: a

quadratic polynomial model and a simulation design

which is optimal relative to this model. Our aim is to

determine 95th and 99th quantile models for clearly

expressing the influence of the factors chosen and,

secondly, to have at our disposal a simulation tool to

easily evaluate the amplitude of a quantile variation

when new inputs are given.

2.2.1. Polynomial model

After some preliminary trials, we assumed a full

quadratic polynomial regression model for the

responses (outputs) studied. This regression model is

based on 32 main factors, their 496 two-factor inter-

actions and their 32 quadratic terms. The 32 factors

are the pdf parameters: 16 parameters of the Gamma

distributions relative to the eight consumed foods

(each of these distributions is described by three

parameters; the influence of the threshold parameter

is not studied because it merely demarcates the lower

position of the distribution of the consumers to con-

sider the non-consumers), and 16 parameters of the

two parameter Gamma distributions relative to the

eight food OA contaminations. The general form of

the model is:

y ¼ b0 þ
X32

j¼1

bjzj þ
X31

j¼1

X32

k¼jþ1

bjk zjzk

þ
X32

j¼1

bjjz
2
j þ e, ð4Þ

where the b are unknown parameters, the factors z are

the consumption and contamination pdf parameters,

and e is an error term for which no particular probability

distribution is assumed and we only suppose its expect-

ation is zero. Model (4) is a second degree (quadratic)

polynomial in z. In the following, model (4) is succes-

sively applied to the 95th and 99th empirical quantiles,

Q̂0.95 and Q̂0.99 respectively, defined by Eq. (3).

2.2.2. Experimental design

In order to estimate optimally the b parameters of

model (4), an appropriate simulation design is chosen.

As the three-factor interactions and over are assumed

negligible, a full factorial design of 332 experiments

was not necessary, especially as it would have taken

an extremely long time. Instead of this unfeasible

design, we built a resolution-V fractional factorial

design (Box et al., 1978) of 6561 experiments by

means of the Factex procedure of the SAS software

(SAS/QCR Institute). A resolution-V design allows us

to estimate independently the parameters of the main

effects of the factors (the zj), the parameters of the 496

two-factor interactions (the zjzk), and the parameters of

the 32 quadratic effects (the zj
2) assuming that three-

factor and over interactions are negligible. The factor

levels were coded as �1, 0 and +1.

2.2.3. Factor ranges

The z factors, i.e. the parameters of the consump-

tion and contamination pdf, are the inputs of the SA.

The aim is to make the inputs vary in a reasonable

range but large enough to observe how the response

outputs vary. Because we had only one data set for

consumption and contamination, no hypothesis of the

factor variations could be made, so no supplementary

surveys or contamination analyses were available.

Thus, to simulate a meaningful range for each factor,

we decided to determine it by a parametric bootstrap

approach (Efron and Tibshirani, 1993). We consid-

ered the correlation between the shape and scale

parameter of the pdf. For each consumption and

contamination sample (16 in all), 10,000 bootstrap

samples were obtained. A parametric bootstrap sam-

ple is obtained by sampling n times [n is the size of

the data sample; see Table 2 (consumers) and Table 3

for the values of n] in the distributions fitted to the

data. Table 4 gives the parameters of those distribu-

tions. From the mean and the standard deviation of

each bootstrap sample, we calculated the scale and

shape parameters from relation (1). As the bootstrap

means were biased due to the sparseness of the data

(see histograms Figs. 1–3), all the bootstrap scale and

shape parameters were re-centred on the fitted param-
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eter values given in Table 4. As the scatter plot of

the 10,000 parameter pairs (scale and shape) showed

an elliptical appearance for each food consumption

and food contamination, we determined a variation

domain by calculating a 95% concentration ellipse, one

in each zone. In each ellipse, three squared variation

domains were designed for the shape and scale param-

eters: the first one in the lower part of the ellipse (zone

I), the second one in the middle part (zone II) and the

third one in the upper part (zone III). Thus, in this

approach, three polynomial models were determined

for the 95th and 99th quantiles. Fig. 6 gives an example

of the three zones for the consumption of cereals. For

example, Tables 5, 6 and 7 indicate the three factor

levels �1, 0 and +1 for the lower, middle and upper

zones, respectively.

2.2.4. Model validation

To check whether the estimated regression model

was a valid approximation, we proceeded as follows:

2.2.4.1. Calculation of the adjusted squared multiple

correlation coefficient.

R2
adj ¼ 1� ð1� R2Þ ðn� 1Þ

ðn� pÞ ,

where R is the usual multiple correlation coefficient,

n is the number of observations (here n = 6561) and p

is the number of parameters in the model (in Eq. (4),

p = 1+32 + 496 + 32 = 561).

2.2.4.2. Examination of the residuals. We consid-

ered the DFFITSi statistic defined as:

DFFITSi ¼
ðŷi � ŷðiÞÞ
sðiÞ

ffiffiffiffi
hi

p ,

where ŷi is the prediction for the ith observation and ŷ(i)
is the ith prediction but without the ith observation, s(i)
is the estimated standard deviation after deleting the ith

Fig. 6. Scatter plot of the shape and scale parameters for cereals obtained by bootstrap showing the three experimental domains.
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observation, and hi is the ith diagonal of the projection

matrix for the predictor space (see Belsley et al., 1980

for more details). As the distribution of the model

residuals shows an approximately normal distribution,

a possible threshold is the size-adjusted cut-off recom-

mended by Belsley et al. (1980) equal to 2
ffiffiffiffiffiffiffiffi
p=n

p
.

Therefore, a value of DFFITSi above this cut-off

indicates an influential residual ei. The DFFITSi was

calculated by SAS software (Proc REG).

2.2.4.3. Test experiments. A final test was performed

to evaluate the model validation: the comparison

between the predicted outputs for K, typically 10,000,

new input combinations randomly sampled in the three

squared experimental domains and the corresponding

K simulated outputs. Then, we check if the K residuals

are Gaussian and if their variation ranges are reason-

able. We calculate the percentages dei:

dei ¼
ei

yi
� 100 ¼ ŷi � yi

yi
� 100, ð5Þ

where yi is the observation and ŷi the value predicted by

the model to see the percentages of discrepancy

between predicted and observed values for the test

experiments.

3. Results

We fitted the model (4) to the 6561 experiments for

the two responses Q̂0.95 and Q̂0.99 in the three zones as

described in Section 2.2.3, after the factors zj had been

Table 7

Levels of the inputs of the sensitivity analysis for the upper part

(zone III)

Food Factor range

Consumption Contamination

�1 0 1 �1 0 1

Cereals r 2.8838 2.9738 3.0637 0.552 0.587 0.622

k 0.544 0.5552 0.566 0.9363 0.9893 1.0425

Raisins r 1.124 1.237 1.350 1.305 1.404 1.502

k 8.312 9.394 10.476 3.095 3.339 3.583

Other r 0.676 0.835 0.994 1.233 1.413 1.593

dried fruit k 2.84 3.456 4.072 4.825 5.3202 5.815

Pork r 1.899 1.973 2.047 1.5625 1.5925 1.6225

k 1.2488 1.3241 1.399 5.287 5.373 5.459

Poultry r 2.062 2.127 2.192 5.543 5.729 5.915

k 2.749 2.940 3.131 72.68 77.07 81.44

Fruit juices r 1.146 1.231 1.316 0.238 0.2689 0.299

k 0.272 0.292 0.312 0.997 1.141 1.285

Wines r 0.882 1.044 1.206 0.487 0.509 0.531

k 6.915 8.663 10.41 2.718 3.055 3.392

Coffee r 0.895 1.060 1.225 0.549 0.570 0.591

k 10.26 12.03 13.796 0.565 0.578 0.591

Table 6

Levels of the inputs of the sensitivity analysis for the middle part

(zone II)

Food Factor range

Consumption Contamination

�1 0 1 �1 0 1

Cereals r 2.3690 2.5944 2.8198 0.3987 0.4395 0.4802

k 0.4688 0.4796 0.4904 0.6210 0.6740 0.7260

Raisins r 0.5122 0.7012 0.8902 0.2822 0.3750 0.4680

k 3.6110 5.4840 7.3570 0.3055 0.5305 0.7550

Other r 0.4042 0.5818 0.7594 0.8160 0.9980 1.1790

dried fruit k 1.5492 2.2862 3.0230 3.0400 3.5020 3.9640

Pork r 1.6320 1.7140 1.7950 1.0240 1.0850 1.1450

k 0.5635 1.1269 1.6903 3.5477 3.5907 3.6340

Poultry r 1.7590 1.8310 1.9030 4.6150 4.8100 5.0000

k 2.2890 2.4950 2.7020 59.0400 64.1200 69.2000

Fruit juices r 0.8450 0.9388 1.0330 0.0693 0.1078 0.1464

k 0.1862 0.2087 0.2312 0.2486 0.4233 0.5980

Wines r 0.5895 0.7645 0.9390 0.3657 0.4127 0.4596

k 3.5740 5.5940 7.6140 1.7800 2.4040 3.0300

Coffee r 0.5862 0.7842 0.9820 0.3861 0.4310 0.4760

k 7.0300 8.9610 10.8920 0.3421 0.3860 0.4300

Table 5

Levels of the inputs of the sensitivity analysis for the lower part

(zone I)

Food Factor range

Consumption Contamination

�1 0 1 �1 0 1

Cereals r 2.148 2.215 2.282 0.257 0.292 0.327

k 0.395 0.404 0.412 0.306 0.359 0.412

Raisins r 0.0524 0.165 0.278 0.2822 0.375 0.468

k 0.492 1.574 2.656 0.3055 0.5305 0.755

Other r 0.1691 0.328 0.487 0.402 0.582 0.762

dried fruit k 0.500 1.116 1.732 1.189 1.685 2.180

Pork r 1.381 1.455 1.529 0.547 0.577 0.607

k 0.855 0.930 1.005 1.722 1.808 1.894

Poultry r 1.470 1.535 1.600 3.705 3.891 4.077

k 1.859 2.050 2.241 46.784 51.17 55.56

Fruit juices r 0.5618 0.6466 0.7314 0.0693 0.1078 0.1464

k 0.1051 0.1254 0.1457 0.2486 0.4233 0.598

Wines r 0.323 0.485 0.647 0.294 0.3161 0.338

k 0.777 2.525 4.273 1.416 1.753 2.090

Coffee r 0.342 0.508 0.673 0.271 0.2918 0.3125

k 4.122 5.888 7.654 0.1796 0.1928 0.2059
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appropriately coded (use of orthogonal polynomials

and scaling). Table 8 gives the values of the Radj
2 of

the four main models in the middle part for the 95th

quantile. According to these Radj
2, the model with

only the main effects was chosen in the first step

(model 4 in Table 8). Indeed, the model has just

32 terms and its value of Radj
2 is still very high

(Radj
2 = 0.97). The results being equivalent for the

99th quantile and the Radj
2 values being slightly

smaller (about 3% less), the model with only the 32

main effects was also chosen for the 99th quantile. For

both quantiles, the results were similar in the other

two zones.

In the second step, with a view to parsimony, for

each zone, variables were selected considering their

explained sum of squares. The variables with the

higher sum of squares were kept in the final model.

Table 9 gives the final models with their parameter

estimations for the 95th and 99th quantiles and for the

three zones. The model for the 95th quantile includes

only four terms (the main effects) in the lower and

upper zones and five terms in the middle zone. The

results are similar for the 99th quantile with a slightly

smaller percentage of explained variability for each

model. The results show a major influence of the

parameters of the distributions on cereals (contami-

nation and consumption). In the middle part, a slight

influence of the pork consumption scale parameter

appears. We noted that both the orthogonality of the

simulation designs and the above-mentioned coding

enable us to compare rigorously the influences of all

the food distribution parameters. We obtained the

marginal effect of each parameter and all of the

parameters could be compared with each other be-

cause they have the same scale. On the other hand,

the constant terms of the models of Table 9 represent

the quantile means inside the cuboidal zones: for the

95th quantile they are 28.1, 20.1 and 16.7, and for the

Table 9

Polynomial models of the 95th and 99th quantiles in the three zones of the 95% concentration ellipse with z1 = cereals contamination scale

parameter, z2 = cereals contamination shape parameter, z3 = cereals consumption shape parameter, z4 = cereals consumption scale parameter,

and z5 = pork consumption scale parameter

95% concentration elliptical zone Percentile Final model R2

I (Lower part) 95th ŷ = 28.1�8.2z1+5.4z2 + 1.2z3�z4 0.97

99th ŷ = 61.5�18.2z1+7.3z2 + 2.7z3�2.2z4 0.96

II (Middle part) 95th ŷ = 20.1�3.1z1+2.6z2 + 2.6z3�0.7z4�0.5z5 0.97

99th ŷ = 39.1�6z1+3.6z2 + 4.9z3�1.5z4�0.5z5 0.94

III (Upper part) 95th ŷ = 16.7�1.7z1+1.3z2 + 0.7z3�0.5z4 0.94

99th ŷ = 30.4�3.2z1+1.9z2 + 1.3z3�z4 0.89

Table 8

Radj
2 statistic for main models (95th quantile and zone II)

Model Number of parameters Radj
2

Model 1: y ¼ b0 þ
X32

j¼1

bjzj þ
X31

j¼1

X32

k¼jþ1

bjkzjzk þ
X32

j¼1

bjjZ
2
j þ e 560 0.9715

Model 2: y ¼ b0 þ
X32

j¼1

bjzj þ
X32

j¼1

bjjz
2
j þ e 64 0.9682

Model 3: y ¼ b0 þ
X32

j¼1

bjzj þ
X31

j¼1

X32

k¼jþ1

bjkzjzk þ e 528 0.9695

Model 4: y ¼ b0 þ
X32

j¼1

bjzj þ e 32 0.9664
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99th quantile they are 61.5, 39.1 and 30.4 according

to the upper, middle and lower zone, respectively. We

can compare these values to the value given in Gauchi

(in press): for the 95th and 99th quantiles, the

following 95% confidence intervals were calculated

[14.07; 29.56] and [28.08; 76.92], respectively. We

noted that the quantile means obtained with this SA

lie inside the 95% confidence intervals. Thus, we

assume that the SA outputs are reasonable values.

The distributions of the residuals of the different

models did not indicate outliers. Only a few DFFITS

measures slightly exceeded the threshold as defined in

Section 2.2.4.2. Ten thousand new combinations of

inputs have been randomly sampled inside the three

experimental domains. In the three zones, the distri-

butions of the residuals of each model are approx-

imately Gaussian and have moderate variation ranges.

For example, in the middle part for the 95th quantile,

the estimated standard deviation of the model resid-

uals is estimated at 2.92 (for the 10,000 test experi-

ments). It is higher than the estimated standard

deviation (0.37) of the residuals on the 6561 experi-

ments from which the model has been chosen, but

their variation range is reasonable because 95% of

these residuals have percentage, as defined in Eq. (5),

between F28%. The discrepancy between the pre-

dicted and observed values for the test experiments is

acceptable. Fig. 7 represents the histogram of the

10,000 residuals for the 95th quantile in the middle

zone.

4. Discussion

On the basis of the observation, well known to risk

analysts, that to obtain a good estimation of the high

quantiles of exposure is a difficult operation when it is

based on data which are both sparse and characterised

by very asymmetrical distributions, we undertook a

sensitivity analysis of the 95th and 99th quantiles of

exposure to OA. We conducted an analysis of their

sensitivity to probability density parameters adjusted

to consumption and contamination data. That is, we

measured the influence of the shapes of the consump-

tion and contamination distributions of the studied

foods to highlight those foods that possibly require

particular investigation in order to better estimate the

high exposure quantiles.

One of the original ideas of this work was to

generate a realistic variability of data available by a

parametric bootstrap method. This enabled us to con-

struct variation intervals of the density parameters

concerned, intervals presumed to be representative of

the child population. Another original idea was to take

into account the natural correlation of the parameters of

the Gamma laws using concentration ellipses. How-

ever, we have not explored all the variation domains of

the inputs: we studied the sensitivity of the 95th and

99th quantiles in three subdomains of cuboidal sym-

metry distributed judiciously in the variation domain

(lower, middle and upper zone). The advantage of

these subdomains is that they make it possible to set

up orthogonal experimental designs and to take into

account a large variation of the quantiles (see the

constant terms of the models in the three zones).

On these subdomains, it appears very clearly that a

small number of parameters have a great influence on

estimating these quantiles compared with the very

large number of parameters envisaged at the begin-

ning. These include mainly the parameters of the laws

of consumption and contamination of the category

cereals. Cereals are known by epidemiologists and

toxicologists to play a major role in health problems

concerning OA in Europe.

It is difficult to take into account all the volume of

the variation domain of the inputs (for example,

because of the non-convexity of this domain). The

necessary tools are derived from the theory of optimum

experimental designs. This could possibly improve our

work. However, it would be appropriate beforehand to
Fig. 7. Histogram of the 10,000 residuals for the 95th quantile for

the 10,000 new observations in the middle part.
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guarantee the pertinence of our domain of variation

(obtained by bootstrap sampling) ideally with data

from further surveys.

Finally, it is difficult to compare our results with

other results because, to our knowledge, no other

research group has conducted a study on contamina-

tion by OA. The other estimations of the OA exposure

quantiles found elsewhere are very empirical as indi-

cated previously in Gauchi (in press) and the sensi-

tivity analysis presented here is the first SA on OA

exposure quantiles.
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