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TOWARDS A SEMANTIC INTERPRETATION OF EVIDENTIAL
DISTANCES: THE CASE OF BELIEF FUNCTIONS
APPROXIMATION

JOHN KLEIN, SEBASTIEN DESTERCKE AND OLIVIER COLOT

ABSTRACT. The many distances defined in evidence theory provide instrumen-
tal tools to analyze and compare mass functions: they have been proposed to
measure conflict, dependence or similarity in different fields (information fu-
sion, risk analysis, machine learning). Many of their mathematical properties
have been studied in the past years, yet a remaining question is to know what
distance to choose in a particular problem. As a step towards answering this
question, we propose to interpret distances by looking at their consistency
with partial orders possessing a clear semantic. We focus on the case of in-
formational partial order and on the problem of approximating initial belief
functions by simpler ones. Doing so, we study which distances can be used to
measure the difference of informational content between two mass functions,
and which distances cannot.

Keywords: Belief functions, distance, metric, partial order, semantic, con-
vex optimization

1. INTRODUCTION

The theory of belief functions is a flexible framework to model uncertainty in
the presence of imprecision. This framework mixes set and probabilistic represen-
tations. It was initially proposed to model imprecise statistical observations [I],
and this initial work was then extended [2] to include subjective and non-statistical
uncertainty (e.g., when a variable has a fixed, yet ill-known value). This latter view
was then pursued by Smets [3], who dissociated belief functions from any proba-
bilistic interpretation. They include many other representations proposed in the
literature, such as sets, probability measures or possibility measures. In this paper,
we will use the term evidence theory as a generic term for frameworks relying on
belief functions.

Among the tools developed to work with belief functions, distances have recently
received a growing attention. They have been proposed as tools to achieve various
tasks: measuring conflict [4, [5], measuring dependencies [6], learning models from
data [7,[8], or belief function approximation [9} [0} 1T], 12} 13} 14} [15]. Jousselme and
Maupin [16] surveyed evidential distances in order to classify them with respect to
their mathematical properties and to show some correlated behaviors among them.
Following Jousselme and Maupin’s analysis, Loudahi et al.[I7, 18] formalized some
properties with intuitive interpretations in the framework of evidence theory. De-
spite these efforts, providing evidential distances with clear interpretations remains
an open problem.

In this paper, we start by proposing a new answer to this problem: we interpret a
distance by its compatibility or incompatibility with some partial order possessing
a clear semantic. We then focus on the case of belief function approximations,
in which partial orders related to informative content play a specific role. The
combination of both distances and orders is very interesting in this problem, as the
partial orders allow us to select those distances consistent with the approximation
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2 JOHN KLEIN, SEBASTIEN DESTERCKE AND OLIVIER COLOT

problem, while the use of specific distances (within the selected subset) allows us
to take advantage of their mathematical properties to find unique solutions (when
partial orders only offers sets of incomparable solutions). Finally, we end with some
discussion about the presented results and ideas.

In Section [2| we will briefly review the basic concepts of the theory of belief
functions. Section [3| will recall the notions of distances and partial orders, as well
as describe our main idea to interpret distances according to their compatibility
with partial orders. Section [4] will then focus on the problem of approximating
belief functions, using partial orders of informative content to select and study
adequate distances. In particular, we will show that only some of the classical
distances are consistent with those partial orders, and that the choice of distance
can be further refined if we impose the approximation problem to have a unique
solution. Section [5| discusses some related points and possible extensions.

2. BASICS OF EVIDENCE THEORY

This section contains a reminder of evidence theory notions used in this paper.
More details about the various tools used in evidence theory can be found in [19],
for example. After providing this necessary background, we give a more detailed
presentation of partial orders and distances used in evidence theory.

Let Q = {w1,...,wyn} be a finite space over which a given ill-known variable
takes its values. In evidence theory, a mass function m : 2 — [0, 1] defined over
the power set of {) represents our uncertainty about the value of §. The mass m(FE)
can represent various things depending on the chosen interpretation:

e amount of evidence given to the fact that E contains the true value [2, [3],
o or the frequency of the imprecise observation E [1].

Mass functions sum to one, i.e., > pco0 m (E) = 1. A set E receiving positive mass
m(E) > 0 is called a focal element. We will denote by |A| the cardinality of a
set A. In particular, |Q| =n and [29| = N = 2",

Several alternative set-functions can then be defined to represent the same in-
formation as the one encoded in a mass function. The main ones are the plausi-
bility, belief, implacability and commonality functions. The plausibility function
pl : 2% — [0, 1] is defined as

(1) pl(A) = D m(E)

ENA#0D

and evaluates how much event A (being true) is consistent with the current evidence.
The belief bel : 2 — [0, 1] and implicability b : 2 — [0, 1] functions are defined
as

(2) bel(A)= Y m(E),
ECA,E#0)
(3) b(A) = Y m(E) = bel(A) + m(0).

ECA

Both evaluate how much event A (being true) is implied by the current evidence,
with the implicability assuming that () can imply anything, and the belief consid-
ering () as inconsistent. We have pl(A) = 1 — b(A°), A° being the complement of
A. Also, we always have bel(A) < pl(A).

When m(@) = 0, we have bel = b, and the couple belief/plausibility can be
interpreted as bounds of an ill-known probability, in the sense that they induce a
non-empty set

P(m) = {Plbel(A) < P(A) < pl(A), VA C O}
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where P are probability measures over the probability space (Q, 29). Also, in this
case, the value pl(A)—bel(A) measures the imprecision of the information contained
in m. When pl(A) = bel(A) for all A, the set P(m) contains only one probability
measure. This is a fully precise situation and m(E) > 0 only if |E| = 1. When
pl(A) —bel(A) =1 for all A, P(m) is the set of all probability measures. This is a
maximally imprecise situation and m(§) = 1.

Requiring m (@) = 0 can therefore be seen as a consistency constraint, while
allowing for m(()) # 0 means that some inconsistency is allowed. This inconsistency
can have various origins: (i) a conflict between sources, (ii) the fact that the true
value is not in 2 (open world assumption). We will call normalized those masses
such that m(0) = 0.

Finally, the commonality function ¢ : 2 — [0,1] is defined as

(4) q(A) = > m(E), VA € 2°.
EDA

It evaluates how much A is common, i.e., how much it implies the current evidence.
While interpreting the commonality is more difficult, it plays an important role
in evidence theory, and is a relevant measurement of how much information m
contains. Indeed, suppose m; and msy are two mass functions such that each focal
element Ey of mso is a superset of a focal element Ey of mqi: E; C Ey. We have
q1 (A) < g2 (A) for any A € 2 and one can fairly consider my as less informative
than m;.

Each of the functions m, pl, bel, b, ¢ contains the same information, in the sense
that there exists bijective transformations to go from one to the other [2] 20].

Two other functions computed from a mass m will be used in the sequel. The
contour function [2] 7 : Q@ — [0, 1] of m is defined as

m(wi) = pl({wi})

and is the trace of pl on singletons. The pignistic probability distribution[3, 2]
BetP : Q — [0,1] of m is defined as

BetP(w;) = Y m(B)/ .
w,€EE

In contrast with the other representations, they only represent a part of the in-
formation of m, and are not in bijection with it (two distinct masses my # mo
may have the same contour functions 7, = 7o or the same pignistic probability
BetPl = BetPg)

Some particular mass functions that will be instrumental in what follows are
categorical mass functions. A categorical mass function mg is such that mg(E) =
1, and it represents exactly the set E. A specific case of categorical mass function
is the vacuous one mgq, that represents complete ignorance about the true value
of 6.

Besides, mass functions can be viewed as vectors belonging to the vector space
RY with categorical mass functions as base vectors. Since mass functions sum to
one, the set of mass functions is the simplex M in that vector space whose vertices
are the base vectors {ma} 4. This simplex is also called mass space [22].

3. INTERPRETING DISTANCES THROUGH PARTIAL ORDERS

This section introduces the basic idea used in the rest of the paper: interpreting
distances through their compatibility with partial orders. In the sequel, we apply
this idea to the most well-known and characterized partial orders, that is the one
comparing informative contents of belief functions.
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FiGURE 1. Illustration of partially ordered mass functions

3.1. orders. A first way to characterize the underlying structure of the mass space
M is to look for binary relations allowing pairwise comparisons of mass functions,
and in particular partial orders. A binary relation is a subset R of M x M and if
a pair (m1, mg) € R, we understand that m; is connected to ms. A binary relation
can thus also be seen as an oriented graph. One usually denotes alternatively
(m1, ma) € R or mi Rma.

A pre-order < is a binary relation over M such that it has the following prop-
erties:

o reflexivity: m < 'm for all m € M,
e transitivity: for any triplet (mq,ma,m3) € M? such that m; < mso and
ms = mgs, we have m; < ms.

A partial order C is a pre-order with the antisymmetry property:
e for any pair (m,mg) such that m; C mo and ma C my, we have m; = mo.

The pair (M, C) is called partially ordered set or poset for short. If in addition,
each pair (mj, mg) in M is comparable, i.e. we have either m; C mg or mg C my,
then C is a total order.

Finally, an element m such that m C m; and m C my is called a lower bound
of {my;my}. Conversely, an element m such that m; C m and ms C m is called
an upper bound of {m1;ms}. The bottom L of a poset (if it exists) is the only
element that is a lower bound of any subset of M. The top T of a poset (if it
exists) is the only element that is an upper bound of any subset of M. A poset
such that it is possible to find a least upper bound and a greatest lower bound for
any pair (mg,msg) is called a lattice. Figure [1|illustrates a partial order between
mass functions that is also a lattice.

The interest of using such qualitative relations between belief functions is that it
is easier to associate them with a clear semantic. Indeed, C or R can be weak struc-
tures, hence can be based on simple and readable assumptions. The counterpart
is that the chosen partial order C may contain many incomparabilities, therefore
many problems relying on it will have many, possibly hard to find, solutions.

3.2. Distances. Another way to compare mass functions is to measure how distant
my and mo are. A distance, or metric, between two masses mi,ms is a bounded
operator d : M x M — [0,a] with a € RT that satisfies the following properties:
(1) Symmetry : d(mq,mz2) = d(msa, mq),
(2) Definiteness : d(my,mg) =0 < my = ma,
(3) Triangle inequality : d(my,mz2) < d(my,ms) + d(ms, mz), Ymgz € M.
A pseudo distance is an operator that satisfies symmetry and triangle inequality,
but not definiteness (two distinct masses may have a zero pseudo distance value).
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The pair (M, d) is a called a metric space. When the mass space M is endowed
with a distance d, then d is called an evidential distance.

Jousselme and Maupin [I6] have reviewed a large spectrum of operators within
evidence theory associated to distances, checking among other things which proper-
ties (among Symmetry, Definiteness and Triangle inequality) were satisfied by each.
In this paper, we will only study proper distances and pseudo-distances, therefore
retaining those operators having the nicest mathematical properties. More recently,
some authors have studied the consistency or the links of such distances with other
notions of evidence theory. For instance, Loudahi et al. [I7, [I8] studies the consis-
tency of distances with information fusion operators, such as the conjunctive rule
and some of its extensions. In some sense, this paper pursues this effort by building
and investigating links between the mass space seen as a poset (induced by a partial
order) and the mass space seen as a metric space.

Distances require to impose a much richer structure on M than partial orders or
binary relations, as they induce a numerical (and therefore totally ordered) relation
between any pair of mass functions. On one hand, this allows to perform much
more sophisticated numerical operations on mass functions, but on the other hand
the relation they induce on mass functions is much harder to interpret in general,
especially as M is a large, complicated space.

3.3. Compatibility between partial orders and distances. In our opinion,
one way to combine the advantages of partial orders or binary relations (poten-
tially high interpretability) and of distances (rich structure on M and access to
numerical tools) is to interpret distances through their compatibility or consistency
with partial orders. Formally, this can be defined as follows:

Definition 1. Given a partial order T, defined over M, An evidential (pseudo)
distance d is said to be C,-compatible if for any mass functions mi, mo and ms
such that m; E, mg &, m3, we have:

(5) max {d (my,msa);d (mg,m3)} < d(my,ms),

Moreover, d is said to be C,~compatible (in the strict sense) if m; T, mo C,
mg implies a strict inequality: max {d (m1,ms2);d (ma, ms)} < d(mq,ms).

In particular, if the partial order C, hasﬂ a bottom 1 € M and a top element
T € M, then satisfying strict compatibility in Definition [1| ensures that d refines
the partial order C, into a total pre-order =<, defined as my <, mq if d(L,m;) <
d(J_, mg).

Conversely, we will say that a distance is not compatible, or incompatible, with
a partial order if Definition [I| is not satisfied for some triplet mi, msy,ms, that is
my &y mo C, mg and max {d (my, ma) ;d (ma,ms3)} > d(m1,ms).

The trivial distanceE| is obviously compatible with any non-strict partial or-
der and incompatible with any strict order. In general, this tends to show that
Cy-compatibility in the strict sense is a lot more valuable property than C,-
compatibility.

When possible, we can use implications between different orders (see Eq. (@) to
avoid checking the consistency of a distance with respect to all partial orders, as
shown by the next proposition.

Proposition 1. Consider two partial orders &, &, such that C,=C, and a
distance d, then

IRecall that bottom and top elements L, T of C are such that for any other element =z,
lczCT.
2For any m and m/, the trivial metric equals 1 whenever m # m/'.



6 JOHN KLEIN, SEBASTIEN DESTERCKE AND OLIVIER COLOT

o if d is T -compatible, then it is &, -compatible;
o if d is T -incompatible, then it is T, -incompatible.

Proof. The second implications follows from the first by contraposition, hence we
will only show the first. For this, take any triplet my, ms, m3 such that m; C,
mo C, m3. We then have

my Ep mo Ep mg = my £y mo £y mg
= max {dy2;da3} < di3

where d;; = d(m;,m;). The first implication following from C,=C,, and the
second from the C,-compatibility of d. O

An immediate corollary follows concerning the strict part:

Corollary 1. Consider two partial strict orders C,, Ty such that C,=C, and a
distance d, then

o if d is strictly C,-compatible, then it is strictly C,-compatible;

o if d is strictly C,-incompatible, then it is strictly T, -incompatible.

We can now apply this idea to the most studied partial orders in belief functions,
that is the one comparing informative contents, and study from it those distances
that are the most adapted to solve the important problem of approximating complex
belief functions by simpler ones.

4. APPROXIMATING BELIEF FUNCTIONS THROUGH DISTANCES

We first recall the partial orders based on informative content, before proceeding
to the study of distances that can be used to approximate belief functions.

4.1. Comparing Informative content. Partial orders comparing informative
contents formalise the notion of inclusion between belief functions, and play an
essential role in approximations problem, as it is usual to require the approxima-
tion to be either an inner approximation included in the initial belief functions, or
a conservative outer approximation including the initial belief function. To define
such inclusions, we then have to rely on those orders. Several definitions are found
in the literature:
i) my is pl-included in mg, denoted m; Ty mo, if pli(A) < pla(A) for all
A € 29, where pl; is the plausibility induced by m;.
i) my is b-included in mgo, denoted m; Cp ma, if b1(A) > ba(A) for all
A € 29 where b; is the implicability induced by m;.
iii) m; is bel-included in ms, denoted my Cpep mo, if beli (A) > bely(A) for
all A € 22, where bel; is the belief induced by m;.
iv) my is g-included in mo, denoted m; T, mao, if ¢i(A) < ¢o(A) for all
A € 29 where ¢; is the commonality induced by m;.
v) my is m-included in ms, denoted m; =< ma, if m(w) < m(w) for all
w € Q, where 7; is the contour function induced by m;.
vi) A function m; is a specialization of mg, denoted my C; meo, if there exists
a non-negative N x N matrix S = [S (¢, j)] such that

N
for j=1,...,N, > S5(i,j) =1,
=1

N
fori=1,....N, Y ma(E})S(i,5) = mi(E).
j=1
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The term S (é,7) > 0 is the proportion of the focal set E} that "flows down”
to focal set E;. The order in which subsets are indexed is arbitrary.

The strict version C of these inclusions is simply obtained when the inequalities
are strict for at least one element, and in the case of s-inclusion when S;; > 0 for
at least one pair E; C E;

All these concepts extend classical set inclusion, in the sense that if A C B, then
ma C, mp for any © € {pl,b,bel,q,s,7}. It is well known that set-inclusion is a
partial order over 2. Likewise, these binary relations are partial orders over M
except =<, which is just a pre-order. These partial orders are not total orders in the
sense that we may have my [Z, mo and my £, my. They induce a lattice structure
over the mass space (whose top is mg and bottom is mg). Again, there exists other
orders extending set inclusion [23], but these are the most canonical ones.

Due to the duality between pl and b, pl- and b-inclusions are equivalent notions.
When m(0) = 0, then pl-, b- and bel-inclusion coincide, and m; T, mg is then
equivalent to P(mq) C P(ma).

The following implications hold between these notions of inclusion [24]:

my By mo

6 mi Eg mo = — = mq <y Msa.
() 1 =s 2 {m1Eqm2} 1 7 2

Since notions of pl, ¢ and s-inclusion are antisymmetric, that is m; T, msy and
my J, mo implies m; = mqy for x € {pl, ¢, s}, we also have

mq Epl meo

(7) my Cs M2 = { my Cq ma

Due to Proposition |I|, it is then sufficient to show that a distance is C,; — or
C4 —compatible to show that it is Ty —compatible, or that it is Ty —incompatible
to show incompatibility with the other partial orders. The same holds for any orders
that implies C 4 —inclusion (e.g., Dempsterian specialization [25], orders induced by
conjunctive or disjunctive weights [23]).

4.2. Distances compatible with informative content orders. To introduce
the distances studied in this paper, we must first recall that functions m, pl, b, bel, q, w
can be encoded as vectors. In general, it is sufficient to choose an arbitrary way
to index subsets of Q: 2 = (E;), ;.. However, in practice, a convenient way to
index subsets is given by the binary order [26]. The details of this representation
are recalled in appendix [A]

For a given set-function x € {m,pl,b,bel,q}, we will use a bold letter x to
denote the corresponding vector of N elements such that the i*" element of x is
z(E;). Similarly, we will denote by 7 and BetP the vector of n elements whose i*}
element is respectively m(w;) and BetP(w;).

In evidence theory, the most widely used metric is Jousselme distance [27]. It is
based on an inner product relying on a similarity matrix. This distance is given by:

1

(8) dJ(ﬂ’Ll,mQ) = \/2(1'111 7m2)lJaC (m1 *m2)7

with Jac the Jaccard similarity matrix between sets. Its components are:
1 ifE;,=E;=0

9 Jac(i,7) = AE. / .

©) (i.9) { Igzggﬁ otherwise

The success of Jousselme distance is explained by the fact that, thanks to the matrix
Jac, the relations between focal elements are taken in account. Consequently, the
poset structure of 22 has an impact on distance values, allowing a better match
with the user’s expectations.
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Many other evidential distances are defined similarly by substituting matrix Jac
with another matrix evaluating the similarity between base vectors in different
ways [28, 22]. Some experimental results [27] show that these distances are highly
correlated to dj.

Another family of distances is covered by considering norms over vectors, as any
norm induces a distance defined as the norm of the difference between a pair of
elements. In this paper, we focus on L* norms whose definition is:

(10) Il = > kil* |

1<i<p

with x a given vector of size p = N or n. For each category x € {m; bel; pl; ¢; b; ; Bet P},
several normalized evidential distances can be defined as follows:

do: Mx M — [0,1],

(11) mi X mg — |X1 — X2||k7

o
with |.||, the L* norm, k € N*, the set of positive natural numbers, and x; the
vector containing the values of the function z; induced by m;, i € {1;2}. If z €
{m; BetP}, dy 1, is a pseudo-metric whereas if x € {bel; pl; q;b}, dy is a metric.
From [18], the normalizing constant a is given by:

12 = dy mp).
(12) o= max k (ma,mp)

Distances induced by L* norms have already been used in evidence theory. In
their survey (section 3.2), Jousselme and Maupin[I6] recall the history of such dis-
tances, also known as the Minkowski family of evidential distances. As already
remarked (but not formalised) in their paper, one can see that some of the dis-
tances are equivalent. In particular:

Lemma 1. for any k € N*, we have:
(13) dor, = dpk-

Proof. Let my and msy be two mass functions on 2. By definition of the L* norm
and the distance d 1, for any positive finite integer k, we have :

e

[b1 —bol, D bi(A) = ba(A)F ]

ACQ

=

= Z 1 —pli(A%) =1+ pla(A9)|* ]|
ACQ

1
k

= | X () = pla(A)F |

ACQ

lel - P12||k )
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The last statement is equivalent to dp (M1, m2) = dpx(m1,m2). If k = oo, the
same reasoning applies:

b;—b = b1(A) — by(A

b1 — b2l g1§§| 1(A4) — b2(A)],

= glggu —pli(A°) — 1+ pla(A°)],
= I}gglpll(A)—plz(A)l,

= |pL - pl2||oo
and thus db,oo = dpl,00- O

An immediate corollary is the following

Corollary 2. for any k € N* and any normalized mass functions my and my € M
we have:

dp, (M1, m2) = dper, (M1, m2) = dpi (M1, m2),
(14)

These preliminary results allow to simplify some upcoming proofs. We are now
ready to study which of the previously mentioned distances are compatible with
partial order introduced in Section

First note that Loudahi et al. [I8] already introduced a concept similar to ours
focused on sets (or categorical mass functions), even if they did discuss it with a
different purpose in mind (i.e., formalizing Jousselme and Maupin [I6] idea that a
distance should reflect interactions between focal sets). This property is called C-
compatibility. In this article, we give a slightly different definition of this property
which reads as follows:

Definition 2. An evidential distance d is said to be C-compatible if its restriction
to categorical mass functions is not the trivial set distance and if VA, B, C' C Q such
that A C B C C, one has:

(15) max {d (ma,mp);d(mp,mc)} <d(ma,me).

This property ensures that evidential distances between categorical mass func-
tions have dynamics similar to relevant set distances such as the Jaccard distance or
the Hamming set distance. In [I8], the term d (mp, m¢) is not taken into account
in the inequality, which boils down to :

(16) d(ma,mp) <d(ma,meg).
Definition [I] can obviously be seen as a straightforward generalization of Defini-
tion@provided that the order C, is such that A C B = m4 T, mp. This assertion

holds for y € {pl, ¢, bel, s, 7}, as already mentioned in [29, Sec. 2.3.]. The following
Lemma follows:

Lemma 2. Any C,-compatible evidential distance with y € {pl,q,bel,s,} is also
C-compatible.

Proof. From Destercke and Dubois [29] Sec. 2.3.], we have that A C B implies
ma T, mp for y € {pl, q,bel,s,n}, that is

ma Ep mp

ACB=mysLC,mp=
A=s B ma Ty mp

}:>mA <x Mmp.

Now, if a distance is C,-compatible, it is sufficient to apply the first implication of
Proposition [I] to see that it is also C-compatible. O

Proposition 2. For any k € N*\ {co}, the following assertions hold:
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the distances dp, and dy, are Ty and <x-compatible in the strict sense,
the distance dper i 15 Cper-compatible in the strict sense,

the distance dq 1 is Cq and <,-compatible in the strict sense.

the pseudo-distance dr 1, is <x-compatible in the strict sense.

The same results also hold for k = co with non-strict orders.

Proof. We will start with distance dp; ; with & < oo, and will then proceed with
the others:

o for distances dp; x: let pli, plo and pl3 denote three plausibility functions
induced by mq,mo, ms. Let us suppose that mq Ty ma Ty ms. We can
write dp; (M1, m3)

k
= (Ilply —pLsll,)",
Z Iply (A) — pls (A) [*.

ACQ

Since m1 Ty ma Ty M3, we know that for any A C Q:
pl1 (A) — pls (A) | = max {pl3 (A) — plz (A) ; pl2 (A) — ply (A)} > 0
and that the inequality is strict for at least one subset. This gives :

dpi i (m1,mg) > Z maX{ (pls (A) — pla (A))",
ACO

(bl (A) — ply (A))" }

As the sum of maxima is always higher than the maximum of the sums,
this gives

dpi. (M1, m3) >H13X{ Z (pls (A) — pla (A))",
ACQ

S (pls (A) — pa (A))* }

ACQ

k
>max{ (IpL, — plall,)* .

(IIpL, — pl,)" }

The last inequality is equivalent to :
(17) dpii; (M1, m3) > max {dpl,k (ma,ma); dpi i (M2, m3) }

e for distances dp : given equation and Lemmal[l} the proof is immediate.

o for distances dpe1: the proof is actually similar to the one for dp; ;. Let
bely, bely and bels denote three belief functions induced by mq, mo, mg and
suppose that mi Cpe; Mo Cpe; m3. We then have:

et k (m1,m3)" = (||bel; — b813||k)k7
=Y |bely (A) — bels (A) |*.
ACQ
Since my Cper Mo Cper M3, we know that for any A C Q:
|bely (A) — bels (A) | > max {bels (A) — bels (A) ;bely (A) — bels (A)} >0

and that the inequality is strict for at least one subset. The proof then
follows by the same reasoning as for plausibilities.
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o for distances d, j, the proof follows the same pattern. Simply consider
41, q2, g3 induced by m1,mg, m3 such that m; T, ma C4 ms, then
k k
dgr (m1,m3)” = ([lar —asll,)",
= Z g1 (A) — g3 (A) |k~
ACQ

and the proof follows similarly to the to previous cases.
o for pseudo-distances d x, the proof follows again the same pattern (with a
sum over w € €2).

A complement of this proof when k = oo is given in appendix [B] O

We can easily show that the distances based on the pignistic probability are not
compatible with the partial order C, and therefore are also not compatible for any
other partial order comparing informative content. Indeed, consider the following
example.

Example 1. Let Q = {a,b, ¢} and consider the mass functions

mi({a}) =1/3, mi({b;c}) = %/3

mz({b,c}) =0.1, ma(Q2) =0.9

m3(Q) =1.
We have m; Cg mo Cg mg, but BetPy = BetP3 and BetP, # BetP;, hence
for any Lj distance using pignistic probability, we have dpeipr(m1,ms) = 0, but
dBetp,k(m1, me) # 0.
This shows that using dpeip is ill-advised in problems involving informative

content, such as the approximation of belief functions.

A more surprising fact is that Jousselme distance d; is unfortunately incompat-
ible with C,, for y € {s, q, pl, bel}, as show the next two counter-examples.

Example 2. Let Q = {a, b} and consider the mass function vectors:

m; = t(0.61 0.19 0.15 0.05),
m, = ! (O 0 0.76 0.24) ,
mg; = ‘(0 0 04 06).
Let S; and S5 denote the following specialization matrices :
1 06 0 O 1 0 08 0
S — 0 04 0 O S, — 01 0 08
1o o 1 06’72 [0 0 02 0
0 0 0 04 0 0 0 02

We have m; = S;my = S1Somg which implies mq 55 mg E5 mag, but dj(mq,ms) ~
0.63 < dj(my,ms2) = 0.68, hence d; is Cs-incompatible. Proposition (1] gives the
incompatibility with &,; and C,.

Concerning Ty, another counter-example is required:

subset | 0 | {a} | {b} | Q

my 0103|0403

Mo 0 0 021038

Example 3. ms 04 0 |0.1]0.5
belq 0 |03]04]| 1

bely 0 0 |02 1

bels 0 0 |0.11]0.6




12 JOHN KLEIN, SEBASTIEN DESTERCKE AND OLIVIER COLOT

We have my Tpep ma2 Cpep mg, but dj(my,ms) = 0.36 < dj(mq,ms2) =~ 0.38,
hence dj is Cye-incompatible.

Note that substituting Jac in Equation by other matrices may result in
compatible distances, yet we leave such a systematic and tedious study to the
reader interested in such more exotic distances.

We now know which distances among the one we have considered can be used
to deal with the approximation problem. Proposition [2| tells us that L; norms
are good candidates (as they are compatible with the partial order derived from
the measure used in the norm), while we provided counter-examples showing that
other well-known distances (Jousselme distance, pignistic-based distances) ar not
compatible with informative content comparisons.

4.3. Belief function approximation. Approximating a complex mass function
by a simpler mass function ”similar to it” is a typical task where distances are
instrumental (i.e., to define what is mathematically meant by similar). Typically,
one also wants to ensure that this approximation is either an inner or an outer
approximation (e.g., to guarantee the cautiousness of the approximation, or to
bracket the initial mass between two), according to some partial order comparing
informative contents.

The following notions have been formalized by Dubois and Prade [30]. Consider
a subset S € M of target mass functions, as well as a partial order &, then we
have the following definition of optimal approximations:

Definition 3. A minimal outer approximation m} of a mass function m with
respect to a partial order C, within a part S C M is a mass function such that:
(i) m T, mi and for any m’ € S s.t. m T, m/, m' Z, m}"
(i) mf € S.

Definition 4. A maximal inner approximation m_ of a mass function m with
respect to a partial order C, within a part S C M is a mass function such that:
(i) my ©, m and for any m’ € S s.t. m' &, m, m; Z, m/,
(ii) m; € S.

The conditions ensure that the approximation is optimal, in the sense that it is
a minimal (resp. maximal) element of the outer (resp. inner) approximations of
m within § and w.r.t. ©,. While these conditions are quite natural, there are in
general many approximations satisfying them, thus not allowing one to retrieve a
unique solution. Furthermore, Definitions [3]and [4 do not provide any practical clue
as to how some solutions fitting their conditions can be found. As we shall see, this
can be done by using appropriate distances.

Outer and inner approximations of belief function has already been studied as a
distance minimization problem by Cuzzolin [31 [I5]. In these articles, the author
presents some justified methodologies and geometric interpretations for particular
classes of problems. We investigate these problems with a more general perspective,
using distance minimization as a generic tool to find approximations. The next
Lemmas show that using distances compatible with partial orders provides practical
ways to get optimal outer/inner approximation.

Lemma 3. Let m be a mass function to approzimate, S a set of target mass func-
tions, S;%' a non-empty subset of S containing mass functions outer-approzimating
m w.r.t. a partial order T, and d a T, -compatible distance. Then, any solution
(18) m; € argmin d (m,m’).

m'esth

is a minimal outer approrimation.
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Proof. By definition, mJ is an outer approximation of m. Let us assume ex-absurdo
that it is not minimal, meaning that there exists m’ € S;}, such that

(19) m C, m' T, mf.

However, this would mean that d (m,m') < d(m,m]), a contradiction since this
would mean that m] is not a solution of Equation . O

Lemma 4. Let m be a mass function to approximate, S a set of target mass func-
tions, S,, a non-empty subset of S containing mass functions inner-approximating
m w.r.t. a partial order T, and d a T,-compatible distance. Then, any solution
(20) m, € argmind (m,m’).

m’'e€S,,
is a mazximal inner approrimation.
Proof. The proof is similar to the one of Lemma O

Note that a simple way to ensure that S or S, are non-empty is to include
the top and bottom (usually, the vacuous and the empty mass functions) of C,
in & when they exist. In practice, however, there may be multiple solutions to
Equations and . Since minimizing a strictly convex function over a convex
set has a unique solution, the following claims hold:

e If S;t is convex and if d is induced by a strictly convex norm, then there
exists only one outer approximation of m which minimizes the distance
from m to the set S;f.

o If S, is convex and if d is induced by a strictly convex norm, then there
exists only one inner approximation of m which minimizes the distance
from m to the set S,,.

Following these remarks, two corollaries are obtained.

Corollary 3. Let m denote a mass function and T, a partial order with y €
{pl,q,bel,s}. Let Y} denote the set of all outer approximations of m with respect
to C,. For any closed convex set S C M such that SN Y, # 0 and for any integer
1 < k < 00, the solution
(21) m} = argmin d,  (m,m’).

m'eSNYL

is a unique minimal outer-approrimation.

Proof. For any y € {pl,q,bel,s} and any 1 < k < oo, each distance d, j is in-
duced by the LF norm which is a strictly convex function. Furthermore, since
set-intersection preserves closure and convexity, one only needs to prove the closure
and the convexity of VI, for each y € {pl, ¢, bel, s}. All such sets are obviously closed
parts of RV, A proof of their convexity is given in appendix Now, according to
convex analysis, the corollary holds. O

Corollary 4. Let m denote a mass function and T, a partial order with y €
{pl,q,bel,s}. Let Y, denote the set of all inner approzimations of m with respect
to Cy. For any closed convexr set S € M such that SN, # 0 and for any integer
1 < k < 00, the solution
(22) m; = argmin dy x (m,m’).

m’'e€SNYm
is a unique maximal inner-approrimation.
Proof. The proof is identical to that of corollary |3| except that one needs to prove

the convexity of Y, for each y € {pl,q,bel,s}. A proof of their convexity is given
in appendix [C} U
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Corollaries [3| and [4] tell us that inner/outer optimal approximations can easily be
found by solving convex optimization problems, for which many efficient algorithms
(e.g., gradient descent) exist.

The main limitation of these results is that the set of constraints must define a
convex subset S of the mass space M. In practice, many subsets of interest will
meet this requirement, for example:

e the sets of outer/inner approximations of another mass function m’ with
respect to any partial order T, with y € {pl, g, bel, s};

e the set of k-additive mass functions (m is k-additive if m(A4) > 0 only if
|A| < k), including Bayesian mass functions;

e the set of mass functions whose set of focal elements is fixed (e.g., possibility
distribution with identical ranking of possibility degrees, convex mixture
between a Bayesian and a vacuous mass);

e the set of mass functions that are a conjunctive combination between m’
and any other mass function.

However, some sets of constraints are not convex. In particular, the set of conso-
nant outer/inner approximations is notoriously not convex [32]. Yet, the results
presented in this section cover a significantly wide spectrum of applications and is
thus paving the way for many future works. We give a first illustrative example for
the approximation of a mass function when S is a face of M.

4.4. Approximation in simplicial faces. Approximating belief functions in a
simplicial face consists in finding the closest mass function inside a faceﬂ of M from
given mass function m. This task satisfies the convexity requirements of corollaries[3]
and [ as any sub-simplex is convex. In addition, such an approximation process
is easy to interpret in terms of evidence updating and it is thus appropriate to
illustrate the interest of the evidential distances that are studied in this paper.

Approximating in faces has been addressed by many authors [I3] BI], yet we
only want to illustrate that the compatibility with an evidential partial order is
a desirable property for evidential distances, not to compete with state-of-the-art
approaches.

Let us look for inner approximations of the Bayesian mass function m = %m{a} +
%m{b} + %m{c} with @ = {a,b,c} in the Bayesian subspace Sj,;). For any m’ €
Slasp), Wwe have m’ = Amyqy + (1 — A)mypy with A € [0; 1], therefore this subspace is
a segment. We will only investigate dy; 1 and dg 1, as we have dp; , = dp 1, = dper,r in
this experiment. Figure [2shows distances obtained between m and any m’ € S,y
for k € {1,2,00}. This gives a clear illustration that L' and L° norms are less
adequate than L2 to seek an inner approximation, as they provide multiple minima.

Let us now look for inner approximations of the same Bayesian mass function
m = %m{a}+%m{b}+%m{c} in the conditional subspace S¢,.5). For any m’ € Sqa,
we have m’ = /\1771{(1} + )\gm{b} + (1 — /\1 — )\g)m{ayb} with /\1 € [0, 1] and )\2 S
[0,1 — A\q], therefore this subspace is a triangular face. Figure |3| shows distances
obtained between m and any m' € Syqy) for & = 2 only. This figure illustrates
the convex shape of the problem as well as the uniqueness of the solution. From
Figure the intuition is that m; = %m{a} + %m{b} for both distances. When using
L2, the convex problems can be reshaped into quadratic programming problems.
Solving them with function gp in GNU Octave confirms this intuition. The solution
is reached in 6 iterations for d,; > and in 7 iterations for dg 2. This slight difference
can be explained by the fact that a steeper slope is observed for d; 2.

3A face F of a simplex M is the simplex obtained after deletion of some vertices. Faces are
ranging from facets down to edges and to vertices.
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Distance values in the segment [mqy;m )]

25 |
—o—dy dya
s 4

15 1 a

1+ —o—dp2 dya B

0.65
0.6 —e—dpioo = dgoc
0.55

=)
S G

ST T T

[ PR R

" "
0.2 0.4 0.6 0.8
m'({a})

FIGURE 2. Distances dy; , and dg,; between m = $my,) +smypy +
smyey and m' = Amyqy + (1 — N)mygy with A € [0;1] and k €
{1,2,00}. The distances are represented as functions of m’ ({a}).

The term conditional subspace was coined by Cuzzolin [33]. As suggested by
this terminology, the space Sy,,) contains all conditional mass functions given that
{0 € {a,b}} is true. These conditional mass functions are obtained by applying
Dempster’s conditioning [I]. Let m (.|]A) denote Dempster’s conditioning of m over
A. We have:

/— > m(Y), ifXe2?\0
Y=XnA

m(X]A) = .
0 ifX=0

with Kk = > m(Y). From [25], we know that, in this particular situation,
Y=Xn0

m; = m(.|{a,b}) for Cp. Since m(.|{a,b}) = tmyqy + 3mys, this result allows

to validate the approximation obtained in this experiment.

5. DISCUSSION

In this section, we would like to briefly discuss a number of aspects of the current
approach, as well as some possible extensions of the view presented here.

5.1. About distance selection and interpretation. The use of distances is
now ubiquitous in works about belief functions, as recalled in the introduction.
Still, the selection of an adequate distance remains a challenging task. In some
cases such as classification [7, [§], some measure of performance (such as prediction
accuracy) can be used to select an optimal distance, although we are not aware
of any work showing the existence of a theoretical optimal distance in evidential
learning methods using them.

However, in other tasks such as conflict estimation or belief function approxi-
mation, there are no such measure of performances, and in this case the choice of
distance has to be based on other criteria. In addition to mathematical properties,
two aspects that are important are the meaning (or semantic) of the used distance
as well as its practicality.
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m'({a})

0

m' ({b}) 1

dpr,2(m/, m)

.

m/({b}) 1

FIGURE 3. Distances dy;2 and dg 2 between m = %m{a} + %m{b} +
%m{c} and m' = Alm{a} + )\gm,{b} + (1 - — )\Q)m{a,b} with
A1 € [0;1] and Ay € [0,1 — Aq]. The distances are represented as
functions of the pair (m’ ({a}),m’ ({b})). Colors are depicting dis-
tance values ranging from blue (lowest distance) to red (highest).

Concerning the first aspect, we have proposed a simple way to select those dis-
tances that fits a particular interpretation, by looking at their consistency with
partial orders between belief functions having a well-defined semantic. Concerning
the second aspect, we have shown in Section that some distances, among the
one fitted to the approximating operation, are more practical than others, in the
sense that their convexity allows one to retrieve a unique, well-defined solution.
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To conclude, we do not claim that consistency with partial orders should be the
only way to select adequate distances, it only provides a simple way to tell whether
a particular distance (or a family of distance) fits a particular semantic or not.

5.2. About information measures. Another common way to characterize the
informative content of a belief function m is the use of information measures [20],
usually extending the Shannon entropy for probabilities or the Hartley measure
for sets. If we denote I : M — R the imprecision measure function, a common
requirement is that for two masses m,m’, we have

m Jpm’ = I(m) < I(m).

See for example works of Abellan and Moral [34, B5] for extensions to more general
frameworks including belief functions as special cases.

The reason why we have not considered such measures to compare informa-
tive contents is that they share the same advantages and drawbacks as (pseudo-
)distances: by imposing every mass to be summarized by a value, they put a rich
structure on M and induce a total pre-order on them. While this makes them
handy numerical tools, this means that they can be hard to interpret in general sit-
uations (even if m 2, m’ and m’ 2, m, I(m) and I(m’) will still be comparable)
and are likely to be consistent with only a very small set of distances (if any). They
are therefore not fit to our initial purpose (providing semantics to large classes of
distances).

An interesting study, nevertheless, would be to determine which distances and
information measures are in accordance with each other.

5.3. About other possible partial orders. The orders on which we focused
compare the informative contents of mass functions, yet we can think about other
orders related to important notions in evidence theory. For instance, an important
notion within evidence theory is the consistency of pieces of information encoded
inside a mass function, from which follows the notion of conflicts between sources.
There are two main ways to evaluate the consistency of a mass function, a strong
and a weak one. The strong consistency measure is given by

(23) ®(m) = max7(w)

and the weak consistency measure by
(24) ¢(m) =m(0).

We refer to [36] for a justification and discussion of these measures.
Each measure defines a pre-order over the mass space:

i) Mass my is strongly less consistent than mg, denoted mq <. ma, if ®(my) <
<I>(m2)
i) Mass m; is weakly less consistent than ms, denoted my =<y, Mo, if p(my) <
P(m2).
Again, strict inequalities yield strict relations. <. and <, are total pre-orders, as
any two elements can be compared, but distinct elements mi,ms may be equally
consistent. Due to this, it may be difficult to find non-trivial distances consistent
with them, thereby confirming that distances may not be the most adequate tool
to measure consistency [37].

This does not mean that our approach cannot be applied to issues regarding
conflict and/or dependence. Indeed, one could in principle define when a pair of
mass functions is "more conflicting” or "more dependent” than another pair of
mass functions, for example by using interval-valued conflict measures (see [30]).
A distance would then be consistent with such orders when the distance between a
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pair of "more conflicting” mass functions would be lower than the distance between
a pair of ”less conflicting” mass functions.

6. CONCLUSION

We have proposed a simple way to interpret distances and to identify in which
situations they can be useful, by studying their compatibility with partial orders.
This compatibility is formalized into a mathematical property. We have also derived
new evidential distances, justified by their compatibility with several well known
partial orders in this framework. For each of the partial order considered in this
paper, an infinite family of distances is proved to be compatible with respect to
this given order. Each of these families rely on L* norms, with k& € N*.

In addition, it is explained how such distances can be exploited as part of be-
lief function approximation problems. In particular, minimizing such distances is
equivalent to a convex optimization problem provided that the set of desired con-
straints defines himself a convex subset of the mass space. We show that a large
number of such constraint sets are indeed convex. Consequently, there are many
applicative perspectives for future work since convex optimization problem is the
easiest class of optimization problem to solve.

There are also more theoretical perspectives on a more theoretical ground. For
instance, one can wonder if it is possible to relate the compatibility of a distance
with a partial order and its consistency with a combination rule. Another possibility
would be also to define weaker forms of compatibility with pre-orders like those
depicting the inner consistency of a mass function. Finally, it would be interesting
to study which distances are compatible with partial orders extending stochastic
dominance [38], as those are commonly used in decision problems.

APPENDIX A. THE BINARY ORDER FOR SUBSET INDEXING

For a given finite set Q = {wy,...,wy,}, the representation of subsets A C ,
known as binary order, is the following: each subset A is associated to a binary
number made of n bits and this number has a 1 at place 7 if w; € A, and 0
otherwise. For example, when Q = {w;,ws, w3}, the binary representation of the
subset {wa,ws} is 110. Then, considering the integer number Int, in base 10
obtained from the binary representation of A, each subset defines a unique vector
index na = Int4 + 1 starting from 1 () to 2" (Q).

APPENDIX B. PROOF OF PROPOSITION [2] IN THE k = 0o CASE

Proof. In the case where k = oo, we will also start with dp; - and then proceed
with other distances:

o for distance dp; : let pli, plo and pl3 denote three plausibility functions
induced by mq,mo, ms. Let us suppose that m; &, ma T, ms. We can
write:

dpl,oo(mlvm?)) = lel - p13||oo ’
= Iy (A) —pl3 (A)].
max [ph (4) — pls (A) |

Since mq Ty mo Ty mg, we know that for any A C Q, ply (A) < ply (A) <
pls (A) and consequently we have:
Iply (A) — pls (A) | = max {pl3 (A) — pl2 (A);
plg (A) — pll (A)} Z 0.
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This gives :
dpl,o0(m1, mg) > max max {1013 (A) —pla(A),
pla (4) = s (4) |

Note that strict relations would not imply a strict inequality in the above
one. Indeed strict relations would only imply that there is at least one sub-

set A, with |ply (A.)—pls (As) | > max {pls (A.) — pla (As);pla (As) — pla (AL)}
but the maximum is not necessarily reached at that specific subset. This
accounts for the fact that d; ~ is not Cp-compatible in the strict sense.

The order in which the maximum is sought can be inverted, this gives

> J—
dpi,00 (M1, m3) > max { )rpgépls (X) —ply (X)),

max pla (X) — pl (X)}

>mﬂ{mm—pMmeb—wﬂm}

The last inequality is equivalent to :

dpi. 00 (M1, M3) > max {dpz,oo (ma1,m2) ; dpi oo (M2, m3) }

and dp;  is Ep-compatible.
o for distance dp . given equation and Lemma the proof is immediate.
o for distance dpei,0: the proof is actually similar as for distance dp . Let
bely, bely and bels denote three belief functions induced by mq, ma, mg and
suppose that mi1 Cpe; Mo Cpe; m3. We then have:

dpet, o0 (M1, m3) = ||bely — bels||
= max |bely (A) — bels (A) |

Since my Cpe; ma Cpe; m3, we know that for any A C Q:

|bely (A) — bels (A) | > max {bels (A) — bels (A);

bely (A) — bely (A)} > 0.

The proof then follows by the same reasoning as for plausibilities.
o for distance d, o: the proof follows the same pattern. Simply consider
41, q2, g3 induced by my,mg, m3 such that m; &, ma &, mg, then

dq,oo (m17m3) = qu _q3Hoo’
ggaglcn (X) = g3 (X)].

and the proof follows similarly to the to previous cases.
o for distance dr o, the proof follows again the same pattern (with a sum
over w € Q).

O
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APPENDIX C. PROOF OF THE CONVEXITY OF OUTER/INNER APPROXIMATION

SETS

We begin with a proof that outer/inner approximations of a mass function m
with respect to C,; are in a convex set. We will then proceed with the other partial
orders: Cpe, C, and Cg. Related results are already given in [39, [40, 29] 33].

Let P} denote the set of outer approximations of m with respect to C,.
Let (m1,m2) be a pair of mass functions in PI,. The mass space M is
a simplex and is thus convex. Consequently, for any A € [0;1], mz =
(/\m1 + (1 — )\) mz) e M.

Besides, if m; and my are in Pl this means that for any A C 2, we have:

pl(A) < min{pl; (A);pl2 (A)}.

Using equation , we also have:

pls(A) = > my(E),

ENA#(D
= A mE) A=) Y m(E),
ENA#0D ENA#0D

= Apli (A)+ (1= A)pl2(4),

> Amin{pl (4);pla (A)} +

(1 = X)min {ply (4);pls (A)},
> min{pl (4);pl2 (A)},
> pl(4).

We thus deduce m &, m3 and that Pl is convex. The same conclusion is
obtained for Pl by reversing the inequalities and replacing min with max.
Let Bel} denote the set of outer approximations of m with respect to Cpe;.
Let (m1,m2) be a pair of mass functions in Bel},. For any A\ € [0;1],
ms = ()\ml + (1 — /\) mg) e M.

If m1 and my are in Bel}, this means that for any A C ), we have:

bel (A) > max{bely (4);bels(A)}.

Similarly as in the previous case, using equation and linearity, we obtain
belz (A) < max {bel; (A);bely (A)} < bel (A). Consequently, we deduce
m Cpe; mg and that Bel)! is convex. The same conclusion is obtained for
Bel, by reversing the inequalities and replacing max with min.

Let Q;f denote the set of outer approximations of m with respect to C,.
Let (my,mga) be a pair of mass functions in Q;}. For any \ € [0;1], mg =
()\ml + (1 — )\) mg) e M.

If my and ms are in Q;, this means that for any A C €, we have:

q(A) < min{q (4);¢(A4)}.

Similarly as in the previous case, using equation and linearity, we obtain
g3 (A) > min{q (A);q2(A)} > q(A). Consequently, we deduce m C,
mg3 and that Q is convex. The same conclusion is obtained for Q, by
reversing the inequalities and replacing min with max.

Let Spe;l, denote the set of outer approximations of m with respect to Cg.
Let (my,ms2) be a pair of mass functions in Spe). For any A € [0;1],
mg = (Amg + (1 — A) mz) € M. The cases A = 0 and A = 1 are trivial, we
will thus consider that A\ €]0;1].
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Let S3 denote a N x N matrix whose elements are defined as follows:

o 6”' if Amy (EJ)+(17A)m2 (EJ):O
S3(i,4) = § Am1(E;)S1(,0)+(1=N)ma(E;)S2(i.5)

A1 (B) T 0 ma(E)) otherwise

with d;; the Kronecker delta.

Let us first prove that S3 is a specialization matrix. Obviously, S3 is non-
negative. Let p; = mg (E;) = Amq (E;) + (1 — X\) ma (E;). For any j from
1 to N such that p; > 0, we also have:

N N
S Ss(ing) = Y AmENSEHU N m(E)s),
=1 =1

N

= i <)\m1 (EJ) ZSl (Z,])

Pj i=1

= 1

This results also holds if p; = 0. Moreover, if S5 (i,7) > 0 and p; > 0
then either Sy (4,7) > 0 or Sy (4,5) > 0. Since S; and S, are specialization
matrices, it implies that E; C E;. If S5(¢,7) > 0 and p; = 0 then d;; >
0 = E; = E;. In conclusion, Sz is a specialization matrix.

Let us now prove that m = Ssmg. For any 7 from 1 to NV, we have:

N
Zl SS (Z,J) ms3 (EJ)

J

1<G<N 1<j<N
s.t. p; >0 s.t. p;j=0

= E Ama(E;)S1(4,5)+(1=X)ma(E;)S2(i,5)-
1<<N
s.t. pj >0

When p; = 0, we also have m; (E;) = ma (E;) = 0. One can thus write:

N
;1 Ss (i, 7) m3 (Ej)

= D Ami(B)S1 )+ Nma(E) S (0.5),

1<GSN

= A mE)SG)+ (1= X)) ma(B)Sa(0g),
1<j<N 1<j<N

— (B + (- N m (B,

This means that m T, mg and that Spe;!. is convex.

Let Spe,,, denote the set of inner approximations of m with respect to
Cs. Let (mq1,m2) be a pair of mass functions in Spe;,,. For any A € [0;1],
ms = ()\m1 + (1 — )\) mg) e M.

If m; and my are in Spe,,, this means that there exists two matrices S;
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(16]

(17]

(18]

(19]

20]

JOHN KLEIN, SEBASTIEN DESTERCKE AND OLIVIER COLOT

and S; with m; = Sym and Som = m,. We have:
(AS14+(1=X)Sy)m = ASym+ (1 —A)Ssm,
= Amj + (1 — A\) mo,
= msg3.

We deduce m3 C; m and that Spe,, is convex.
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