Fabio Tanturri 
  
PFAFFIAN REPRESENTATIONS OF CUBIC SURFACES

Keywords: 2010 Mathematics Subject Classification. Primary: 14Q10; Secondary: 14J99 Pfaffian representations, cubic surfaces, ACM sheaves, determinantal varieties

Let K be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial F of degree three in K[x 0 , x 1 , x 2 , x 3 ] and a zero a of F in P 3 K and ensures a linear Pfaffian representation of V(F ) with entries in K[x 0 , x 1 , x 2 , x 3 ], under mild assumptions on F and a. We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of V(F ), with entries in K [x 0 , x 1 , x 2 , x 3 ], being K an algebraic extension of K of degree at most six. An explicit example of such a construction is given.

Introduction

Let K be a field of characteristic zero and let X be the hypersurface in P n K defined by a polynomial F ∈ K[x 0 , x 1 , . . . , x n ]. One may ask whether the polynomial F k is the determinant of a matrix M with entries in K[x 0 , x 1 , . . . , x n ], for some integer k.

For k = 1, such a matrix M is said to be a determinantal representation of X. If the entries are linear forms, then the determinantal representation is said to be linear. Linear determinantal representations of curves and surfaces of small degree are a classical subject and date back to the middle of nineteenth century; see for example [START_REF] Beauville | Determinantal hypersurfaces[END_REF], [START_REF] Dolgachev | Classical algebraic geometry: a modern view[END_REF] for a historical account.

A relevant class of matrices with determinant F 2 are Pfaffian representations, that is, skew-symmetric matrices whose Pfaffian is F , up to constants. Let us recall the following definition. Definition 1.0.1 (Pfaffian). Let T = (t ij ) be a skew-symmetric matrix of even size 2n with entries in a ring R. Then its determinant is the square of an element in R, called the Pfaffian of T . If we denote by T ij the square matrix of order (2n -2) obtained by deleting from T the i-th and j-th rows and columns, the Pfaffian is defined recursively as [START_REF] Abhyankar | Cubic surfaces with a double line[END_REF] Pf(T ) = j<2n (-1) j t 2n,j Pf(T 2n,j )

if n ≥ 2 t 12 if n = 1.
Pfaffian representations are a generalization of determinantal representations, since from a determinantal representation M we get a Pfaffian representation 0 M -M 0 .

The references about Pfaffian representations are very recent, even though some general results were probably well-known to the experts before. In [START_REF] Beauville | Determinantal hypersurfaces[END_REF], Beauville collects many results about determinantal and Pfaffian representations, giving criteria for the existence of linear Pfaffian representations of plane curves, surfaces, threefolds and fourfolds. The fact that a generic cubic threefold can be written as a linear Pfaffian had been proved by Adler [2, Apx.V], with K = K. With the same method used by Adler, in [START_REF] Iliev | Quartic 3-fold: Pfaffians, vector bundles, and half-canonical curves[END_REF] it is proved that a general quartic threefold admits a linear Pfaffian representation. A non-computer-assisted proof of this fact can be found in [START_REF] Brambilla | Moduli spaces of rank-2 ACM bundles on prime Fano threefolds[END_REF]. Again in the case K = K, linear Pfaffian representations of plane curves and their elementary transformations are the subject of [START_REF] Buckley | Plane curves as Pfaffians[END_REF] and [START_REF] Buckley | Elementary transformations of Pfaffian representations of plane curves[END_REF]; in [START_REF] Faenzi | Vector bundles and low codimensional subvarieties: state of the art and recent developments[END_REF] and [START_REF] Chiantini | On general surfaces defined by an almost linear Pfaffian[END_REF], respectively almost quadratic and almost linear Pfaffian representations of surfaces are considered. In [START_REF] Coskun | Pfaffian quartic surfaces and representations of clifford algebras[END_REF] it is proved that every smooth quartic surface admits a linear Pfaffian representation, a result which strengthens the Beauville-Schreyer's one in [START_REF] Beauville | Determinantal hypersurfaces[END_REF].

In this paper we will use the following two definitions.

Definition 1.0.2. Let F ∈ K[x 0 , x 1 , . . . , x n ] define the hypersurface X and let K be a field containing K. A linear Pfaffian K -representation of X is a skew-symmetric matrix whose Pfaffian is F , up to constants, and whose entries are linear forms in K [x 0 , x 1 , . . . , x n ].

Definition 1.0.3 (K-point). If a point a ∈ P n K admits a representative a ∈ A n+1 K , then it will be called a K-point.

By convention, hypersurfaces will be considered in P n K, being K the algebraic closure of K. In this way, X is non-empty even if its defining polynomial

F ∈ K[x 0 , x 1 , . . . , x n ] has no zero in A n+1 K , that is, if X has no K-points.
According to these notations, in [START_REF] Beauville | Determinantal hypersurfaces[END_REF] Beauville provided a proof of the following theorem: Theorem 1.0.4. Let S be a surface of degree d in P 3 K, without singular K-points. The following conditions are equivalent:

(1) S admits a linear Pfaffian K-representation;

(2) S ∩ P 3 K contains a finite, reduced, arithmetically Gorenstein subscheme Z of index 2d -5, not contained in any surface of degree d -2. Moreover, the degree of Z is 1 6 d(d -1)(2d -1). Here a finite, reduced subscheme Z of degree c in P n K , with ideal I Z ⊂ K[x 0 , x 1 , . . . , x n ], is said to be arithmetically Gorenstein (AG for short) if K[x 0 , x 1 , . . . , x n ]/I is a Gorenstein ring. For such a scheme, its index is the (unique) integer N such that

(2) dim (R/I Z ) p + dim (R/I Z ) N -p = c for all p ∈ Z.
The proof of Theorem 1.0.4 is based on considering the rank-two vector bundle coker(M ) and its scheme Z associated via the Hartshorne-Serre correspondence. As remarked by Beauville, another way to prove the existence of a Pfaffian representation is via the Buchsbaum-Eisenbud Structure Theorem in [START_REF] Buchsbaum | Gorenstein ideals of height 3[END_REF], which we state after the following definition. (1) Let n ≥ 3 be an odd integer, and let M be a free module of rank n over a Noetherian local ring R with maximal ideal J. Let f : M / / M * be an alternating map of rank n -1 whose image is contained in J • M * and let I = Pf n-1 (f ) be the ideal generated by the (n -1) × (n -1) Pfaffians of the matrix representing f . If depth(I, R) = 3, then I is Gorenstein, and the minimal number of generators of I is n. (2) Every Gorenstein ideal I of R with depth(I, R) = 3 arises as in 1.. Indeed, identifying R with K[x 0 , x 1 , x 2 , x 3 ], an AG subscheme Z as those arising in Theorem 1.0.4 satisfies the hypotheses of (2) in Theorem 1.0.6: Z has a Gorenstein homogenous ideal I Z by definition and by a theorem of Serre [START_REF] Bass | On the ubiquity of Gorenstein rings[END_REF]. The fact that depth(I Z , R) = 3 follows from (3) and hd(R/I Z ) = 3, which is true since the homogeneous coordinate ring of a finite set of points is Cohen-Macaulay and from the Auslander-Buchsbaum formula [15, ex. 18.15, ex. 19.8].

Given Z as in Theorem 1.0.4, one can apply Theorem 1.0.6: I Z is generated by the (2d -2) × (2d -2) principal Pfaffians extracted from a skew-symmetric (2d -1) × (2d -1) matrix T with linear forms as entries. Then the surface admits a Pfaffian K-representation

(4) T -C t C 0 ,
where C is a suitable 1 × (2d -1) matrix with linear forms as entries, which can be found by formula [START_REF] Abhyankar | Cubic surfaces with a double line[END_REF] (see also subsection 2.2).

In this paper we focus on case d = 3. If K = K, then by [START_REF] Davis | Gorenstein algebras and the Cayley-Bacharach theorem[END_REF] a set of five points in P 3 K is an AG scheme if and only if they are in general position, i.e. no four of them are on a plane. This fact, together with Theorem 1.0.6, implies Corollary 1.0.7. If K = K, every smooth cubic surface in P 3 K admits a linear Pfaffian representation [START_REF] Beauville | Determinantal hypersurfaces[END_REF]. This result has been generalized in [START_REF] Fania | On the Hilbert scheme of Palatini threefolds[END_REF] as follows.

Proposition 1.0.8. If K = K, every cubic surface in P 3 K admits a linear Pfaffian representation.

We study how to construct explicitly a linear Pfaffian K-representation, where K is not necessarily algebraically closed, starting from the least amount of initial data possible. We will show that, in general, it is sufficient to know a K-point on S. Our contribution is the following: we prove Theorem 1.0.9. Let S be a cubic surface, neither reducible nor a cone, whose equation is

F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 . Given a K-point a 1 , which is not a T-point -in the sense of Definition 3.1.1 -it is possible to construct explicitly a linear Pfaffian K-representation of S.
The same method can be used to prove a weaker result, if a 1 is not given: Proposition 1.0.10. Let S be a cubic surface, neither reducible nor a cone, whose equation is F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 . Then it is possible to construct explicitly a Pfaffian K -representation of S, where K is an algebraic extension of degree [K : K] ≤ 3. Moreover, if K ⊆ R, then also K can be chosen so.

On one hand, these results strengthen one implication of Theorem 1.0.4 and give a bound for the degree of algebraic extension required to produce a linear Pfaffian representation. On the other hand, they are constructive: it is possible to implement an algorithm which produces a linear Pfaffian representation, provided the requested inputs. After discussing the cases of reducible surfaces and cones, we are able to prove Theorem 1.0.11, which strengthens Proposition 1.0.8. Theorem 1.0.11. Every cubic surface in P 3 K, with equation F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 , admits a Pfaffian K -representation, K being an algebraic extension of K of degree [K : K] ≤ 6. Moreover, it is possible to explicitly realize such a representation. This paper is structured as follows: in section 2, we retrace the proof of Theorem 1.0.6 and we use it to construct a skew-symmetric matrix T as in [START_REF] Buckley | Elementary transformations of Pfaffian representations of plane curves[END_REF], whose Pfaffians generate the ideal of the four fundamental points and the unit point in P 3 . This enables us to produce Algorithm 2.2.1, whose inputs are five points in general position on a surface S and whose output is a linear Pfaffian representation of S. In section 3, we make use of the tangent plane process, a classical argument (see, for example, [START_REF] Segre | On the rational solutions of homogeneous cubic equations in four variables[END_REF]); starting from a K-point a 1 on an irreducible surface which is not a cone, we show that it is always possible to find four other points on the surface such that all the five points are in general position, provided that a 1 satisfies a mild condition.

In section 4 we summarize the previous results in Theorem 1.0.9 and Proposition 1.0.10. Then we discuss the case of reducible surfaces and the case of cones, so to prove Theorem 1.0.11. An example of the construction of a Pfaffian representation is finally given.

From five points to a Pfaffian representation

In this section, we make explicit the construction of the proof of Theorem 1.0.6, in the particular case of the ideal I of the four fundamental points and the unit point [START_REF] Brambilla | Moduli spaces of rank-2 ACM bundles on prime Fano threefolds[END_REF] [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], [1 : 1 : 1 : 1] in P 3 Q . This produces the skew-symmetric matrix T in (8), whose Pfaffians generate I; we will make use of T to implement Algorithm 2.2.1, which produces a linear Pfaffian K-representation of a cubic surface S starting from five K-points in general position on S. From now on, we will consider only linear Pfaffian representations.

2.1. An explicit construction. For the sake of completeness, we recall briefly the constructions made in [START_REF] Buchsbaum | Gorenstein ideals of height 3[END_REF] in the proof of Theorem 1.0.6.

Let R be the ring of polynomials K[x 0 , x 1 , x 2 , x 3 ] and let I be a Gorenstein ideal with depth(I, R) = 3. From a minimal free resolution of

I (6) F : 0 / / F 3 d3 / / F 2 d2 / / F 1 d1 / / F 0 / / R/I / / 0 ,
where

F 0 ∼ = R ∼ = F 3
, it is possible to make a change of basis in F 1 such that the map F 2 / / F 1 is alternating. This can be found by equipping this resolution with a graded commutative algebra, the symmetric square of F

s 2 (F ) = (F ⊗ F )/M ,
where M is the graded submodule of F ⊗ F generated by the elements of the set

f ⊗ g -(-1) (deg f )(deg g) g ⊗ f | f, g homogeneous elements of F .
By convention, an element f has degree i if and only if it belongs to F i ; the degree of (f ⊗ g) is simply deg(f ) + deg(g). The differential is inherited from F as follows:

d(f ⊗ g) = d f ⊗ g + (-1) deg f f ⊗ d g.
The symmetric square s 2 (F ) is a complex of projective R-modules, canonically isomorphic to F in degree 0 and 1. Therefore, there exists a map of complexes Φ : s 2 (F ) / / F which lifts up these two isomorphisms and it can be chosen so that the restrictions of Φ to

F 0 ⊗ F k are the isomorphisms F 0 ⊗ F k ∼ = F k . The multiplication in s 2 (F ) is given by f • g = Φ(f ⊗ g), where f ⊗ g is the class of f ⊗ g modulo M . Since F 3 ∼ = R, this multiplication induces a map F k ⊗ F 3-k / / R
, which turns to be a perfect pairing.

This can be viewed as an isomorphism between F 1 and F 2 * , which makes the composition

F 2 / / F 1 / / F * 2 an alternating map.
Let us consider the special case where I is the ideal of the points [START_REF] Brambilla | Moduli spaces of rank-2 ACM bundles on prime Fano threefolds[END_REF]. We have the free resolution [START_REF] Brundu | Parametrization of the orbits of cubic surfaces[END_REF], with

F 1 ∼ = R 5 ∼ = F 2 . We have to develop Φ 3 : s 2 (F ) 3 / / F 3 in the diagram (7) 
. . .

/ / s 2 (F ) 3 Φ3 d 3 / / s 2 (F ) 2 Φ2 d 2 / / s 2 (F ) 1 Φ1 d 1 / / s 2 (F ) 0 Φ0 π / / R/I / / 0 0 / / F 3 d3 / / F 2 d2 / / F 1 d1 / / F 0 π / / R/I / / 0 We choose the ordered basis of s 2 (F ) 2 ∼ = (F 0 ⊗ F 2 ) ⊕ (∧ 2 F 1 ) to be formed by the classes modulo M of 1 ⊗ f 2 1 , 1 ⊗ f 2 2 , . . . , 1 ⊗ f 2 5 , f 1 1 ⊗ f 1 2 , f 1 1 ⊗ f 1 3 , . . . , f 1 4 ⊗ f 1 5 , where the f 1 i s are a basis of F 1 and the f 2 j s are a basis of F 2 . A similar convention is fixed for s 2 (F ) 3 ∼ = (F 0 ⊗ F 3 ) ⊕ (F 1 ⊗ F 2 ).
After a computation with [CoCoA], we consider the maps of diagram ( 7) to be

d 3 =       x 0 x 1 -x 1 x 3 x 1 x 2 -x 2 x 3 -x 0 x 2 + x 1 x 2 -x 1 x 3 + x 2 x 3 x 0 x 3 -x 1 x 3       , d 1 t = d 1 t =       x 1 x 3 -x 2 x 3 x 0 x 3 -x 2 x 3 x 1 x 2 -x 2 x 3 x 0 x 2 -x 2 x 3 x 0 x 1 -x 2 x 3       , d 2 =       -x 2 x 0 0 0 x 2 x 2 -x 1 x 1 0 0 x 3 -x 3 x 3 x 0 -x 3 0 -x 3 x 3 0 -x 1 + x 3 x 1 0 0 -x 3 0 -x 2       .
The isomorphisms Φ 0 and Φ 1 are represented by identity matrices. With straightforward computations we get the matrices d 2 and d 3 . By trials, we can lift up Φ 1 by finding matrices Φ 2 and Φ 3 such that the diagrams

s 2 (F ) 2 Φ1•d 2 Φ2
| | y y y y y y y y y

F 2 d2 / / Im(d 2 ) / / 0 s 2 (F ) 3 Φ2•d 3 Φ3
| | y y y y y y y y y

F 3 d3 / / Im(d 3 ) / / 0 commute. A possible choice for Φ 2 is       I 5 -x 3 x 1 0 0 x 3 x 3 -x 0 x 3 0 -x 1 0 -x 3 0 -x 2 -x 1 0 -x 2 0 0 0 x 2 0 -x 2 -x 2 -x 1 -x 2 -x 2 -x 0 0 x 2 x 2 0 0 0 0 x 3 x 3 x 3 -x 2 -x 1 0 0 x 3 x 3 x 3 x 3 x 3 x 3 0 -x 1 -x 0       .
This choice is indeed the unique with linear forms as entries in the right block, since the syzygies are of degree two. The map Φ 3 turns to be

I 1 0 0 0 -1 0 0 0 0 -1 1 0 1 0 0 0 0 1 -1 0 0 1 0 0 -1 0 .
The isomorphism resulting from Φ 3 is

F 1           0 0 0 0 1 0 0 1 1 0 0 0 0 -1 0 -1 -1 0 0 -1 0 1 0 0 0           / / F 2 *
and, with respect to this change of basis, the map d 2 turns to be alternating, represented by the skew-symmetric matrix

(8) T =       0 0 -x 3 0 -x 2 0 0 x 3 x 0 -x 1 x 1 x 3 -x 3 0 x 1 -x 3 -x 1 0 -x 0 + x 1 -x 1 + x 3 0 0 x 2 -x 1 x 1 0 0       .
It is easy to verify that the 4 × 4 principal Pfaffians of T -listed in (9) -are exactly the five generators of I, that is, the entries of d 1 .

2.2.

From five points to a Pfaffian representation: an algorithm. The procedure just shown can be applied as long as we have the ideal of a set X of five points in general position on a cubic surface S. Due to the classical fact that two sets of five points in general position in P 3 are projectively equivalent, instead of repeating the previous construction it is also possible to realize a Pfaffian representation in the following way. By solving a linear system, we can find the matrix A of the projectivity which maps X to the five points [START_REF] Brambilla | Moduli spaces of rank-2 ACM bundles on prime Fano threefolds[END_REF]. Replacing x 0 , x 1 , x 2 , x 3 in (8) with the columns of the matrix x 0 x 1 x 2 x 3 • A t , we get a matrix T whose Pfaffians P i generate the ideal of X.

Finding a Pfaffian representation is then straightforward: if S = V(F ), then F belongs to the ideal of X. Therefore, one can find five linear forms L i such that

F = 5 i=1 (-1) i+1 L i P i . Setting C = L 1 L 2 L 3 L 4 L 5
and by (1), we get a Pfaffian representation of the form (4). We summarize the whole procedure in Algorithm 2.2.1, presented in pseudocode, where T = T(x 0 , x 1 , x 2 , x 3 ) in ( 8) is seen as a matrix depending on four variables, the Pfaffians of which are Require: F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 and a 1 , a 2 , a 3 , a 4 , a 5 K-points in general position on S = V(F ) Ensure: M , a Pfaffian K-representation of S depending on some arbitrary parameters α i,j 1: choose a representative

Pf 1 (T)(x 0 , x 1 , x 2 , x 3 ) = x 1 (x 0 -x 3 ) Pf 2 (T)(x 0 , x 1 , x 2 , x 3 ) = x 2 (x 3 -x 1 ) Pf 3 (T)(x 0 , x 1 , x 2 , x 3 ) = x 2 (x 1 -x 0 ) Pf 4 (T)(x 0 , x 1 , x 2 , x 3 ) = x 3 (x 1 -x 2 ) Pf 5 (T)(x 0 , x 1 , x 2 , x 3 ) = x 3 (x 0 -x 1 ). (9 
a i = (a i 0 , a i 1 , a i 2 , a i 3 ) ∈ A 4 K of a i for every 1 ≤ i ≤ 5 2: compute the solution λ = (λ 1 , λ 2 , λ 3 , λ 4 ) of the linear system     a 1 0 a 2 0 a 3 0 a 4 0 a 1 1 a 2 1 a 3 1 a 4 1 a 1 2 a 2 2 a 3 2 a 4 2 a 1 3 a 2 3 a 3 3 a 4 3         λ 1 λ 2 λ 3 λ 4     =     a 5 0 a 5 1 a 5 2 a 5 3    
3: compute the change of basis matrix A from (λ i a i ) 1≤i≤4 to the standard basis of A 4 K , so that

λ i A     a i 0 a i 1 a i 2 a i 3     =     δ 1 i δ 2 i δ 3 i δ 4 i    
for every 1 ≤ i ≤ 4

4: for i = 1 to 4 do 5:

set z i-1 as the i-th row of the column vector

A •     x 0 x 1 x 2 x 3     6: set T(x 0 , x 1 , x 2 , x 3 ) as in (8) 7: set T = T(z 0 , z 1 , z 2 , z 3 ) 8:
for i = 1 to 5 do 9:

set P i = Pf i (T)(z 0 , z 1 , z 2 , z 3 ) as in [START_REF] Buckley | Plane curves as Pfaffians[END_REF] 10:

set L i = 3 j=0 α i,j x j 11: set G = F -5 i=1 (-1) i+1 L i P i 12: compute solutions of the linear system given by equaling the coefficients of G to zero, α i,j as unknowns 13: substitute the solutions in L i 14: set M as the matrix

        T L 1 L 2 L 3 L 4 L 5 -L 1 -L 2 -L 3 -L 4 -L 5 0         line 9
, not on the choice of F . Regardless to this projectivity, its rank is 15.

Since for any choice of F ⊃ {a 1 , a 2 , a 3 , a 4 , a 5 } a solution of this linear system does exist, the "Pfaffian representation depending on some parameters" ensured by Algorithm 2.2.1 turns to be a five-dimensional linear space of Pfaffian representations.

2.2.1.

Classes of equivalent representations. We recall that two Pfaffian K-representations M and M are said to be equivalent if and only if there exists X ∈ GL K (6) such that M = XM X t . Let coker(M ), coker(M ) be the cokernel sheaves of M, M , seen as maps O 6 P 3 (-1) / / O 6 P 3 . Then from [4, (2.3)] it follows that M, M are equivalent if and only if coker(M ) ∼ = coker(M ). In this way the study of equivalence classes of Pfaffian representations of a cubic surface S is strongly linked to the study of certain sheaves on S. Remark 2.2.4. Let Z be a fixed set of five points in general position on a surface S without singular K-points and consider the Pfaffian representations given by Algorithm 2.2.1, which are a five-dimensional linear space by Remark 2.2.3. It turns out that all these representations are equivalent. Indeed, by [4, (7.1)], up to automorphism there exists only one pair (E, s), with E rank-two vector bundle on S and s ∈ H 0 (S, E), such that Z is the zero locus of s. In addition, these classes of pairs [(E, s)] are in bijection with the equivalence classes of the pairs [(M, s)], where E = coker(M ) and s ∈ H 0 (P 3 , O 6

P 3 ) corresponds to s via the isomorphism H 0 (P 3 , O 6

P 3 ) ∼ = H 0 (S, E). It follows that all the representations produced in the algorithm belong to a unique equivalence class.

It is worth noting that, as Z varies among the possible sets of five K-points in general position on a surface S without singular K-points, Algorithm 2.2.1 is surjective onto the possible Pfaffian K-representations of S, and therefore onto their equivalence classes. Indeed, as shown in [4, (7.2)], a general global section of E = coker(M ) has five points in general position as its zero locus Z and therefore M can be produced via the algorithm with input Z.

In [START_REF] Buckley | Elementary transformations of Pfaffian representations of plane curves[END_REF], elementary transformations were used to construct non-equivalent Pfaffian representations of curves starting from a given one. This technique can be used in the case of surfaces as well.

Remark 2.2.5. The bijection between Pfaffian representations M and sheaves E = coker(M ) tells us more, when dealing with the algebraic closure K. Let S 3 / GL(6) be the set of equivalence classes of the 6×6 skew-symmetric matrices of linear forms in P 3 K; let pf : S 3 / GL(6) / / |O P 3 K (3)| be the map which associates to a class [M ] the cubic surface in P 3 K with equation Pf(M ). As noticed in [START_REF] Fania | On the Hilbert scheme of Palatini threefolds[END_REF], for the general S the fiber pf -1 (S) can be identified with an open subset of the moduli space of simple rank-two vector bundles E on S with c 1 (E) = O S (2), c 2 (E) = 5. Since the (projective) dimension of S 3 / GL(6) is 59 -35 = 24 and the dimension of |O P 3 K (3)| is 19, then for the general S we have a five-dimensional space of essentially different Pfaffian K-representations of S.

The space S 3 / GL(6) has been recently considered in [START_REF] Han | Pfaffian bundles on cubic surfaces and configurations of planes[END_REF], in relation to the space of pairs (S, Π), being Π a complete pentahedron inscribed in S.

Constructing five points on a surface

Given an equation F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 , in general it is not easy to find a zero of F in A 4 K . For example, if K = Q, the problem of the existence of rational points on cubic surfaces, reliable to diophantine equations, has been strongly faced in the last century (see, for example, [START_REF] Mordell | Diophantine equations[END_REF], [START_REF] Segre | On the rational solutions of homogeneous cubic equations in four variables[END_REF] and the more recent [START_REF] Manin | Cubic forms, volume 4 of North-Holland Mathematical Library[END_REF]). Our next aim is to weaken the required inputs of Algorithm 2.2.1.

3.1.

From one point to five points. It is well known that from a general choice of a K-point on a general cubic surface with equation in K[x 0 , x 1 , x 2 , x 3 ] 3 it is possible to find infinitely many others K-points on the surface; this can be performed by using the tangent plane process, a classical argument (for example, see [START_REF] Segre | On the rational solutions of homogeneous cubic equations in four variables[END_REF]). It starts by taking the tangent plane to the cubic surface S at a smooth point P . T P S cuts S in a curve of degree three, for which P is a singular point. A line through P , lying on the tangent plane, intersects S twice in P , while the third intersection is generically different and gives us another K-point on S.

We want to get rid of this "generality". Theorem 3.1.3 will show how, under reasonable hypotheses, the tangent plane process applied to a starting K-point can be repeated to produce four other K-points on S, such that the five points are all together in general position. This will prove, under these hypotheses, that we only need a K-point on S to construct an explicit Pfaffian K-representation. Definition 3.1.1. A point P ∈ S will be called a T-point for S if P is smooth for S and T P S ∩ S is set-theoretically union of lines.

Let us observe that the so-called Eckardt points, i.e. smooth points P with T P S ∩ S made up of three lines through P , are T-points. Moreover, a smooth points P is a T-point if and only if T P S is a tritangent plane. In general, for a T-point P one expects T P S ∩ S to be union of three distinct lines, but it is possible to have one line with multiplicity three or two lines, one of them with multiplicity two. The role of T-points will be clear in a while. Let us remark that, for a smooth point P which is not a T-point, T P S ∩ S is either an irreducible cubic curve with P as a singular point, or union of a line through P and a smooth conic passing through P .

Remark 3.1.2. Let P be a T-point for S. If T P S ∩ S is a line r with multiplicity three, or union of a line r with multiplicity two and another line, then r is union of singular points for S and T-points for S sharing the same tangent plane.

Theorem 3.1.3. Let S be an irreducible cubic surface which is not a cone, whose equation is F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 . Given a K-point a 1 on S which is not a T-point -in the sense of Definition 3.1.1 -it is possible to explicitly construct four other K-points on S such that the five points together are in general position.

The constructive proof, which requires some steps and preliminary lemmas, will be the subject of next subsection. In subsection 4.1 we will see how this construction can be adapted if some of the hypotheses are missing.

Let us consider

F = F (x 0 , x 1 , x 2 , x 3 ) ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 .
Then we set, for every a = (a 0 , a 1 , a 2 , a 3 ) ∈ A 4 K:

• P 1,a (x 0 , x 1 , x 2 , x 3 ) = 3 i=0 a i ∂F ∂xi ; • P 2,a (x 0 , x 1 , x 2 , x 3 ) = 3 i=0 x i ∂F ∂xi (a).
They are the equations of the first polar and the second polar of a = [a 0 : a 1 : a 2 : a 3 ] with respect to the surface S = V(F ). If a is smooth, P 2,a defines T a S. If x = (x 0 , x 1 , x 2 , x 3 ), for every a ∈ A 4 K we have: ( 10)

F (a + tx) = F (a) + tP 2,a (x) + t 2 P 1,a (x) + t 3 F (x).
We will consider the first and the second polar V(P 1,a ) and V(P 2,a ), for a ∈ P 3 K, as hypersurfaces in P 3 K.

Lemma 3.2.1. Let a be a singular point on a cubic surface S, whose equation is

F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 .
Let us assume that S is neither reducible, nor a cone. Then there are at most six lines through a lying on S.

Proof. By [START_REF] Chiantini | On general surfaces defined by an almost linear Pfaffian[END_REF], if a point x ∈ S∩V(P 1,a ), also the whole line through a and x does. P 1,a is not the zero polynomial since S is not a cone, moreover F is irreducible: this means that the intersection S ∩ V(P 1,a ) is transversal. It is therefore a curve of degree six, union of lines through a. Lemma 3.2.2. Let S be an irreducible, cubic surface which is not a cone and let us assume a ∈ S is not a T-point.

(1) If a is smooth, then on T a S there are only finitely many T-points for S.

Moreover V(P 1,a ) ∩ T a S is union of at most two lines through a and any line through a lying on S lies also on V(P 1,a ) ∩ T a S. (2) If a is singular, then point 1. still holds if we replace T a S with a plane π through a, for all but finitely many choices of π.

Proof. We distinguish two classes of T-points: let us call A the set of T-points P for which T P S ∩ S is union of three distinct lines, A the set of T-points not in A.

Either S contains finitely many lines or infinitely many ones. In the first case, note that A is a finite set, since mutual intersections of lines on S are finite in number;

A is contained in a union of lines on S, by Remark 3.1.2.

If S contains infinitely many lines, then it is well-known (for example, [START_REF] Conforto | Le superficie razionali[END_REF]) that S is either reducible, an irreducible cone or a ruled cubic with a double line. By hypotheses the first two cases cannot occur. Moreover, a cubic surface with a double line which is not a cone is projectively equivalent to either V(

x 2 0 x 3 + x 0 x 1 x 2 + x 3 1 ) or V(x 2 0 x 2 + x 2 1
x 3 ) (see, for example, [START_REF] Abhyankar | Cubic surfaces with a double line[END_REF]). The study of these two cases leads to Table 1 andTable 2.

If S is projectively equivalent to V(x 2 0 x 3 + x 0 x 1 x 2 + x 3 1 ), then Table 1 shows that coordinates of a T a S ∩ S (if smooth)

[1 : s : t : -s 3 -st] x 0 (-2s 3 -st) + x 1 (3s 2 + t) + sx 2 + x 3 = 0 (x 0 s -x 1 )(2x 2 0 s 2 -x 0 x 1 s + tx 2 0 -x 0 x 2 -x 2 1 ) = 0 [0 : 0 : s : t] singular Table 1. points on S = V(x 2 0 x 3 + x 0 x 1 x 2 + x 3 1 ).
coordinates of a restrictions T a S ∩ S (if smooth)

[1 : t : -t 2 s : s] s = 0 = t line and irreducible conic

[1 : t : 0 : 0] t = 0 x 2 + x 3 t 2 = 0 x 3 (x 0 t ± x 1 ) = 0 [1 : 0 : 0 : s] x 2 = 0 x 2 1 x 3 = 0 [0 : 1 : t : 0] x 3 = 0 x 2 0 x 2 = 0 [0 : 0 : s : t] singular Table 2. points on S = V(x 2 0 x 2 + x 2 1 x 3 ).
there are no T-points at all. If S is projectively equivalent to V(x 2 0 x 2 + x 2 1 x 3 ), then A is contained in the line [s : t : 0 : 0] and A is contained in the union of the lines [s : 0 : 0 : t] and [0 : s : t : 0], as shown in Table 2. Now, let us assume a is smooth. Since it is not a T-point, T a S cannot contain lines made up of T-points, so every such a line intersects T a S in one and only one point. Since they are finite in number, the first statement of 1. is proved. For the second statement, let x = a be a point in P 3 K and let Y = V(P 1,a ) ∩ T a S. By [START_REF] Chiantini | On general surfaces defined by an almost linear Pfaffian[END_REF], the point x ∈ Y if and only if either F (a + tx) is the zero polynomial or the line through a and x intersects S only in a. This means that, if x ∈ Y , also the whole line through it and a is contained in Y ; the conclusion then holds if we prove that Y is a curve, that is, V(P 1,a ) T a S. In fact, a is not a T-point and so there exists a point y on S∩T a S such that the line r through y and a does not lie on S. The line r intersects S in a with multiplicity two and in y with multiplicity one: this implies y / ∈ V(P 1,a ). Part 1. of the lemma is proved.

If a is singular, then by Lemma 3.2.1 only finitely many planes through a contain a line on S through a. For any other choice π, the same argument of the smooth case holds, if we replace T a S with π. This proves part 2. of the lemma.

Proof of Theorem 3.1.3. We divide the proof into four steps.

Step 1: looking for the second point.

Either a 1 is smooth or it is singular.

If a 1 is smooth, then by hypotheses S ∩ T a 1 S is a cubic curve, neither settheoretically union of lines (a 1 is not a T-point), nor the whole tangent plane (S is irreducible). Every line on T a 1 through a 1 , but those contained in T a 1 S ∩ V(P 1,a 1 ) as in Lemma 3.2.2, has one and only one intersection with S different from a 1 . Here we do not care about any line on T a 1 S ∩ S through a 1 , since by Lemma 3.2.2 it would be contained in T a 1 S ∩ V(P 1,a 1 ) as well. Fix a line ; the so-obtained a 2 is smooth. Otherwise, would have multiplicity of intersection at least four with S, and therefore ⊂ S, which is not. Moreover, by Lemma 3.2.2, a 2 can be a T-point only for finitely many choices of , and so these choices can be avoided. By [START_REF] Chiantini | On general surfaces defined by an almost linear Pfaffian[END_REF], in coordinates we have, having chosen a representative a 1 for a 1 ,

a 2 = F (y) • a 1 -P 1,a 1 (y) • y,
for any choice of y = (y 0 , y 1 , y 2 , y 3 ) representing the class y ∈ T a 1 S. Let us observe that P 1,a 1 (y) = 0 and that a 2 has coordinates in K.

If a 1 is singular, the previous argument can be repeated by replacing the role of T a 1 S above with a plane π satisfying Lemma 3.2.2.

In both cases, we have constructed a smooth point a 2 on S, which is not a T-point.

Step 2: looking for the third point.

The tangent plane process can be repeated as in step 1 -smooth case -starting from a 2 to construct next point a 3 . Summarizing, every line on T a 2 S through a 2 with the exception of • finitely many (by Lemma 3.2.2) lines through T-points,

• at most two lines in T a 2 S ∩ V(P 1,a 2 ) as in Lemma 3.2.2 has exactly one intersection with S different from a 2 , say a 3 . It is smooth and not a T-point. To state that a 3 is in general position with a 1 and a 2 , we only need to verify that it does not lie on the line through them. This is for free, since a 3 belongs to T a 2 S but a 1 does not, otherwise ⊆ S, which is not by construction.

Step 3: looking for the fourth point.

The tangent plane process can be repeated as in step 1 -smooth case -starting from a 3 to construct next point a 4 . We need to choose it not on the plane π 123 containing a 1 , a 2 and a 3 .

The planes T a 3 S and π 123 are distinct -for example, the first one does not contain a 2 by construction -so their intersection is a line through a 3 , say .

Claim. The system (11)

   y ∈ S y ∈ T a 3 S T y S a 2
which can be translated in homogeneous equations of degree 3, 1, 2 respectively, has finitely many solutions y ∈ P 3 K.

Indeed, the system represents the intersection on the plane T a 3 S between the cubic curve C = S ∩ T a 3 S and the conic Q defined on T a 3 S by the condition T y S a 2 . By construction, a 3 is not a T-point and therefore C is either irreducible or union of a line and an irreducible conic containing a 3 ; Q does not pass through a 3 and so it cannot be contained in C. This proves the claim.

The finitely many solutions of system [START_REF] Conforto | Le superficie razionali[END_REF] correspond to finitely many lines on T a 3 S through a 3 . Since we want a 2 / ∈ T a 4 S, we will avoid them. Summarizing, every line on T a 3 S through a 3 with the exception of • finitely many lines through the solutions y of system (11),

• , • finitely many (by Lemma 3.2.2) lines through T-points, • at most two lines in T a 3 S ∩ V(P 1,a 3 ) as in Lemma 3.2.2 has exactly one intersection with S different from a 3 , say a 4 . It is smooth and not a T-point, moreover a 2 / ∈ T a 4 S.

Step 4: looking for the fifth point.

We can apply the usual tangent plane process to find a 5 in general position with a 1 , a 2 , a 3 and a 4 . Let us call π ijk the plane through different a i , a j , a k . The planes π 134 , π 234 and π 124 intersect T a 4 S into three lines through a 4 : in fact they are four different planes, since a 2 , a 3 / ∈ T a 4 S. The line π 123 ∩ T a 4 S cannot be contained in T a 4 S ∩ S, since a 4 / ∈ π 123 and by construction a 4 is not a T-point. This means that π 123 ∩ T a 4 S ∩ S contains at most three points. Summarizing, every line on T a 4 S through a 4 with the exception of • three lines lying on the planes π 134 , π 234 and π 124 ,

• at most three lines through the points in π 123 ∩ T a 4 S ∩ S,

• at most two lines in T a 4 S ∩ V(P 1,a 4 ) as in Lemma 3.2.2 has exactly one intersection with S different from a 4 , say a 5 , in general position with a 1 , a 2 , a 3 , a 4 . Remark 3.2.3. Following the proof of Theorem 3.1.3, it is possible to implement an algorithm which requires a K-point on S, not a T-point, and ensures five Kpoints in general position on S. To test if a given point is a T-point or not, it is sufficient to check the reducibility of a polynomial of degree three in three variables, a task which can be easily performed with a software computation. Remark 3.2.4. If S is a smooth cubic surface, then any T-point P has T P S ∩ S made up of three distinct lines. In such a situation, Theorem 3.1.3 can be proved with the weaker hypothesis: the starting point a 1 is not an Eckardt point. Remark 3.2.5. In the statement of Theorem 3.1.3 we require that a 1 is not a T-point. Indeed, if a 1 is Eckardt, then the tangent plane process fails at the very first step. If a 1 is a non-Eckardt T-point, then the tangent plane process could give rise to either singular or other T-points, which can make one loose control in In the first case, a Pfaffian representation is given by 0 M -M 0

, where

M =   π 1 0 0 0 π 2 0 0 0 π 3   .
In the second case, let us consider the matrix

T =   0 -x 3 -x 2 x 3 0 -x 1 x 2 x 1 0   .
If S [1 : 0 : 0 : 0], then we can find three linear forms L 1 , L 2 , L 3 such that an equation for S is 3 i=1 (-1) i+1 L i x i . A Pfaffian representation of S is then given by

P =     T L 1 L 2 L 3 -L 1 -L 2 -L 3 0    
by formula [START_REF] Abhyankar | Cubic surfaces with a double line[END_REF].

If [1 : 0 : 0 : 0] / ∈ S, then it is sufficient to apply to x 1 , x 2 , x 3 in T the projectivity which maps a given point a on S to [1 : 0 : 0 : 0], as described in subsection 2.2. Again by formula (1) one finds three linear forms and a Pfaffian representation P of S as above.

A Pfaffian representation of S is then given by   0 0 π 0 P 0 -π 0 0   . Remark 4.1.1. Let F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 be an equation for the reducible surface S. The Pfaffian representations just constructed are not K-representations, in general. This is due to the fact that the splitting field of a polynomial of degree three is generally an algebraic extension of K of degree six. However, for such reducible surfaces we can state: it is possible to construct explicitly a Pfaffian K -representation, being K an algebraic extension of K of degree at most six. 4.1.3. Cones. Let S be an irreducible cone. If we suppose non-restrictively that its vertex is [1 : 0 : 0 : 0], then S is defined by an equation F ∈ K[x 1 , x 2 , x 3 ]. Let us call C the plane cubic curve defined by F in P 3 K ∩ V(x 0 ). As previously done, we can find a K -point a on C, being K an algebraic extension of K, simply by solving a polynomial equation of degree three. The construction of K -points on a plane cubic curve is a subject widely studied in ,literature (see for example [START_REF] Silverman | Rational points on elliptic curves[END_REF]). Starting from a set X of K -points, it consists in considering tangent lines to the curve in each point of X, and secant lines through each pair of points of X; the third intersection of such lines with C is then set as a new element in X. This process fails, for particular choices of X = {a}: for example, if a is an inflection point of the curve. For a general choice of a, this process produces a lot of K -points on C, and we can manage to find five points among them such that no three are collinear. Then the following proposition applies. Proposition 4.1.2. Let S be a cone over a plane cubic curve C, with equation F ∈ K [x 0 , x 1 , x 2 , x 3 ] 3 . If there exist five K -points on C such that no three of them are on a line, then there exist five K -points in general position on S.

Proof. We can suppose the vertex is [1 : 0 : 0 : 0], so that the equation of the plane curve (and the cone) is C = C(x 1 , x 2 , x 3 ). Let a i = (a i 0 , a i 1 , a i 2 , a i 3 ) represent the five points. The vanishing of each of the 4 × 4 minors of the matrix 

Definition 1 .

 1 0.5 (depth, Gorenstein ideal). Let I be an ideal in the ring R. Let M be an R-module. Then depth(I, M ) is the length of a maximal regular M -sequence contained in I. The ideal I is said to be Gorenstein if (3) depth(I, R) = hd(R/I) = k and Ext k R (R/I, R) ∼ = R/I for some k ∈ N, where hd denotes the homological dimension. Theorem 1.0.6 (Buchsbaum-Eisenbud Structure Theorem).

  denominators, we have P = (p ij ) with the following entries:p 12 = 0, p 13 = x 2 -x 3 , p 14 = 0, p 15 = 3x 2 + x 3 , p 16 = 1470x 1 + 686x 2 + 588x 3 , p 23 = -x 2 + x 3 , p 24 = 34x 0 -510x 1 -170x 2 -340x 3 , p 25 = 2x 1 + x 2 + x 3 , p 26 = 1372x 1 + 588x 3 , p 34 = 8670x 1 + 6120x 2 + 2550x 3 , p 35 = -34x 1 -17x 2 -17x 3 , p 36 = -23324x 1 -10829x 3 , p 45 = 0, p 46 = 774690x 1 -624750x 2 , p 56 = -21658x 1 + 11662x 2 + 833x 3 .

)

  Remark 2.2.2. Algorithm 2.2.1 involves only linear equations. If the five given points are K-points, as well as F ∈ K[x 0 , x 1 , x 2 , x 3 ] 3 , then the output Pfaffian representation of S = V(F ) is a K-representation too, for a suitable choice of the representatives of the points.

Remark 2.2.3. The matrix associated to the (non-homogeneous) linear system in line 12 of the algorithm is 20 × 20; it depends only on the projectivity applied in Algorithm 2.2.1 from five points in general position to a Pfaffian representation
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subsequent steps. In facts, this does happen in the following example: take S = V(x 0 x 1 x 3 +x 3 2 +x 2 x 2 3 ) and a 1 = [0 : 0 : 0 : 1]. The tangent plane process gives rise to points on the line [s : t : 0 : 0], which are either singular or Eckardt points. The process then stops at the second step.

As pointed out by the referee, codimension three AG subschemes have been considered also in [START_REF] Migliore | A construction of codimension three arithmetically Gorenstein subschemes of projective space[END_REF], where they are obtained as zero loci of sections of certain rank-three sheaves. In the case of five points in general position in P 3 K, it turns out that all such sets are the zero loci of appropriate sections of the bundle Ω P 3 (3), which can be interpreted as four-tuple quadrics, that is, linear combinations (using linear forms as coefficients) of the syzygies of the map (x 0 x 1 x 2 x 3 ). The membership of such a zero locus to a surface S imposes conditions to the linear combination.

Main results and further generalizations

In this last section, we firstly make use of Theorem 3.1.3 and Algorithm 2.2.1 to prove Theorem 1.0.9; if we drop the requirement of the starting point, then a weaker result holds (Proposition 1.0.10). After discussing the cases of reducible surfaces and cones, we state Theorem 1.0.11. A concrete example is finally given.

Proof of Theorem 1.0.9. Given a 1 , one can apply Theorem 3.1.3 and construct four other K-points a 2 , a 3 , a 4 , a 5 on S such that they are all together in general position. With these initial data, Algorithm 2.2.1 ensures a Pfaffian K-representation of S.

Remark 4.0.6. Let us work on K and let S be general. In Remark 2.2.4 we saw that the Pfaffian representations produced by Algorithm 2.2.1 are all equivalent, once fixed the inputs a 1 , a 2 , a 3 , a 4 , a 5 . The constructive proof of Theorem 1.0.9 provides a new algorithm to construct many Pfaffian representations starting from just one point a 1 : we claim that neither this algorithm is surjective onto the possible Pfaffian representations of S, once fixed a 1 . Indeed, by Remark 2.2.5, the space of essentially different Pfaffian representations of S is five-dimensional. Since we can suppose S is smooth, a 1 is not singular. The procedure described in the proof of Theorem 3.1.3 consists in taking a point on a plane cubic curve in each step, and so the space of sets of five points obtained starting from a 1 is four-dimensional. The conclusion follows again by Remark 2.2.4. Remark 4.0.7. The procedure lying beneath the proof of Theorem 1.0.9 involves only linear equations and can be implemented in a deterministic algorithm.

Weakening hypotheses.

4.1.1. No starting points. One of the hypotheses of Theorem 1.0.9 was a K-point on S. If this is not given, then one can manage to find a K -point a, being K an algebraic extension of degree at most three, simply by solving a polynomial equation of degree three (given by intersecting S with two arbitrary planes). For the general choice of these two planes, a is not a T-point and so Theorem 1.0.9 applies. This proves Proposition 1.0.10.

Reducible surfaces.

Let S be a reducible cubic surface. Then S is either union of three planes with equation π 1 , π 2 , π 3 or union of a plane π and a quadratic irreducible surface S. In both cases, simple Pfaffian representations can be constructed, as we will show.