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Paris, France

A. Esposito

2nd Universit di Napoli
Department of Psychology

Caserta, Italy

G. Pelosi

Integrationi & Sistemi
Via dei Granai di Nerva

Rome, Italy

ABSTRACT

Voice-based digital Assistants such as Apple’s Siri and
Google’s Now are currently booming. Yet, despite their
promise of being context-aware and adapted to a user’s pref-
erences and very distinct needs, truly personal assistants are
still missing. In this paper we highlight some of the chal-
lenges in building personalized speech-operated assistive
technology and propose a number of research and develop-
ment directions we have undertaken in order to solve them.
In particular we focus on natural language understanding and
dialog management aspects as we believe that these parts
of the technology pipeline require the biggest amount of
augmentation.

Index Terms— Personal Digital Assistants, Spoken Dia-
log Systems, Assistive Technology, Language Understanding,
Dialog Design

1. INTRODUCTION

Recent years have seen a significant increase in the deploy-
ment of voice-controlled Personal Digital Assistants. During
the last two decades the necessary technology integration (i.e.
the combination of Automatic Speech Recognition, Natural
Language Understanding, Dialog Management and Text-to-
Speech Synthesis) has been the focus of extensive academic
and industrial research, eventually resulting in commercial
products such as Apple’s Siri1, Google’s Now2 and Nuance’s
Nina3. These products not only show the advancements of
recent technologies but also manage to bring the concept of
an artificial personal assistant, i.e. a system that is able to
(at least to some extend) understand and respond to spoken
inputs, to a somewhat broader end-user level. Continuous
progress happened from a technological perspective as well as
with respect to supported application domains. While the first
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systems that used natural language as an interaction modality
were predominantly focusing on the travel domain, possible
application scenarios have progressively been extended and
now include areas such as weather forecast [1], navigation [2],
translation [3], infotainment [4], tutoring [5] and even health
care [6]. Despite the overall advancements the use of natural
language driven assistive technologies is, however, still cau-
tious. One reason for resistance may be found in the fact that
Siri & Co., for all their efforts, are not really personal. More
focus on personal adaptation is necessary so as to better inte-
grate systems into users’ daily routines. While the technology
is at a point where it may be called robust, the integration of
context and personalized behavior is still at its starting point.
Significant improvements are needed in order to move from
pure digital assistants to truly personal ones.

2. PERSONAL DIGITAL ASSISTANTS

Our common understanding of a personal assistant is that of
a person (or an agent) who is able to provide distinct help at
a given time and in a given activity context. For example,
a secretary situated in a general work context provides sup-
port for activities such as answering incoming calls, record-
ing meetings and appointments, ordering products, or inter-
acting with clients. An important characteristic of personal
assistants is that they adapt to the distinct demands of their
‘master’ and furthermore (over time) progressively pay atten-
tion to her/his personal preferences and routines. Also, as
by their definition, personal assistants should each be helping
only one person, making this one-to-one relationship between
assistant and ‘master’ a crucial benefit. Given this definition
of a personal assistant it is easy to argue that many people
would find it convenient to have such a person at their dis-
posal, even though not all of them may have a clear under-
standing of their exact context of use. Hence, when we try to
approach this subject from a more technical perspective, we
already find a set of requirements and expectations coming
from users. Among the most requested features when think-
ing of digital assistants, are simplicity, flexibility and easi-
ness of interaction. Voice-based input/output interfaces may
be the easiest way to fulfill these requirements. This is be-



cause voice-based interaction is usually simple, flexible and
does not require cognitive efforts, attention and/or memory
resources on the side of the user. Voice interfaces for example,
can flatten option menus and supply rapidly complex verbal
responses.

How such a voice-based Personal Digital Assistant could
work was first exemplified in 1995 by the futuristic APPLE
Knowledge Navigator concept 4. The video emphasizes the
effectiveness and efficacy of having perfect Voice User Inter-
faces. Watching the clip, any expert in speech processing,
synthesis and recognition can clearly see why the proposed
application is rather futuristic. The dialog among the digi-
tal assistant and the user is free of any constraints. The as-
sistant knows the psychological motivations of the user, it is
able to perceive the user’s emotions and even able to sug-
gest actions that include the user’s social relationships (e.g.
recommending a friend’s recently published research paper).
In addition the assistant speaks perfectly fluent English, em-
ploying appropriate intonation and prosodic cues that trans-
mit paralinguistic information, such as for example concealed
disapproval of how the user is behaving with his mother.

However, from a technical perspective VUIs represent
a complex interface option. In particular, since currently
the capabilities of the underlying technologies for Automatic
Speech Recognition (ASR), Natural Language Understanding
(NLU) and Text-to-Speech (TTS) synthesis are constrained
by pre-defined application contexts and not yet ready for
supporting a free-form human-machine conversation. This is
why current voice enabled systems are developed based on
specific use case descriptions. Scenarios range from rather
simple applications such as using speech input to surf the
Internet, to more complex settings where voice may be used
to monitor the well being of elderly people, or to offer them
assistance in operating technological services such as sending
an SMS, writing an e-mail, searching their weekly agenda,
or managing a calendar program. Systems targeted at el-
derly people face particular challenges, as due to possible
age-related fine motor articulatory impairments additional
efforts are required in order to adapt and improve the speech
recognition algorithms [7].

In summary it can be said, that users’ expectations when
speaking to systems, exploiting their ordinary verbal interac-
tions with other humans, are much higher than those they have
when interacting with graphical user interfaces. Therefore it
is necessary to develop VUIs that are able to satisfy these ex-
pectations. Given that the current technology is not able to
provide algorithms to process and understand free-forms of
conversations, the appropriate design of the dialog manage-
ment, such that the user has the feeling of a naturalistic in-
teraction, is crucial to ensure an effective and efficient use
of the system. To our knowledge, there are no standards for
the development of more ‘satisfying’ VUIs. Although there
have been efforts in providing suggestions for potential solu-

4http://www.youtube.com/watch?v=JIE8xk6Rl1w

tions [8], this issue is still at a research stage. In the following
we will describe our approach to improve the current state of
the art. Based on the considerations discussed above, we par-
ticularly focus on natural language understanding and dialog
management. In our opinion, these components require the
biggest amount of improvement in order to render associated
VUIs more naturalistic and satisfying for the end users.

3. POTENTIAL AREAS OF IMPROVEMENT

Given the system requirements described above and the cur-
rent state of the art we see four areas where significant im-
provements are possible:

3.1. Extended Dialog History

Deployed systems, whether they have a commercial or a re-
search purpose, usually utilize the dialog history as an instru-
ment to disambiguate user utterances and to keep track of the
dialog state. Yet, the memorized activity log is often focused
on a single dialog and does not spread across different conver-
sations. Expanding the history element may allow for build-
ing systems that adapt to the user over time. Hence, systems
should be able to adapt the speech segment’s acoustic models,
the language models, the understanding as well as the general
way of completing a dialog. For example, the overall inter-
action could be improved if the system has information about
the identity, the gender and the age of a user, and furthermore
respects his/her preferences for interacting with technology.

3.2. Improved Context Awareness

In addition to what is directly requested by the user, a vast
amount of information is usually available which may be pro-
cessed by a system and eventually could improve its con-
text awareness. For example, sensors embedded in (future)
homes, in the office or simply in every day used appliances
such as our beloved smartphones, are precious data sources
that could be used to augment human-machine interaction.
Also the Internet may be a potential data pool that could be
mined in order to provide an enhanced knowledge of the “out-
side world” and consequently improve a system’s reasoning.

3.3. Dynamic System Adaptation

The development and implementation of an SDS usually con-
sists of three stages. The first stage is concerned with the
specification of the relevant components, the second with the
implementation and third with the actual deployment of the
system. From the implementation stage onward, a system’s
configuration is often static, i.e. it does not change with usage
nor according to a given dialog state. We therefore propose to
use a multi-agent architecture so that the settings of one agent
can be changed based on the input coming from other agents.
So if one component detects a change in the dialog context it



can inform all the other components, updating their configu-
ration. This dynamic mechanism would allow for modifying
the system even while it is running.

3.4. Supported Task Hierarchy Design

Previous work has highlighted an overall classification for Di-
alog Management (DM) paradigms [9]. According to this
classification a DM is based on either stochastic processes
i.e. MDPs [10], POMDPs [11], the information state prin-
ciples [12], or a hierarchy of tasks [13, 14]. Each of the-
ses categories has advantages and drawbacks. The informa-
tion state paradigm is considered as an inaccurate theoretical
framework and therefore does not meet the requirements of
most practical implementations. The same applies to stochas-
tic processes whose main drawback is that training data has
to be collected in order to build a system. Despite significant
research efforts to overcome this issue (e.g. reinforcement
learning [15]) these processes are yet to be streamlined. The
task-based paradigm therefore remains the most appropriate
technique. Depending on the size of a dialog, the initiative
given to the user, and the conditional execution steps, task hi-
erarchies may often be very complex. Better tools and meth-
ods should therefore be available so that the design of task
hierarchies and their automatic transformations can be shifted
to the specification stage of an application.

4. A PROPOSED ARCHITECTURE

In order to approach the above discussed areas of improve-
ment, a Spoken Dialog System (SDS) has been implemented.
Its architecture is shown in Fig. 1. The illustrated base com-
ponents represent specialized agents which communicate
with each other using the ActiveMQ messaging server5. The
data flow between components is restricted so as to con-
trol for a near-sequential processing pipeline. The leftmost
layer depicts the interface with the user. Currently this is
achieved through a single sensor i.e. a microphone that
captures the signal, which is subsequently analyzed by the
ASR engine [16]. The ASR frames the signal, converts it to
a sequence of finite observation vectors and matches those
against a set of acoustic and linguistic stochastic models.
It produces a ranked list of hypotheses for the text content
recognized from the speech signal and associates them with
confidence scores related to their acoustic likelihood and
linguistic probability. Only transcriptions with scores pass-
ing a given threshold are propagated to the core system. In
the case that no transcription passes the threshold a generic
“not understood” message is passed on. On the other end of
the pipeline the TTS engine [17] generates and plays audio
responses from text sent by intermediate processing compo-
nent.

5http://activemq.apache.org/

This primary system layer links the signal level with the
textual level of the architecture. Additional sensors may be
integrated in the future so as to increase the entropy of the
captured information and consequently improve the system’s
overall performance. For the moment, however, the focus lies
on improving the middle components dealing with language
understanding, dialog management and text generation. Here
the Natural Language Generator (NLG) is currently based on
a fairly simple template selection process which randomly
chooses text utterances according to the current semantic rep-
resentation of the system. The Natural Language Understand-
ing (NLU) component, however, is a complex association of
several integrated components. Section 5 will described these
components in more detail as well as the successive transfor-
mations that have to be applied in order to process the text
transcriptions coming from the speech recognizer.

Finally, the center piece of the proposed architecture is
the dialog manager [14]. It is based on a generic inference
engine that has to be configured using scenario-based task hi-
erarchies. It executes actions and generates semantic concepts
related to user inputs. Also here the reader will find a more
detailed description of the component, and the way it is set
and used by the system, in Section 5.

5. COMPONENTS AND ALGORITHMS

In this section, we present the components and algorithms we
propose in order to tackle the challenges described in Sec-
tion 3. First, a discussion of the natural language understand-
ing components is provided followed by a clarification of the
types of problems we intend to solve with this setup. Then,
the implementation of a dialog model design tool is detailed.

Overall the natural language understanding process aims
at providing a mapping between the unrestricted infinite
word-level semantic space a user may utilize when inter-
acting with a system, and the dynamic set of parameterized
dialog acts a system is capable of dealing with at any given
point in a dialog. As such natural language understanding
is a multi-step dynamic process with clearly separated roles
taken on by individual sub-components. The input space size
of any sub-component is greater or equal to the size of its
output space. In other words, an NLU engine processes user
utterances sequentially and, at every stage, the level of the
semantics extracted from the text is more machine oriented.
This sequential processing of a transcription until it reaches
the dialog manager is illustrated in Fig. 2.

5.1. Parsing

A semantic parser associates semantic labels with a text ut-
terances (or parts of it). The most commonly used parsing
techniques are based on context-free grammars or probabilis-
tic context-free grammars, which are either hand-coded based
on the analysis of collected dialog data, or designed by ex-



Fig. 1. The Proposed System Architecture

Fig. 2. The One-way Interpretation Process of Spoke User Utterances

perts. For our system we integrated the algorithm proposed by
Jurčı́ček et al. [18]. Instead of matching complete-sentence
patterns with text input, Jurčı́ček et al propose to look for pat-
terns in chunks of the text-level sentence and in the temporary
(i.e. already assigned) Semantic Frame (SF). An operation is
applied to the current SF when the triggering pattern is de-
tected. The rules consisting of a trigger part (the pattern to
look for) and an operation part (the transformation to apply)
are automatically learned from an annotated corpus of utter-
ances associated with their final SFs. At every step of the
training process, the algorithm tests all the [trigger:operation]
pairs available. The one pair that gets the best score, i.e. the
one whose application results in the largest Levenshtein dis-
tance reduction between the obtained SFs and the reference
ones, is added to the decoding piles and applied to the tempo-
rary corpus.

5.2. Unification

As already mentioned, the parsing relies solely on rules de-
rived from a priori offline training and a user’s text input,
without processing any contextual information. Thus parsing
results may be shallow. For instance, a user utterance such
as “two” would be labeled as “input:number=2”, where input
is the goal of the semantic frame and “2” is the value of the

slot “number”. The utterance itself does not bear more infor-
mation, which shows the need for other sources of contextual
information to augment the primary semantic representation.
We have therefore defined a module for Semantic Unification
and Reference Resolution (SURR). The SURR maintains a
dynamic tree collection whose nodes are sets of slots (some
of them valued). The edge between a parent node and one
or more children node(s) bears a conditioned transformation
that applies to the value or the name (or both) of the slots in
the children nodes when going up the trees. In order for a se-
mantic frame to pass the test of this filtering component, the
algorithm has to find a path in the forest of nodes. The slot
part of the input SF is split into subsets that are mapped onto
the tree nodes. The algorithm succeeds if it finds a single path
leading from the initial split to the root nodes.

Algorithm 1 illustrates the process, given the following set
of slots in the input SF: Slots = {Slot1 = V alue1, Slot2 =
V alue2, . . . , Slotn = V aluen}. The splittings of Set (line
4) are kept in memory so that the algorithm does not test the
same partition of a set twice and exits the recursive function
when all of them fail. The SURR produces a “no solution”
message when it is unable to retrieve a path in the structure.
This is to signal to the user that the last utterance was not
understood by the system (i.e. not valid in the current config-
uration).



Algorithm 1 SURR algorithm
1: procedure FINDPATH(Slots)
2: if Slots is made of root sets of slots then return Slots
3: else
4: split Slots into two parts, Split and Remaining
5: if Split can be mapped to a node Node in the trees then
6: if the transformation Transform from Node to its parent is valid then
7: apply Transform
8: merge the transformation of Split with Remaining to get a new set TransSlots
9: FINDPATH(Slots)

10: else
11: FINDPATH(Slots)
12: end if
13: else
14: FINDPATH(Slots)
15: end if
16: end if
17: end procedure

A final piece of software, the dialog act converter, then
provides a mapping between the contextualized meaning rep-
resentation of the user intent and the set of dialog acts avail-
able at the current internal state of the dialog manager. For
that, the stack of tasks maintained by the reasoning engine is
mined to retrieve the expectations. A matching process is then
triggered to convert the frame into a parameterized act. If no
suitable matching is available, a “can not map” dialog act is
created.

5.3. Data Integration

The SURR tree slots are defined as dynamic predicates, i.e.
they do not remain static after being loaded. Some of them
obtain a value by calling either a sensor reading or an external
software service (local or remote). This is how we propose
to resolve all references to the external environment, i.e. the
context that is not internally maintained by the DM. For ex-
ample, information such as the geographic location of the
user, the weather, the date and time, or the day of the week.
We propose to integrate external data streams as early as
possible, supporting the NLU process with better contextual
information. Following the integration of external sources
of information, the internal context is also used to update
the structure of the SURR. Status information is intercepted
and processed by the Context Catcher (CC), a module which
sends new predicate definitions and remove-commands to the
SURR so that branches are adapted to the internal context
of the system. Finally, in order to save an extended history
across dialogs, it is planned to add an external profile file.
Accessible by the SURR , this file will store user-dependent
values, which were learned over time and proven to be rele-
vant.

5.4. Dialog Design

As highlighted earlier in the paper, in order to make a system
truly versatile and adaptive, the dialog models must be eas-
ily and quickly modifiable. However, a task hierarchy grows
exponentially into an interleaved net of tasks which is hard to
debug and/or to modify. To solve this issue, we propose a new
XML-based design language with a set of automatic transfor-
mations to convert dialog designs into machine readable code.
For example, one wants to add voice interaction to an already
existing application. The specifications of the application, i.e.
its input and output mechanisms, are known.

Using our proposed design language, we can describe the
application in terms of connected forms with associated exe-
cution scripts. The XML code for such a description scheme
is shown in Fig. 3. Recursive eXtensible Stylesheet Language
Transformations are then applied to process the forms and au-
tomatically build a task-based dialog model including vari-
able definitions, inputs and outputs, conditions as well as ex-
ecution scripts.

6. CONCLUSION AND FUTURE WORK

The proposed procedures discussed in this paper aim at mak-
ing a constrained human-machine dialogue more flexible and
adaptable to the user’s requirements, bypassing the limita-
tions of the current technological capabilities. We discussed
several challenges for building future SDS-driven Personal
Digital Assistants, and described a number of components
and algorithms with which we aim to tackle them. Our goal
for the future is to further improve our solutions and make
them available, so that also other systems may implement
them. The challenge of meeting sophisticated real-world di-
alog requirements as well as the complexity of specialized



Fig. 3. Application Description Language Scheme

contextual instances suggest that, for some time, it will be im-
probable to develop any standard for designing effective and
efficacy dialogue systems, even in environmental constrained
applications. The ideas proposed in this paper should there-
fore be considered as an attempt to progress towards better,
more flexible natural language user interfaces.
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