
HAL Id: hal-01263463
https://hal.science/hal-01263463v1

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel zero-knowledge scheme for proof of data
possession in cloud storage applications

Nesrine Kaaniche, Ethmane El Moustaine, Maryline Laurent

To cite this version:
Nesrine Kaaniche, Ethmane El Moustaine, Maryline Laurent. A novel zero-knowledge scheme for
proof of data possession in cloud storage applications. CCGRID 2014 : 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing , May 2014, Chicago, United States. pp.522 -
531, �10.1109/CCGrid.2014.81�. �hal-01263463�

https://hal.science/hal-01263463v1
https://hal.archives-ouvertes.fr

1

A Novel Zero-Knowledge Scheme for Proof of
Data Possession in Cloud Storage Applications

Nesrine Kaaniche, Ethmane El Moustaine, Maryline Laurent,
Institut Mines-Telecom, Telecom SudParis, UMR CNRS 5157 SAMOVAR

9 rue Charles Fourier, 91011 Evry, France
e–mail: {Nesrine.Kaaniche, Ethmane.Elmoustaine, Maryline.Laurent}@telecom-sudparis.eu

Abstract—Recent technological advances have given rise to the
popularity and success of cloud storage. However, the prospect
of outsourcing an increasing amount of data to a third party
and the abstract nature of the cloud foster the proliferation
of security and privacy challenges, namely, the remote data
possession checking.

This paper addresses this critical security concern, when
storing sensitive data in a cloud storage service, and the need
for users to trust commercial cloud providers. It proposes a
deterministic Proof of Data Possession (PDP) scheme based on
Interactive Proof System (IPS) and an original usage of the GPS
scheme. Our approach has several advantages. First, it supports
public verifiability which releases data owners from the burden
of a periodical verification. Second, it provides constant commu-
nication complexity, where the exchanged messages between the
storage server and the client are composed of constant number
of group elements. Third, our solution is efficient and provably
secure, as it is resistant to the fraudulence of the prover and the
leakage of verified data.

I. INTRODUCTION

Nowadays, the explosive growth of digital contents contin-
ues to rise the demand for new storage and network capacities,
along with an increasing need for more cost-effective use
of storage and network bandwidth for data transfer. The US
International Data Corporation (IDC) [13] predicts that more
than a zettabyte of data has been produced and replicated, in
2011, growing by a factor of 9 in just five years.

As such, the use of remote storage systems is gaining
an expanding interest, namely the cloud storage based ser-
vices, since it provides cost efficient architectures. These
architectures support the transmission, storage, and intensive
computation of outsourced data in a pay per use business
model.

However, these promising data storage services bring many
challenging design issues, considerably due to the loss of
control on outsourced data. These challenges have significant
influence on the security and performances of the cloud
system. First, the US Patriot Act [20] gives the government
unprecedented access to outsourced data which are either
physically hosted in the USA territory or generated by an
American actor. This US regulation law threatens the European
legislation which has strict privacy laws. That is, it provides
governments with expedited access to cloud data. As such, it
is important for a cloud user to have the possibility to verify
his outsourced data are still hosted in a specific geographic
perimeter, supporting the requested legislation.

Second, one of the biggest concerns with cloud data storage is
data integrity verification on untrusted servers. In fact, cloud
providers generally claim storing data files with redundancy
to protect against data loss. Additionally, they often disperse
these data across multiple storage placements. Such distri-
bution provides resilience against hardware. Nonetheless, in
order to reduce operating costs and save storage capacities,
dishonest providers might intentionally neglect these replica-
tion procedures, resulting into irrecoverable data errors or even
data loss. More seriously, many byzantine attacks may give
rise to data leakage attacks.
Hence, a cloud customer should have an efficient way to per-
form periodical remote integrity verifications, without keeping
the data locally. This customer’s concern is magnified by his
constrained storage and computation capabilities and the large
size of outsourced data.

Recently, to mitigate these concerns, many efforts have been
proposed under different systems and security models [2]–[4],
[10], [17], [18], [23]. These schemes are called Provable Data
Possession PDP schemes. They ensure integrity verifications
of stored data on untrusted remote servers, and are designed to
guarantee several requirements, namely lightweight and robust
verification, computation efficiency and constant communi-
cation cost, based on different security assumptions. These
PDP techniques are widely analyzed into two categories,
according to the role of the verifier in the model: private
verifiability, where only the data owner can verify the server’s
data possession, and public verifiability, where any authorized
entity can perform the verification procedure.

Even though existing PDP schemes have addressed various
security properties, we still need a careful consideration of
potential attacks, namely data leakage attacks, that may cause
potential risks for privacy preservation. To design an effective
security model, it is important to analyze the PDP scheme un-
der the framework of Zero-Knowledge Proof System (ZKPS),
while considering an Interactive Proof System (IPS) between
the client and the cloud cluster in a requested geographic
perimeter [15].

As such, in the key role of public verifiability and the
privacy preservation support, this work addresses the issue
of provable data possession in cloud storage environments,
following three substantial aspects: security level, public ver-
ifiability, and performance. This paper proposes an efficient
verification framework based on a fundamental arithmetic
Euclidean Division, adapted to limited storage capacities. The

2

framework is demonstrated to be resistant against data privacy
leakage within a ZKPS. Introduction of a probabilistic method
helps to reduce its computation and communication overheads.

The remainder of this paper is organized as follows. First,
Section II describes the state of the art of existing PDP
schemes, introducing the general concept of these schemes
and highlighting their limitations and their security challenges.
Then, Section III provides a detailed analysis of the security
requirements needed to ensure a secure, scalable and dynamic
PDP scheme with public verifiability. Section IV presents our
contribution and Section V gives a security analysis. Finally, a
performance evaluation of the proposed scheme is given before
concluding in Section VII.

II. REQUIREMENT ANALYSIS AND RELATED WORK

The Proof of Data Possession is a challenge response
protocol enabling a client to check whether a file data D
stored on a remote cloud server is available in its original
form. A PDP scheme consists of four procedures: pre-process,
challenge, proof, verification. For building meta-data of a file,
the client runs the pre-processing procedure. In most of the
cases, the client keeps the meta-data secret and sends a version
of the data file to the cloud server (e.g., encrypted data, error
coding, embedded watermark). To check the possession of the
data file, the client sends a randomized challenge to the server
for a proof of a specified file data. In response, the server
generates the proof. This computation requires the possession
of the original data and is based on the received challenge to
avoid the replay attacks. Once received, the client compares
the proof with the locally stored meta-data.

The simplest solution to design a PDP scheme is based on
a hash function H . That is, the client pre-calculates k random
challenges ci, i ∈ {1, k} and computes the corresponding
proofs, pi = H(ci||D). During the challenging procedure, the
client sends ci to the server which computes p′i = H(ci||D).
If the comparison holds, the client assumes that the server
preserves the correct data file. This solution is concretely
unfeasible because the client can verify the authenticity of the
files on the server only k times. In practice, many sophisticated
protocols have been proposed in the literature to address
PDP. This section highlights the requirements that should be
fulfilled by a PDP scheme and provides an overview on the
approaches that have been proposed in the literature to address
the verification of the authenticity of data stored on untrusted
servers.

A. Requirement Analysis

III The design of our protocol is motivated by providing
support of both robustness and efficiency, while considering
the limited storage and processing resources of user devices.
It has to fulfill the following requirements:
• Public verifiability: the public data possession verifica-

tion is an important requirement, permitting any autho-
rized entity to verify the correctness of outsourced data.
Thus, the data owner can be relieved from the burden of
storage and computation.

• Stateless verification: proofs should be generated ac-
cording to a randomly produced challenge. Thus, stateless
verification requires the use of unpredictable values.

• Low computation overhead: on one hand, for scalability
reasons, the amount of computation at the cloud storage
server should be also minimized, as the server may be
involved in concurrent interactions. On the other hand,
the proposed algorithms should also have low processing
complexity, at the client side.

• Low communication overhead: an efficient PDP should
minimize the usage of bandwidth, relying on low com-
munication cost.

• Low storage cost: the limited storage capacities of the
user devices has a critical importance in designing our
solution. So, low storage cost at the client side is highly
recommended.

• Unlimited challenges: the number of challenges should
be unlimited. This condition is considered as important
to the efficiency of a PDP scheme.

B. Related Work

The notion of PDP has first been introduced by Ateniese
et al. in [3]. That is, the client divides the file data D into
blocks and creates a cryptographic tag for each block bi as
Ti,b = (H(Wi)g

bi)d)modN , where N is an RSA modulus, g
is a public parameter, d is the secret key of the data owner
and H(Wi) is a random value. The scheme is efficient as there
is no need to retrieve data blocks for the verification of data
possession. The main drawbacks are computation complexity
due to the usage of RSA numbers and the private verifiability
with the secret key of the data owner. In [2], Ateniese et
al. propose a publicly verifiable version, which allows any
entity to challenge the cloud server. However, [2] is insecure
against replay attacks in dynamic scenarios because of the
dependencies of index blocks in proof generation and the loss
of homomorphism property in the verification procedure.

Juels et al. [17] introduce a method to detect unauthorized
changes of stored data by randomly adding sentinels in the
original data. Their scheme, called Proof Of Retrievability
(POR), does not support public verifiability. In addition, only
a fixed number of challenges is allowed. On the basis of [17],
Shacham et al. [19] propose an improved scheme to realize
public data possession verification based on bilinear signature.
However, the number of authentication tokens stored on the
server is proportional to the number of data blocks, and the
proposed technique does not prevent from data blocks leakage.

Recently, Xu et al. [23] propose a new concept to prove
the server data possession. That is, the client creates tags
as polynomials and considers the file blocks as coefficients
to polynomials. The proof procedure is based on polynomial
commitment and uses evaluation in the exponential instead of
bilinear maps. This idea has also been adopted by [18], based
on Lagrangian interpolation.

In [9], Bowers et al. explore new economic security models
for cloud services. They provide a different formulation of
the threats that cloud users face. That is, RAFT proposes
an approach confirming data redundancy on storage systems,

3

based on a time measure function. The main disadvantage of
this scheme is the communication cost which depends on the
number of blocks in the challenging request, and the storage
cost prohibitively important. In fact, the authors exposed two
verification approaches. First, they propose a private verifica-
tion algorithm to check the exactitude of server’s responses
based on a local copy stored by the data owner. While this
option may efficiently work for some scenarios, it is too much
restrictive in many other cases as it undermines much of the
benefits of cloud outsourcing. Second, in order to improve
storage capacity consumption, they refer to the Merkle Tree
signature. Thus, this technique also requires the use of a secret
for each outsourced data file.

Considering other challenging concerns to provide remote
proof verifications, [21] aims to prove correct data encryption
at rest by imposing a time basis protocol. An issue arising
in the design of this hourglass protocol is the fact that the
client needs an authentic version of the outsourced data file, to
verify responses from the server. However, the client’s storage
needs should be of constant size, otherwise the benefits of
data outsourcing decrease. In order to optimize storage cost
at the client side, [21] proposes to use additional MACs or
merkle tree processes at the client side. This necessitates that
the client retrieves the integrity checks during the challenge
response protocol which raises the bandwidth consumption. In
addition, the verifier must keep a secret for each outsourced
data (if MACs are used) or the root of the hash tree.

On the basis of [22], Willians and Sion propose SR-ORAM
scheme. It allows a client hiding its data access pattern from
an untrusted cloud server in a single round protocol. However,
this scheme requires a poly-logarithmic storage cost and does
not support public sharing verification.

To evaluate the objectives given in Section III, we compare,
in Table I, our proposed protocol with some existing tech-
niques. On the basis of the requirements of a data possession
proof system, we choose four different PDP schemes ([3],
[10], [11], [19]), that are most closely-related to our context.

Metrics [3] [10] [19] [11] prop.
Nb. of chall. fixed ∞ ∞ ∞ ∞
Public verif Yes No Yes No Yes
CSP cmp. cost O(1) O(n) O(n) O(logn) O(logn)
User cmp. cost O(1) O(n) O(n) O(logn) O(logn)
Band. cost O(1) O(1) O(l) O(l) O(1)
Storage cost O(1) O(1) O(1) O(1) O(1)

TABLE I: Complexity comparison between different PDP
techniques (n is the number of data blocks and l is the

number of elements in each block data)

Table I shows that none of the presented schemes ([3], [10],
[11], [19]) does cover the totality of the fixed requirements,
in Section III. In addition, we must notice that these schemes
studied the security aspects in a theoretical framework and
overlook the issues related to constrained resources user de-
vices.
In this paper, we design a new Zero Knowledge PDP protocol
that supports the fixed requirements, and we provide experi-
mental results to highlight the advantage of the application of

our scheme in terms of processing, storage and communication
overhead.

III. MODEL DESCRIPTION

In this paper, we present a novel PDP model based on the
well-known GPS scheme proposed by Girault et al. in [14].
GPS is a public-key-based zero knowledge protocol that adapts
to resource-constrained devices. Hence, we extend the GPS
scheme to the verification of the authenticity of files stored
on untrusted servers in cloud platforms. In this section, we
describe the components of the model used in this paper to
develop our PDP scheme.

A. System Model

We consider three participating entities: the client, the user
and the cloud service provider. The client has a collection
of data files stored on cloud servers after the pre-processing
procedure. The user who shares the stored data with the client
may challenge the cloud storage server to provide a proof of
possession.

The private verification of our proposal contains five prob-
abilistic algorithms:
• KeyGen – given a selected security parameter λ, this

algorithm outputs the data owner public and secret keys
(pk, sk), where pk is a public elliptic curve point.

• Setup – given a data file D ∈ {0, 1}∗ and the public key
pk, the setup algorithm generates the data file identifier
IDF and the corresponding public elements (σ1, σ2).

• GenChal – this algorithm generates a randomized chal-
lenge c.

• ChalProof – given the challenge c, and the original
version of the file data D, the ChalProof produces a proof
P = (y1, y2).

• Verify – given the proof P , the public elements and the
private key of the data owner, Verify checks the data
possession and outputs a result as either accept or reject.

Our idea makes use of Zero Knowledge Proofs (ZKP) to
provide a data possession verification. That is, our approach
is closely based on techniques related to the GPS scheme [14],
which is a public key verification protocol. Furthermore, we
propose two variants of proof of possession, supporting public
and private verifiability. The private verification makes use of
a secret stored locally in the client’s device, while the public
proof check is based on pairing functions.

The choice for adopting the elliptic variant of GPS scheme
is motivated by several reasons. First, ZKP joins randomness
into exchanged messages. As such, for each verification ses-
sion, the prover and the verifier generate new pseudo random
values and new composition of the considered file data, thus
making messages personalized for each session. Consequently,
the randomness involved in the server’s responses allows
resistance to data leakage attacks and preservation of data
privacy. Second, the GPS scheme is adapted to the required
limited storage capacities on tags. So, from this perspective,
with the prevalence of wireless communication, the mobile
devices start sharing the benefits of on demand cloud storage
services. Due to the resource-constrained devices, our scheme

4

is based on only one secret which is needed for verification
of all outsourced data. In addition, the main advantage of our
approach is the public verifiability, preserving the privacy of
the outsourced data. That is, an authorized verifier makes only
use of public elements and does not request the data owner
for extra-computation procedures.

B. Security Model

For our technique to be efficient in cloud storage applica-
tions, we have to consider realistic threat models. We first
point out the case where an untrusted cloud provider has a
malicious behaviour.In such cases, the storage server claims
that it possesses the data file, even if the file is totally or
partially corrupted. To model this situation, our scheme is
based on two important requirements proposed by Shacham
[19]. On one hand, there exists no polynomial-time algorithm
that can roof the verifier with non-negligible probability. On
the other hand, there exists no polynomial-time algorithm that
can recover the original data files by carrying out multiple
challenge response exchanges. Second, we consider the case
of a malicious verifier that intends to get information about the
outsourced data of the data owner. The fact that the verification
process can be performed using public elements (due to the
zero-knowledge property of our scheme) makes it possible for
malicious clients to gain information about files stored on the
untrusted servers.

The proposed protocol must provide the capabilities to the
verifier and the service provider to thwart the two threats
mentioned above. To this end, the PDP scheme must enforce a
mutual verification of the actions conducted by the client and
the storage server.

C. Notations and Assumptions

Our proposal is based on the Elliptic Curve Cryptography
(ECC) [16]. To support the public verification, the client must
first define a set of public verification elements (PVE). The
client generates the groups G1, G2 and GT and the pairing
function ê from G1 × G2 in GT . G1 and G2 are additive
subgroups of the group of points of an Elliptic Curve (EC).
However, GT is a multiplicative subgroup of a finite field. G1,
G2 and GT have the same order q. In addition, G1, G2 and
GT are generated by P , Q and the generator g = ê(P,Q),
respectively. The bilinear function ê is derived from the Weil
or Tate pairing [7].

Moreover, the PDP scheme proposed in this paper makes
use of the two following cryptographic assumptions.

Elliptic Curve Discrete Logarithm Problem (ECDLP) –
given an additive group G, a subgroup of E(Fp), which is
generated by the point P of prime order n, it is intractable to
find a, where Q = aP , and P are known.

Computational Diffie Hellman Problem (CDH) – given a
cyclic group G of order p and generator g, there is no
polynomial-time algorithm to calculate gab , where (g, ga, gb)
are known.

IV. A NEW-ZERO KNOWLEDGE PDP PROTOCOL

In this section, we propose two new PDP schemes for
cloud storage application. The first scheme applies when the
verification is performed using public credentials while the
second scheme restricts the verification process to the owner of
the verified data. Both of our schemes rely on zero-knowledge
challenge-response protocols. Therefore, they do not add any
storage overhead on the client side, which is an important
feature for applications where the access to mobile resource-
impoverished devices is possible. We provide mathematical
proofs of the correctness (i.e., the PDP scheme returns a
positive feedback if, and only if the file exists on the server
and has not been altered) of the proposed schemes based on
the properties of the Euclidean Division (ED) and the bilinear
functions.

A. Private Data Possession Scheme

In our scheme, we define an elliptic curve EC over an
additive subgroup G1 of a prime order q. Let P a generator
of G1.

When a client wants to store a file data D on the cloud,
he first decomposes D into two blocks s and n. n represents
the quotient and s is the remainder applying the Euclidean
Division (ED) on the file D with the divisor b. Note that b is
kept secret by the client and is used in the decomposition of
several outsourced file data. That is, b represents the unique
secret information that the client should preserve for all its
requests for proof of data possession verification. We must
note that b is tightly related to the security of our remote
verification scheme. As such, the definition of several data
divisors can extend our proposition. That is, the data owner
may rely on different secrets with respect to the sensitiveness
of the data that he intends to share on the cloud.

Then, with regards to the ECDLP, the published elements
are bP, nP, sP , denoted by pk, σ1, and σ2, respectively. pk is
referred to as the public key while σ1 and σ2 are the public
elements of the file D.
In the following, we use R,B and K that satisfy the require-
ments fulfilled in [14]. We also denote by · the scalar point
multiplication in an additive group and by ? two elements
multiplication belonging to a multiplicative group.

Figure 1 shows the general concept of the private data pos-
session scheme. This scheme consists in two phases. During
the first phase, the keyGen Setup procedures are executed. This
phase is performed only when the file is uploaded on the cloud.
The second phase occurs when the client wants to verify the
authenticity of the file. To this purpose, it generates a new
challenge chal in order to obtain a proof of data possession
from the cloud server. This latter runs the ChalProof algorithm
which is a 3 way procedure. In the following, we provide a
detailed description of the steps that are conducted in each of
the two aforementioned phases.

Phase I consists of the two following procedures:
• keyGen The client public and private key are generated

by invoking keyGen(1λ) procedure (cf. Algorithm 1).
• Setup When the client wants to store a file data D in the

cloud, he runs the Setup algorithm, in order to generate

5

Preprocessing: D = nb+ s
Public Parameters: (EC, +) an elliptic curve

P a generator of EC
{n · P, b · P, s · P}
R, B and K three integers such that R� BK

Secret key: sk = b where b ∈ [0, R[

Client (C) Storage Server (CSP)

choose b′ ∈R [0, R[
Request(b′,IDD)

−→ calculate D1 = mb′ + z, choose (r, t) ∈R [0, B[2

x1,x2←− calculate (r · P, t · P) = (x1, x2)

generate c ∈R [0, K[
c−→ calculate y1 = r + cz, y2 = t+ cm,

y1,y2←−

Check y1 · P − x1 − c · σ2 = c.sk · σ2 − b′ · (y2 · P − x2)

Fig. 1: General Framework of Private Data Possession Scheme

the corresponding public elements (σ1, σ2) of D (cf.
Algorithm 2).

Algorithm 1 KeyGen Procedure (Private Data Possession)

1: Input: System security parameter (λ)
2: Output: public key pk and master secret key sk

3: Choose an elliptic curve EC over an additive subgroup G1

of a prime order n, where BitLength (n) > ξ and ECDLP
is hard in G1;

4: Select P a generator of EC;
5: Use a deterministic secure pseudo random number gen-

erator (SPRNG) with a random secret seed to generate
b ∈R [0, R[;

6: sk ← b;
7: pk ← b · P ;
8: return (pk, sk)

Algorithm 2 Setup Procedure (at the data owner side)

1: Input: File data (D), pair of secret and public keys
(pk, sk) and the point generator P

2: Output: File identifier IDD and the file public elements
(σ1, σ2)

3: Generate the file identifier IDD;
4: ED(D, sk) = (s, n); ED: Euclidean Division;
5: σ1 ← n · P ;
6: σ2 ← s · P ;
7: return (IDD, σ1, σ2)

Phase II consists in a challenge-response protocol conducted
between the verifier and the storage server. The underlying
steps are detailed below.

1) GenChal: The GenChal procedure is executed by the
client and yields a challenge for the cloud storage server. The
client chooses at random a b′ ∈R [0, R[. In response, the
server has to provide a valid new file decomposition using the
random divisor b′ sent by the client. It is worth noticing that
the client does not store any additional information for the
proof verification. That is, the verification procedure makes
only use of the secret key of the client sk.

2) ChalProof: The ChalProof, executed by the server, has
to generate a valid proof of data possession of D. In our
construction, the ChalProof is a 3 way procedure between
the client and the server with a common input (b′, P). For the
sake of consistency, we suppose that the server possesses a
version of the file which is potentially altered. Hereafter, this
version is denoted by D1. The objective of the following steps
is to verify whether D1 = D or not.

• Commitment (CSP → C) : the storage server calculates
the ED of the file using the challenging divisor b′ sent
by the data owner as:

D1 = mb′ + z

Then, he chooses at random two integers
(r, t) ∈R [0, B[2 and sends their commitments to
the client as (x1, x2) = (r · P, t · P).

• Challenge (C → CSP) : the client chooses a random
challenge c ∈R [0, K[and sends it to the server storage,
in order to provide the proof. Thereby, the client gets
fresh instances indistinguishable from the past results.

• Response (CSP → C) : the server computes the re-
sponse as:

(y1, y2) = (r + cz, t+ cm)

Then, the CSP sends (y1, y2) to the client.

3) Verify: The client verifies the correctness of the server
response. He checks the following equality, using on the secret
sk, the divisor b′, the challenge c, and the responses (x1, x2)
and (y1, y2) got from the server.

y1 · P − x1 − c · σ2 = c.sk · σ2 − b′ · (y2 · P − x2). (1)

If the equality holds, the verifier has a proof that the file D
exists on the server and that it has not been altered.

Lemma IV.1. Private Verification Correctness The verifi-
cation procedure of Equation 1 holds if, and only if the file
D1 = D.

Proof: Having received (y1, y2), the client calculates y1 ·
P − x1 = cz · P and (y2) · P − x2 = mb′ · P . Given that

6

D = nb+s = mb′+z, we have cnb−cmb′ = cz−cs. Taking
into consideration that sk = b, this writes to the following.

c.sk · σ1 − b′ · (y2 · P − x2) = (y1 − cs) · P − x1. (2)

This proves the correctness of the verification step (i.e., D =
D1). The uniqueness of the quotient and remainder of the ED
allows to state that Equation 1 is true if, and only if D = D1.

B. Public data possession scheme

An authorized user, different than the client that initially
uploaded the file on the storage server, could also verify the
authenticity of this file. However, the protocol proposed in
the foregoing subsection IV-A cannot be used to this purpose
since it supposes that the verifier has the private key of the
client, which is not the case of the user. In the following, we
demonstrate that the public parameters of the client can also
be used in order to implement a PDP scheme between a user,
different from the owner of the file, and the storage server.

Thus, procedures presented in Section IV-A cannot apply
to the public data possession scenario, as the client uses his
secret sk to verify the proof.

As illustrated in Figure 2, the client publishes a set of public
verification elements (PVE). As described in Section III-C,
these elements are returned by the KeyGen procedure as
PV E = {G1,G2, P, g, ê}. Note that, for ease of exposition,
we used a symmetric pairing function ê. In addition, the
client maintains the same public elements, used for the private
verification (pk, σ1, σ2). The verification condition to state
that the file exists on the server and has not been altered is
expressed in the following Equation.

ê(c·σ1, pk)?ê(c·σ2, P) = ê((y1+b′y2)·P, P)?ê(x1+b′x2, P)−1.
(3)

Lemma IV.2. Public Verification Correctness The verifi-
cation condition of Equation 3 holds if, and only if the file
D1 = D.

Proof: For checking the correctness of the
received proof, the authorized user has to verify the
equality between the two Equation 3 sides. That
is, he has to compare ê(c · σ1, pk) ? ê(c · σ2, P) to
ê((y1 + b′y2) · P, P) ? ê(x1 + b′x2, P)−1.

First, the user executes the following steps, based on the
public elements provided by the client:

1) ê(c · σ1, pk) = ê(cn · P, b · P) = ê(P, P)cnb = gcnb

2) ê(c · σ2, P) = ê(cs · P, P) = ê(P, P)cs = gcs

3) ê(P, P)cnb ? ê(P, P)cs = gcnb+cs (4)

We must note that the second side of Equation 3 may be
written as follows (cf. Equation 5).
ê((y1 + b′y2) · P, P) ? ê(x1 + b′x2, P)−1 =
ê(y1 ·P −x1, P) ? ê(b′ · (y2 ·P −x2), P) (5)

In the sequel, the verifier performs the following steps:

1) y1 · P − x1 = y1 · P − r · P = cz · P
2) b′y2 · P − b′x2 = b′y2 · P − b′t · P = (cmb′) · P
3) ê(cmb′ · P, P) = ê(P, P)cmb

′
= gcmb

′

4) ê(cz · P, P) = ê(P, P)cz = gcz

5) ê(P, P)cmb
′
.ê(P, P)cz = gcmb

′+cz (6)
The condition of Equation 3 is equivalent to (4)=(6). Given
the uniqueness of the quotient and remainder of ED and the
non-singularity of the pairing function, this condition holds if,
and only if D = D1.

V. SECURITY ANALYSIS

In this security analysis, the cloud service provider is not
considered to perform preservation of computation resources
by reusing the same pair (x1, x2) = (r · P, t · P) from one
possession proof session to another. The server is assumed to
renew the pair of random numbers r and t and to calculate
the elliptic points x1 = r · P and x2 = t · P for each session.

In Section V-A, we describe the security of our PDP pro-
tocol using a game that captures the data possession property.
In fact, this game consists in a fraudulent storage server, as
an adversary, that attempts to construct a valid proof without
possessing the original data file as follows. When the verifier
wants to check the server’s possession of data file, he sends a
random query bg to the adversary.
• ForgeCommit – without the possession of the data file, the

server tries to generate two randoms m∗ and z∗, using
an iterated hash function. Then, he chooses two integers
(r, t) ∈R [0, B[2 and sends their commitments to the
client as (x1, x2) = (r · P, t · P).

• Challenge – the verifier requests the adversary to provide
a valid proof of the requested file, determined by a
random challenge cg .

• ForgeProof – the adversary computes a proof (y∗1 , y
∗
2)

using his random generation (m∗, z∗) and the challenge
cg .

The adversary wins the data possession game, if the verify
procedure returns “accept”.

In Section V-B, we discuss the resistance of our proposed
scheme against a malicious verifier. The verifier attempts to get
knowledge about the outsourced data, based on the available
public elements and multiple previous exchanges resulting
in successful verification sessions with the legitimate storage
server.

A. Security and privacy discussion

According to the standard definition of an interactive proof
system proposed in [15], our protocol has to guarantee three
security requirements: completeness and soundness of verifi-
cation, and the zero-knowledge property.

1) Soundness of verification: The soundness means that it
is infeasible to confound the verifier to accept false proofs
(y∗1 , y

∗
2). That is, even if a collusion is attempted, the CSP

cannot prove its possession.
The soundness of our proposition is relatively close to the
Data Possession Game. Hence, the soundness meets the
correctness of verification (Equation 1 and Equation 3), while

7

Preprocessing: D = nb+ s
Public Parameters: (EC, +) an elliptic curve

P a generator of EC
PV E = {G1,G2, P, g, ê}
{b · P, n · P, s · P} = {pk, σ1, σ2}
R, B and K three integers such that R� B.K

Secret key: b ∈ [0, S[

User (U) Storage Server (CSP)

choose b′ ∈R [0, R[
Request(b′,IDD)

−→ calculate D1 = mb′ + z, choose (r, t) ∈R [0, B[2

x1,x2←− calculate (r · P, t · P) = (x1, x2)

generate c ∈R [0, K[
c−→ calculate y1 = r + cz, y2 = t+ cm,

y1,y2←−

Check ê(c · σ1, pk) ? ê(c · σ2, P) = ê((y1 + b′y2) · P, P) ? ê(x1 + b′x2, P)−1

Fig. 2: General Framework of Public Data Possession Scheme

considering the uniqueness of the quotient and remainders of
the ED. This property prevents from forging the soundness
of verification of our protocol.

In order to the nonexistence of a fraudulent server prover,
we assume that there is a knowledge extractor algorithm
Ψ ([15]), which gets the public elements as input, and
then attempts to break the Elliptic Curve Discrete Logarithm
Problem (ECDLP) in G. We state, in Section III, that ECDLP
holds in G, if there does not exist a Probabilistic Polynomial
Time (PPT) algorithm, with non negligible probability ε, that
may solve the ECDLP problem.

The Ψ algorithm interacts as follows:
Learning 1– the first learning only relies on the data owner

public key pk = b ·P as input. Ψ tries to get knowledge of the
client secret key sk. That is, the extractor algorithm Ψ picks
at random ri ∈R [0, R[, where i ∈ Zp and computes riP . For
each ri, Ψ checks whether the comparison holds between pk
and (ri · P). Based on our assumption, Ψ cannot extract the
secret key of the client with noticeable probability.

Learning 2– the input of the second learning is the tuple
(pk, σ1, σ2, PV E). The algorithm attempts to extract the
secret key sk by performing following steps:

1) ê(pk, σ1) = ê(b · P, n · P) = gnb

2) ê(pk, P) = ê(b · P, P) = gb

3) ê(n · P, P) = gn

This learning cannot hold, because of the DDH assumption.
In [8], Boneh demonstrates that the DDH assumption is far
stronger than the CDH.

2) Completeness of verification: In our scheme, the com-
pleteness property implies public verifiability property, which
allows any entity, not just the client (data owner), to challenge
the cloud server for data possession or data integrity without
the need for any secret information. That is, public verifica-
tion elements, needed in the verification process are publicly
known. Thereby, any authorized user may challenge the server
storage and efficiently verifies the proof of data possession.
Hence, our proposal is a public verifiable protocol.

Lemma V.1. Completeness of verification Given the tuple
of public elements (pk, σ1, σ2, PV E) and D = D1, the

completeness of verification condition implies that Equation
3 holds in G2.

Proof: Based on Equation 5 and Equation 6, the com-
pleteness of our protocol is performed as follows:

ê(cmb′ · P, P) ? ê(cz · P, P) = ê(P, P)cmb
′
? ê(P, P)cz

= gcmb
′+cz

= gcnb+cs

= ê(P, P)cnb ? ê(P, P)cs

= ê(cn · P, b · P) ? ê(cs · P, P)

= ê(c · σ1, pk) ? ê(c · σ2, P)

There exists a trivial solution when g = 1. In this case, the
above verification could not determine whether the processed
file is available, because the equality remains true.
Hence, the completeness of our construction holds, if and only
if when g 6= 1, giving the uniqueness of the quotient and the
non singularity property of the pairing function ê.

3) Zero Knowledge property of verification: Compared to
original zero-knowledge GPS scheme [14], the prover rep-
resents the data storage server and the verifier represents
any authorized user. As such, our scheme inherits the zero-
knowledge feature from the GPS scheme.

The zero knowledge property ensures the efficiency of a
cloud server against malicious attempts to gain knowledge
from the outsourced data files. For our construction, this prop-
erty is achieved thanks to personalized verification session.
That is, randomness is required in cloud server’s responses, in
order to resist to Data Leakage Attacks (DLA) and to preserve
the confidentiality of data (cf. Section V-B2).

B. Resistance to attacks

In the following analysis, we discuss the resistance of our
proposed scheme to classical attacks, when only considering
the vulnerabilities over the data file. As such, we suppose a
malicious verifier. This latter attempts to gain knowledge about
the outsourced data, based on the public elements of the data
owner and multiple interactions with the legitimate storage
server.

8

1) Resistance to replay attacks: For each verification ses-
sion, the server storage and the verifier generate new pseudo
random values r and t. As presented in [14], the probability of
impersonation is 1/Kl, where l is the number of the protocol
rounds, and it depends on the challenge c. That is, a secure
pseudo random generator can mitigate to replay attacks. In
addition, the public proof of data possession variant of our
protocol is secure against MITM attacks. [14] demonstrates
that an attacker cannot retrieve the secret key from the ex-
changed messages between the prover and the verifier.

2) Resistance to DLAs: We suppose that the goal of the
fraudulent verifier is to obtain information about the out-
sourced data file. That is, the attacker may request the same
decomposition of the file by sending the same b′ and the same
challenge c. As such, using two different sessions ((α), (β)),
the attacker computes:

2cz = y
(β)
1 + y

(α)
1 − (rβ + rα)

On the other side, the cheating attacker calculates:

2cm = y
(β)
1 + y

(α)
1 − (tβ + tα)

Knowing the challenge c, the attacker cannot reconstruct the
file data, based on the ECDLP assumption. In fact, the prover
sends only the couple (r ·P, t ·P) to the verifier. As such, it is
likely impossible to extract the challenges (r, t) from the server
response. Thus, the randomness property is also necessary for
the non triviality of the proof system.

VI. PERFORMANCE EVALUATION

In this section, we present a performance evaluation, based
on the public verification variant of our construction, in terms
of bandwidth, computation and storage costs. In addition,
we conduct a number of experiments to evaluate our system
performances. As such, we demonstrate that the adopted proof
mechanism brings acceptable computation costs.

A. Computation Cost Evaluation

As presented in Section III, our scheme is composed of 5
algorithms: KeyGen, Setup, GenChal, Chal Proof and Verify.
Among these algorithms, KeyGen and Setup are performed
by the data owner. To generate the public key, the client
performs one scalar point multiplication in G. In the Setup
procedure, this latter implements two scalar point multiplica-
tion (n · P, s · P) and an Euclidean Division (ED) of the file
data, which remains linearly dependent on the data size. Note
that, this Setup algorithm is one-time cost for the data owner
and can be performed apart the other procedures.
For each proof generation, the server applies the ED of the file
data, and performs two scalar multiplication (y1, y2). Upon
receiving the server proof, the verifier conducts 4 pairing
computations.

In Section II, we presented a brief comparison between our
protocol and the most closely-related schemes ([3], [10], [11],
[19]). That is, Table I states the computation cost comparison
between our scheme and previous works, at both client and
server side.
On the server side, our construction introduces two scalar

additions and two scalar point multiplications, regardless the
number of data blocks. Therefore, contrary to the other ap-
proaches, our scheme achieves a O(logn) server computation
complexity.
On the verifier side, we brought additional computation cost,
in order to perform a public verifiability. That is, the public
verification procedure can also be performed by authorized
challengers without the participation of the data owner. As
such, this concern can be handled in practical scenarios,
compared to the private scheme ([10], [11]) which have
to centralize all verification tasks to the data owner. In our
scheme, the authorized verifier has to generate two random
scalars b′ ∈ [0, R[and c ∈ [0,K[, in order to conduct his
challenge request. Then, he checks the received proof from
the cloud server, while performing four pairing computations
and two elements multiplications in a multiplicative group.
Thus, the public verifiability introduces a O(logn) processing
cost at the verifier side.

B. Bandwidth Cost Evaluation

In our proposed scheme, the bandwidth cost comes from
the generated challenge message GenChal algorithm and the
proof response in each verification request. We neglect the
computation cost of algebraic operations because they run fast
enough [5], compared with operations in elliptic curve groups
and multiplicative groups.

On one hand, the exchanging challenge algorithm consists
in transmitting one random element c, where c ∈R [0, K[
and two elliptic curves points (x1, x2). For a recommended
security, we consider a security parameter λ = 80 bits, thus,
the total cost of the challenge message is the double size of a
group element of an additive G.

On the other hand, the proof response consists only in
two elements (y1, y2) ∈ Z2. Therefore, the total bandwidth
cost becomes constant and the bandwidth complexity of our
scheme is O(1).

As shown in Table I, [10] and [19] present O(l) bandwidth
complexity, where l is the number of elements in each encoded
block of data. As a consequence, the bandwidth cost of these
algorithms is linear to l. Considering the number of permitted
challenges, [3] suffers from the problem of pre-fixed number
of challenges, which is considered as an important requirement
to the design of our construction. Nevertheless, their scheme
presents a constant bandwidth cost, just like our proposed
protocol. Based on a private proof, [11] also performs a low
bandwidth cost. However, this algorithm supports only private
verification. Therefore, along with a public verification, our
proposed scheme, allows each verifier to indefinitely challenge
the server storage with a constant bandwidth cost.

C. Storage Cost Evaluation

On the client side, our scheme only requires the data owner
to keep secret his private key sk, which is a random element
b ∈R [0, R[, and to store three public elements. These public
elements consist in three elliptic curve points {pk, σ1, σ2}.
Thus, the storage size of each client is 3|P |. We must note
that |P | is the size of a group element, which is dependent

9

on the security parameter λ. This storage overhead remains
acceptable and attractive for resource constrained devices
mainly as it not dependent on the number of data blocks and
the size of data contents.

D. Time performance discussion

In this section, we first present the context of the imple-
mentation of our proposed scheme. Then, we discuss the
computation performances.

1) Context: In an effort to evaluate the performances of our
proposal, we build a simulated proof of data possession based
on Open Stack Storage system (Swift) [1]. Swift is a cloud
based storage system, which stores data and allows write, read,
and delete operations on them.

In order to discuss the communication cost and the com-
putation complexity at the client side, we implement several
cryptographic operations at the client side of our simulated
cloud environment. First, our scheme essentially relies on the
Euclidean Division (ED) of the data file and the multiplication
of the remainder and the quotient by an elliptic curve point.
As such, the effort to evaluate the performance of our solution
leads us to study the time performance of scalar and point
multiplication operation, at the swift client machine and the
computation cost of different symmetric pairing functions. Our
tests are conducted in order to understand the execution cost
of our proposal on real hardware. That is, on one side, we
evaluated the scalar point multiplication durations, of different
scalar size of random data for each multiplication. On the other
side, we studied the processing cost, due to the computation
of bilinear functions, relying on different security levels.
Second, we extend the functions of swift, in order to support
our security requirements. That is, we set the security param-
eter at λ = 80, and we discuss the communication cost of
our proposal, for different content size. For our tests, we use
the GNU Multiple arithmetic Precision (GMP) library [12].
We used 1000 samples in order to get our average durations
of scalar point multiplication operations, at the swift client
machine. That is, we conducted our experiments on an Intel
core 2 duo, started on single mode, where each core relies on
800 MHz clock frequency (CPU).

2) Implementation Results: Four different scalar sizes and
point multiplication are evaluated, in order to present the
execution cost of this elementary operation on real hardware.
The obtained results are summarized in Table II.
hhhhhhhhhhhhhScalar size (bits)

Sec. level (λ)
80 112 128

10 0.105 4.980 7.123
100 1.813 12.516 28.475
1000 14.522 41.009 79.868
10000 98.001 257.9 677.012

TABLE II: Mathematical operations cost (in ms).

Table II shows that the computation time increases with
the scalar size. We must note that the selected scalar presents
either the remainder or the quotient, while applying the ED
on the outsourced file data.

We also notice that the processing time with large integers
is still reasonable. In order to increase the computation
performances when larger scalars are needed, our scheme
can take advantage of pre-computation tables, by expressing
this scalar as a linear decomposition of precomputed scalars
used in this table. Therefore, the execution cost of the
scalar multiplication becomes much more easier. In addition,
Table II shows that the consumed time for multiplication
increases, independently from the choice of the scalar size,
when we increase the level of security. The latter is recurrent
concept in cryptography. It permits to evaluate the hardness
of breaking an encryption or a signature algorithm. That is,
the longer the level of security is, the harder the cryptanalysis
of the algorithm becomes.

In order to show the performances of the public verify
procedure, we examine the computation duration cost of
pairing functions, at the swift client side. That is, for our
comparison, we used two symmetric pairing functions from
the PBC library [6], including type E pairing e.param and
type A a.param, to examine the impact of different bilinear
functions on our proposal, based on three different security
levels (cf. Figure 3).

Fig. 3: Computation duration of Type A vs Type E pairing
functions (ms)

From Figure 3, we can notice that there is a tiny difference
between the two symmetric pairing functions. As such, the
type of pairing function should be taken into account, while
implementing the proposed procedures. We must note that
the type of the pairing function is bound to the choice of the
elliptic curve, where the bilinear map is computed.

We also investigate the communication cost of the GenChal
and the ChalProof procedures. For a security parameter λ set
to 80, we measure the consumed bandwidth for varying data
content size from 1000 bits to 8000 bits (cf. Figure 4). Figure 4
shows that our proposal performs an acceptable bandwidth
communication, which remains constant at about 500 bytes
for different data sizes.

VII. CONCLUSION

The growing need for secure cloud data storage services and
the attractive properties of an interactive proof system, lead
us to define an innovative solution for proof of data possession.

10

Fig. 4: Communication cost (bytes)

In this paper, we propose a new zero-knowledge PDP
protocol that benefits from the elliptic curve variant of the
GPS scheme features, namely high security level and low
processing complexity. Hence, it is shown to resist to data
leakage attacks, while considering either a fraudulent prover
or a cheating verifier.
Additionally, our proposal is deliberately designed to support
public verifiability and constant communication and storage
cost. Thus, we implemented a proof of concept based on
the Openstack swift service to demonstrate the feasibility
of our proposal and give support to our previous theoretical
performance measurements.

Finally, we should state that zero-knowledge PDP schemes
present a valuable way to reveal the abstract security assur-
ances sacrificed to cloud based outsourcing issues.

VIII. ACKNOWLEDGEMENTS

This work is part of ODISEA project and is financially
supported by the Conseil Regional d’Ile de France.
The authors would like to thank Prof. Mohamed Hamdi
(Higher Communication School, Tunisia) for his helpful sug-
gestions and comments.

REFERENCES

[1]
[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,

Z. Peterson, and D. Song. Remote data checking using provable data
possession. ACM Trans. Inf. Syst. Secur., 14(1):12:1–12:34, June 2011.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable data possession at untrusted stores. In Proceed-
ings of the 14th ACM conference on Computer and communications
security, CCS ’07, pages 598–609, New York, NY, USA, 2007. ACM.

[4] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homo-
morphic identification protocols. In Proceedings of the 15th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology, ASIACRYPT ’09, pages
319–333, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] P. S. Barreto, S. D. Galbraith, C. O. Héigeartaigh, and M. Scott. Efficient
pairing computation on supersingular abelian varieties. Des. Codes
Cryptography, 42(3):239–271, Mar. 2007.

[6] L. Ben. On the implementation of pairing-based cryptosystems, 2007.
[7] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in

Elliptic Curve Cryptography (London Mathematical Society Lecture
Note Series). Cambridge University Press, New York, NY, USA, 2005.

[8] D. Boneh. The decision diffie-hellman problem. In Proceedings of the
Third International Symposium on Algorithmic Number Theory, ANTS-
III, pages 48–63, London, UK, UK, 1998. Springer-Verlag.

[9] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest. How
to tell if your cloud files are vulnerable to drive crashes. In Proceedings
of the 18th ACM conference on Computer and communications security,
CCS ’11, pages 501–514, New York, NY, USA, 2011. ACM.

[10] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness
amplification. In Proceedings of the 6th Theory of Cryptography
Conference on Theory of Cryptography, TCC ’09, pages 109–127,
Berlin, Heidelberg, 2009. Springer-Verlag.

[11] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic
provable data possession. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages 213–222,
New York, NY, USA, 2009. ACM.

[12] T. G. et al. GNU multiple precision arithmetic library 4.1.2, December
2002.

[13] B. J. Gantz and D. Reinsel. Extracting value from chaos state of the
universe : An executive summary. IDC iView, (June):1–12, 2011.

[14] M. Girault, G. Poupard, and J. Stern. On the fly authentication and
signature schemes based on groups of unknown order. Journal of
Cryptology, 19:463–487, 2006.

[15] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, New York, NY, USA, 2000.

[16] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

[17] A. Juels and B. S. Kaliski. Pors: proofs of retrievability for large files.
In In CCS 07: Proceedings of the 14th ACM conference on Computer
and communications security, pages 584–597. ACM, 2007.

[18] L. Krzywiecki and M. Kutylowski. Proof of possession for cloud
storage via lagrangian interpolation techniques. In Proceedings of the
6th international conference on Network and System Security, NSS’12,
pages 305–319, Berlin, Heidelberg, 2012. Springer-Verlag.

[19] H. Shacham and B. Waters. Compact proofs of retrievability. In
Proceedings of the 14th International Conference on the Theory and
Application of Cryptology and Information Security: Advances in Cryp-
tology, ASIACRYPT ’08, pages 90–107, Berlin, Heidelberg, 2008.
Springer-Verlag.

[20] U. States. A report to Congress in accordance with [section] 326(b)
of the Uniting and Strengthening America by Providing Appropriate
Tools Required to Intercept and Obstruct Terrorism Act of 2001 (USA
PATRIOT ACT) [electronic resource] / submitted by the Department of
the Treasury. Dept. of the Treasury [Washington, D.C.], 2002.

[21] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos. Hourglass schemes: how to prove that cloud files are
encrypted. In Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 265–280, New York, NY,
USA, 2012. ACM.

[22] P. Williams and R. Sion. Single round access privacy on outsourced
storage. In Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 293–304, New York, NY,
USA, 2012. ACM.

[23] J. Xu and E.-C. Chang. Towards efficient proofs of retrievability. In
Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’12, pages 79–80, New York, NY,
USA, 2012. ACM.

