Méthode d'agrégation des variables appliquée à la dynamique des populations
Résumé
We present the method of aggregation of variables in the case of ordinary differential equations. We apply the method to a prey - predator model in a multi - patchy environment. In this model, preys can go to a refuge and therefore escape to predation. The predator must return regularly to his terrier to feed his progeny. We study the effect of density-dependent migration on the global stability of the prey-predator system. We consider constant migration rates, but also density-dependent migration rates. We prove that the positif equilibrium is globally asymptotically stable in the first case, and that its stability changes in the second case. The fact that we consider density-dependent migration rates leads to the existence of a stable limit cycle via a Hopf bifurcation.
Nous présentons les grandes lignes de laméthode d'agrégation des variables dans les systèmes d'équations différentielles ordinaires. Nous appliquons laméthode à un modèle proie-prédateur spatialisé. Dans ce modèle, les proies peuvent échapper à la prédation en se réfugiant sur un site. Le prédateur doit aussi retourner régulièrement dans son terrier pour nourrir sa progéniture. Nous étudions les effets de migration dépendant de la densité des populations sur la stabilité globale du système proie-prédateur. Nous considérons des taux de migration constants, puis densité-dépendants. Dans le cas de taux constants il existe un équilibre positif toujours stable alors que dans le cas de taux de migration densité-dépendants, il existe un cycle limite stable via une bifurcation de Hopf.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|