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Abstract—Recent years have witnessed the trend of
leveraging cloud-based services for large scale content storage,
processing, and distribution. Security and privacy are among
top concerns for the public cloud environments. Towards these
security challenges, we propose and implement, on OpenStack
Swift, a new client-side deduplication scheme for securely
storing and sharing outsourced data via the public cloud.
The originality of our proposal is twofold. First, it ensures
better confidentiality towards unauthorized users. That is,
every client computes a per data key to encrypt the data that
he intends to store in the cloud. As such, the data access is
managed by the data owner. Second, by integrating access
rights in metadata file, an authorized user can decipher an
encrypted file only with his private key.

Keywords – Cloud Storage, Data Security, Deduplication,
Confidentiality, Proof of Ownership

I. INTRODUCTION

Nowadays, the explosive growth of digital contents
continues to rise the demand for new storage and network
capacities, along with an increasing need for more cost-
effective use of storage and network bandwidth for data
transfer.
As such, the use of remote storage systems is gaining
an expanding interest, namely the cloud storage based
services, since it provides cost efficient architectures.
These architectures support the transmission, storage in
a multi-tenant environment, and intensive computation of
outsourced data in a pay per use business model.
For saving resources consumption in both network
bandwidth and storage capacities, many cloud services,
namely Dropbox, wuala and Memopal, apply client side
deduplication ( [5], [10]). This concept avoids the storage
of redundant data in cloud servers and reduces network
bandwidth consumption associated to transmitting the same
contents several times.

Despite these significant advantages in saving resources,
client data deduplication brings many security issues,
considerably due to the multi-owner data possession
challenges [10]. For instance, several attacks target either
the bandwidth consumption or the confidentiality and the
privacy of legitimate cloud users. For example, a user may
check whether another user has already uploaded a file, by
trying to outsource the same file to the cloud.

Recently, to mitigate these concerns, many efforts have
been proposed under different security models ( [3],
[8], [12], [13], [16]). These schemes are called Proof
of Ownership systems (PoW). They allow the storage
server check a user data ownership, based on a static and
short value (e.g. hash value). These security protocols

are designed to guarantee several requirements, namely
lightweight of verification and computation efficiency.
Even though existing PoW schemes have addressed various
security properties, we still need a careful consideration of
potential attacks such as Data Leakage and poison attacks,
that target privacy preservation and data confidentiality
disclosure.

This paper introduces a new cryptographic method for
secure Proof of Ownership (PoW), based on the joint
use of convergent encryption [15] and the Merkle-based
Tree [11], for improving data security in cloud storage
systems, providing dynamic sharing between users and
ensuring efficient data deduplication.
Our idea consists in using the Merkle-based Tree over
encrypted data, in order to derive a unique identifier of
outsourced data. On one hand, this identifier serves to check
the availability of the same data in remote cloud servers.
On the other hand, it is used to ensure efficient access
control in dynamic sharing scenarios.

The remainder of this work is organized as follows. First,
Section II describes the state of the art of existing schemes,
introducing the general concept of PoW protocols and high-
lighting their limitations and their security challenges. Then,
Section III introduces the system model. Section IV presents
our secure PoW scheme and gives a short security analysis.
Finally, a performance evaluation is presented, in Section VI
before concluding in Section VII.

II. RELATED WORKS AND SECURITY ANALYSIS

The Proof of Ownership (PoW) is introduced by
Halevi [8]. It is challenge-response protocol enabling a
storage server to check whether a requesting entity is the
data owner, based on a short value. That is, when a user
wants to upload a data file (D) to the cloud, he first computes
and sends a hash value hash = H(D) to the storage server.
This latter maintains a database of hash values of all received
files, and looks up hash. If there is a match found, then D is
already outsourced to cloud servers. As such, the cloud tags
the cloud user as an owner of data with no need to upload
the file to remote storage servers. If there is no math, then
the user has to send the file data (D) to the cloud.
This client side deduplication, referred to as hash-as-a-
proof [16], presents several security challenges, mainly due
to the trust of cloud users assumption.
This Section presents a security analysis of existing PoW
schemes.
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A. Security Analysis

Despite the significant resource saving advantages, PoW
schemes bring several security challenges that may lead to
sensitive data.

• Data confidentiality disclosure – hash-as-a-proof
schemes (e.g. Dropbox) introduce an important data
confidentiality concern, mainly due to the static proof
client side generation. For instance, if a malicious user
has the short hash value of an outsourced data file,
he could fool the storage server as an owner trying to
upload the requested data file. Then, he gains access to
data, by presenting the hash proof. As such, an efficient
PoW scheme requires the use of unpredictable values
of verifications.

• Privacy violation – sensitive data leakage is a critical
challenge that has not been addressed by Halevi et al.
in [8]. That is, cloud users should have an efficient
way to ensure that remote servers are unable to access
outsourced data or to build user profiles.

• Poison attack – when a data file D is encrypted on the
client side, relying on a randomly chosen encryption
key, the cloud server is unable to verify consistency
between the uploaded file and the proof value hash.
In fact, given a pair (hashD, Enck(D)), the storage
server cannot verify, if there is an original data file D,
that provides a hash value hash. As such, a malicious
user can replace a valid enciphered file with a poisoned
file. So, a subsequent user looses his original copy of
file, while retrieving the poisoned version.

B. Related Works
In 2002, Douceur et al. [4] studied the problem of

deduplication in multi-tenant environment. The authors
proposed the use of the convergent encryption, i.e., deriving
keys from the hash of plaintext. Then, Storer et al. [13]
pointed out some security problems, and presented a
security model for secure data deduplication. However,
these two protocols focus on server-side deduplication and
do not consider data leakage settings, against malicious
users.

In order to prevent private data leakage, Halevi et
al. [8] proposed the concept of Proof of Ownership (PoW),
while introducing three different constructions, in terms
of security and performances. These schemes involve the
server challenging the client to present valid sibling paths
for a subset of a Merkle tree leaves [11].
The first scheme applies erasure coding on the content
of the original file. This encoded version is the input
for construction of the Merkle tree. The second purpose
pre-possesses the data file with a universal hash function
instead of erasure coding. The third construction is the most
practical approach. Halevi et al. design an efficient hash
family, under several security assumptions. Unfortunately,
the proof assumes that the data file is sampled from a
particular type of distribution. In addition, this construction
is given in random oracle model, where SHA256 is
considered as a random function.

Recently, Ng et al. [12] propose a PoW scheme over
encrypted data. That is, the file is divided into fixed-size
blocks, where each block has a unique commitment. The
hash-tree proof is then built, using the data commitments.

Hence, the owner has to prove the possession of a data
chunk of a precise commitment, with no need to reveal
any secret information. However, this scheme introduces
a high computation cost, as requiring generation of all
commitments, in every challenging proof request.
In [3], the authors presented an efficient PoW scheme.
They use the projection of the file into selected bit-position
as a proof of ownership. The main disadvantage of this
construction is the privacy violation against honest but
curious storage server. In 2013, Jia et al. [16] address
the confidentiality preservation concern in cross-user client
side deduplication of encrypted data files. They used the
convergent encryption approach, for providing deduplication
under a weak leakage model. Unfortunately, their paper does
not support a malicious storage server adversary.

C. Threat Model

For designing a secure client-side deduplication scheme,
we consider two adversaries: malicious cloud user and
honest but curious cloud server.

• malicious user adversary – the objective of a malicious
user is to convince the cloud server that he is a legiti-
mate data owner. That is, we suppose that the adversary
successes to gain knowledge of an arbitrary part of D.
This information is then used as a challenging input to
the POW protocol.

• curious cloud server adversary – this storage server
honestly performs the operations defined by our pro-
posed scheme, but it may actively attempt to gain the
knowledge of the outsourced sensitive data. In addition,
he may try to build links between user profiles and
accessed data files.

III. SYSTEM MODEL

Figure 1 illustrates a descriptive network architecture for
cloud storage. It relies on the following entities for the good
management of client data:

• Cloud Service Provider (CSP): a CSP has significant
resources to govern distributed cloud storage servers
and to manage its database servers. It also provides
virtual infrastructure to host application services. These
services can be used by the client to manage his data
stored in the cloud servers.

• Client: a client makes use of provider’s resources to
store, retrieve and share data with multiple users. A
client can be either an individual or an enterprise.

• Users: the users are able to access the content stored in
the cloud, depending on their access rights which are
authorizations granted by the client, like the rights to
read, write or re-store the modified data in the cloud.
These access rights serve to specify several groups of
users. Each group is characterized by an identifier IDG

and a set of access rights.
In practice, the CSP provides a web interface for the client
to store data into a set of cloud servers, which are running
in a cooperated and distributed manner. In addition, the web
interface is used by the users to retrieve, modify and re-
store data from the cloud, depending on their access rights.
Moreover, the CSP relies on database servers to map client
identities to their stored data identifiers and group identifiers.
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Fig. 1: Architecture of cloud data storage

IV. NEW INTERACTIVE PROOF OF OWNERSHIP SCHEME

Our secure client-side data deduplication scheme is based
on an original use of the convergent encryption [15].
That is, on one hand, when a data owner wants to store a
new enciphered data file in remote storage servers, he has
first to generate the enciphering key. This data encrypting
key is derived by applying a one way hash function on data
content.
After successfully encrypting the file data, the client has to
generate the data identifier of enciphered data, in order to
check its uniqueness in cloud database, before uploading
the claimed file. This data identifier is computed by using
a Merkle hash tree, over encrypted contents.
Then, for subsequent data outsourcing, the client is not
required to send the same encrypted data. However, he has
to substitute a client-server interactive proof scheme (PoW),
in order to prove his ownership [7].

On the other hand, to protect data in public cloud servers
from unauthorized entities, the client has to ensure that only
authorized users are able to obtain the decrypting keys. As
such, the data owner has to encrypt the data deciphering key,
using the public key of the recipient user. This key is, then,
integrated by the data owner in user metadata, ensuring data
confidentiality against malicious users, as well as flexible
access control policies.

To illustrate our solution for improving data security and
efficiency, we first present the different prerequisites and
assumptions. Then, we introduce three use cases for storing,
retrieving and sharing data among a group of users.

A. Assumptions

Our solution considers the following assumptions.
First, we assume that there is an established secure channel
between the client and the CSP. This secure channel supports
mutual authentication and data confidentiality and integrity.
Hence, after successfully authenticating with the CSP, these
cloud users share the same resources in a multi-tenant
environment.
Second, our solution uses the hash functions in the gener-
ation of the enciphering data keys. Hence, we assume that
these cryptographic functions are strongly collision resistant,
as it is an intractable problem to find the same output for
different data files.

B. Prerequisities
• Merkle Hash Tree – a Merkle tree MT provides a

succinct commitment, called the root value of the
Merkle tree, to a data file. That is, the file is divided
into blocks, called tree leaves, grouped in pairs and
hashed using a collision resistant hash function. The
hash values are then grouped in pairs and the process
is repeated until the construction of the root value.
The Merkle tree proof protocol requires that the prover
has the original data file. That is, the verifier chooses a
number of leaf indexes and asks the verifier to provide
the corresponding leaves. As such, the verifier has to
send these leaves with a sibling valid path.

• Interactive Proof System [7] – this proof system is an
interactive game between two parties: a challenger and
a verifier that interact in a common input, satisfying
the correctness properties (i.e. completeness and
soundness).

In the following, we introduce our client-side deduplica-
tion construction, based on three different scenarios: storage,
backup and sharing schemes.

C. Cloud Data Storage
When a client wants to store a new data file f in the cloud,

he derives the enciphering key kf from the data contents,
based on a one-way hash function H(). Note that data are
stored enciphered in cloud servers, based on a symmetric
algorithm. Hence, the data owner has to encipher the data
file that he intends to outsource. Then, he generates the
data identifier MTf . That is, it is the Merkle Tree over
encrypted data. This identifier, associated to the file, must
be unique in the CSP database. Thus, the client starts the
storage process by sending a ClientRequestVerif message to
verify the uniqueness of the generated MTf to his CSP.

1) New Data File Storage: The storage process consists
in exchanging the four following messages:

• ClientRequestVerif : this first message contains the gen-
erated data identifier MTf , associated to a nonce n.
Note that the nonce is used to prevent from replay
attack or potential capture of the data identifier. This
message is a request for the verification of the unique-
ness of the MTf . The CSP replies with a ResponseVerif
message to validate or unvalidate the claimed identifier.
Note that if the sent identifier exists, the client has
to perform a subsequent upload extra-proof procedure
with the provider (cf, Section IV-C2). Once the veri-
fication holds, the cloud server asks the client to send
only the access rights of authorized users.

• ResponseVerif : this acknowledgement message is gen-
erated by the CSP to inform the client about the
existence of the requested MTf in its database.

• ClientRequestStorage: this message is sent by the client.
If the file does not exist in the cloud servers, the client
sends the file that he intends to store in the cloud, and
the data decrypting key kf enciphered with the public
keys of authorized users. Then, the enciphered kf is
included in the meta data of the file and it serves as an
access rights provision.

• ResponseStorage: this acknowledgement message, sent
by the CSP, is used to confirm to the client the success
of his data storage.
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This message contains the Uniform Resource Identifier
(URI) of the outsourced data.

2) Subsequent Data File Storage: When a client wants
to store a previous outsourced data file, he sends the data
file identifier MTf to the cloud provider. Since the claimed
identifier in cloud database, the cloud has to verify that the
requesting entity is a legitimate client. That is, the subse-
quent data storage procedure include these four messages:

• ClientRequestVerif : a subsequent data owner includes
in this first message the generated data identifier MTf ,
associated to a nonce n, in order to check its uniqueness
in cloud database.

• OwnershipRequest: this message is sent by the CSP, to
verify the client’s data ownership. It contains random
leaves’ indices of the associated Merkle tree of the
requested file. Upon receiving this message, the client
has to compute the associated sibling path of each leaf,
based on the stored Merkle tree, in order to prove his
ownership of the requested file.

• ClientResponseOwnership: in his response, the client
must include a valid sibling path of each selected leaf.
The CSP verifies the correctness of the paths provided
by the client. We must note that this data subsequent
storage process stops if the verification fails.

• ResponseStorage: if the data ownership verification
holds, the CSP sends an acknowledgement, to confirm
the success of storage, while including the URI of the
requested data.

D. Cloud Data Backup
The data backup process starts when the client requests

for retrieving the data previously stored in the cloud. The
data backup process includes the following messages:

• ClientRequestBackup: it contains the URI of the re-
quested data that the client wants to retrieve. Upon
receiving this client request, the CSP verifies the client
ownership of the claimed file and generates a Respon-
seBackup message.

• ResponseBackup: in his response, the CSP includes the
encrypted outsourced data kf (f).
Upon receiving the ResponseBackup message, the client
first retrieve the file metadata and deciphers the data
decrypting key kf , using his secret key. Then, he uses
the derived key to decrypt the request data file.

E. Cloud Data Sharing
We consider the data sharing process, where the client

outsources his data to the cloud and authorizes a group of
users to access the data. Next, we refer to these user(s) as
the recipient(s) and to the data owner as the depositor.

We must note that our proposal does not require the re-
cipients to be connected during the sharing process. Indeed,
recipients’ access rights are granted by the data owner and
managed by the CSP. That is, these access rights are also
included in the meta data file. In addition, the CSP is in
charge of verifying each recipient access permissions before
sending him the outsourced data.

In practice, each recipient is assumed to know the URI of
the outsourced data. This URI distribution problem can be
solved in two ways. Either the depositor sends the URI to
the recipient as soon as he stores data or a proxy is in charge
of distributing the URIs. Once the depositor stored the data

with the authorized access rights of the group, each member
of the group can start the data sharing process based on the
two following messages:

• UserRequestAccess: This message contains the URI of
the requested file. When receiving this message, the
CSP searches for the read/write permissions of the
recipient, and then, he generates a Response Access
message.

• ResponseAccess: the CSP includes, in its response, the
enciphered file kf (f). Upon receiving this message,
each recipient retrieves the data decrypting key from
user metadata. That is, he deciphers the associated
symmetric key with his own private key. Then, he
performs a symmetric decryption algorithm to retrieve
the plaintext. Our proposal provides a strong solution
to improve the confidentiality of data in the cloud. In
addition, the access to outsourced data is controlled by
two processes. First, there is a traditional access list
managed by the CSP. Second, the client has to own
the private decrypting key to get the secret needed
to retrieve the symmetric key compulsory needed to
decipher data.

V. SECURITY DISCUSSION

In this section, we present a brief security discussion of
our proposal. In addition, we expose its possible refinements
to mitigate other threats.

• Data confidentiality – in our model, we propose to
outsource encrypted data to remote storage servers.
That is, data is stored enciphered in the cloud, based on
a symmetric encryption algorithm using a per data key.
This enciphering key is a content related information,
ensuring data deduplication in remote servers. Thus, the
confidentiality of outsourced data is twofold.
First, we ensure confidentiality preservation against ma-
licious users. On one hand, when a user wants to store
new data in the cloud, he has to send the data identifier
MTf , based on the encrypted file. Then, he substitutes a
nonce, while sending its ClientRequestVerif. Hence, this
dual data identifier protection provides better secrecy to
data outsourcing issue. On the other hand, if an attacker
succeeds to retrieve the data identifier, he has to prove
his ownership, based on a random challenge. We must
note that our ownership proofs rely on the well-known
Merkle tree lemma [11]. This lemma says that every
prover that passes the Merkle tree protocol with high
enough probability can be converted into an extractor
that extracts mos of the leaves of the tree.
Second, we enhance data confidentiality against curious
servers. That is, the data owner outsource encrypted
contents. Then, he enciphers the decrypting key relying
on an asymmetric scheme, in order to ensure efficient
access control. As such, the CSP is also unable to learn
the contents of stored data in his his public servers.

• Privacy – based on a cryptographic solution to keep
data content secret, sensitive information are generally
included in metadata whose leakage is a critical con-
cern in a multi-tenant environment. Thus, our model
mitigates to such privacy violation issue.
On one side, the CSP identifies clients as data owners,
while outsourcing the same content in remote servers.
However, the cloud server cannot bind the consistency
between the plaintext information and these data own-
ers, as he has only access to hashed identifiers and
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encrypted contents. Consequently, he is unable to build
user profiles, based on the received identifiers.
On the other side, searching for outsourced data may
also endanger the privacy. That is, generally the backup
process is based on keywords search. Indeed, our so-
lution replaces the usage of keywords by the use of
data identifiers which are derived by a Merkle tree hash
computation over encrypted data.

• Access control – our client-side deduplication proposal
provides forward and backward secrecy of outsourced
data. It authorizes recipients to have access to data,
based on their granted privileges, with respect to their
private keys. That is, when a user wants to wants
to access data, he has first to authenticate with the
provider. That is to say, the access to data has been
already strictly controlled by an authentication phase,
before the verification of authorizations granted by
the owner. In addition, even though a curious server
or a malicious user can gain access to metadata, the
enforcement of access contro is still safeguarded, since
the decrypting key is enciphered using the public key
of the authorized recipient.
Besides, our scheme is well suited for the sharing
process, as the client uses a different encryption key
for each new data storage. As such, we avoid using the
same key for enciphering all the outsourced data.

VI. A SWIFT-CLIENT DATA DEDUPLICATION BASED
SYSTEM

In this section, we first present the context of our con-
ducted experiments with OpenStack Object Storage, and
then evaluate the system performances.

A. Context
In order to evaluate the performances of our proposal,

we build a simulated cloud storage framework, based on
OpenStack Storage system (Swift) [1]. Swift is a cloud
based storage system, which stores data and allows write,
read, and delete operations on them. To achieve security
enhancement of Swift, we extend its functionalities with
algorithms and protocols designed in our scheme.
We have designed our own architecture, performing an
installation of swift. Indeed, our architecture consists in
dividing the machine drive into four physical volumes.
Then, each volume is divided into four logical volumes. In
total, we obtain sixteen partitions, each one represents one
logical storage zone.

The simulation consists of two components: the client
side and the cloud side. We implement several crypto-
graphic algorithms based on cryptographic functions from
the OpenSSL library [14], the GMP library [6] and the Pair-
ing Based Cryptography (PBC) library [2], with independent
native processes.

B. Implementation Results
In order to evaluate the performances at the client side,

we first conduct data encryption and decryption tests locally.
Second, we evaluated the time consumption of random
data upload in the cloud, or data download from remote
servers. For our tests, we used 1000 samples in order to
get our average durations. In addition, we conducted our

experiments on an Intel core 2 duo, started on single mode,
where each core relies on 800 MHz clock frequency (CPU).

1) Client-Side Computation: To evaluate client side
computation costs, we conduct data symmetric encryption
and decryption, using a symmetric cryptographic algorithm.
We choose Advanced Encryption Standard (AES) scheme
as our enciphering algorithm and implement the CBC mode
of AES.
Figure 2 shows the computation overhead of data encryption
and decryption at swift-client side, with different sizes of
data contents.

Fig. 2: Computation overhead of data encryption and
decryption at the client side with different data size (from

105 to 106 bytes) (ms)

We can notice that the data encryption takes less than
12 ms, in order to encrypt 1MB data file. We can note that
this computation cost remains attractive, as it provides better
security to outsourced data and does not deserve the client
resources.

2) Upload/Download : In this section, we evaluated the
time consumption of random data upload in the cloud, or
data download from remote servers. Our approach consists
at first, to generate a random data file of a fixed size.
Then, we encrypt the data file based on the AES-CBC
algorithm. The length of the used enciphering key is 256
bits (AES-256-CBC). Afterwards, we upload the encrypted
file and we download it from the cloud.

As such, we conducted some tests by choosing different
files of different sizes. At each time, we computed the
average time for uploading and downloading the encrypted
file. Next, we present the results of average time computation
to upload and download data file in the cloud.

TABLE I: Average time to upload and download file of
size from 10 to 104 bytes, encrypted by AES-256-CBC

Average Time in ”s” Standard Deviation σ
Size in Bytes Upload Download Upload Download

10 0.338 0.193 0.231 0.067
102 0.329 0.192 0.210 0.060
103 0.339 0.189 0.233 0.027
104 0.326 0.194 0.191 0.080

By analyzing the results, we can conclude that:
• the time to upload a given data in the cloud is greater

than the time to download it from remote servers.
• for data size less than 5× 104 bits, the time needed to

upload the file in the cloud (respectively download it



6TABLE II: Average time to upload and download data file
of size from 103 to 9× 103 bytes, encrypted by

AES-256-cbc

Average Time in ”s” Standard Deviation σ
Size in Bytes Upload Download Upload Download

1×103 0.340 0.190 0.230 0.021
2×103 0.328 0.190 0.202 0.035
3×103 0.340 0.189 0.260 0.018
4×103 0.333 0.191 0.235 0.059
5×103 0.333 0.193 0.260 0.127
6×103 0.324 0.188 0.200 0.020
7×103 0.337 0.188 0.241 0.026
8×103 0.325 0.191 0.176 0.026
9×103 0.328 0.192 0.194 0.025

TABLE III: Average time to upload and download data file
of size from 106 to 9× 107 bytes, encrypted by

AES-256-CBC

Average Time in ”s” Standard Deviation σ
Size in Bytes Upload Download Upload Download

1×106 1.464 1.272 0.226 0.086
2×106 2.524 2.340 0.248 0.080
3×106 3.552 3.376 0.246 0.120
4×106 4.540 4.383 0.260 0.150
5×106 5.512 5.339 0.260 0.125
6×106 6.490 6.272 0.292 0.124
7×106 7.437 7.196 0.358 0.130
8×106 8.398 8.121 0.308 0.159
9×106 9.400 9.034 0.328 0.153

107 10.32 10.58 0.291 0.253

Fig. 3: Average time to upload and download file of
different sizes

from the cloud) is almost constant and does not depend
on the data size.

• for a given data size greater than 5 × 104 bits, the
time needed to upload the file in the cloud (respectively
download it from the cloud) increases by increasing the
data size.

Finally, we conclude that the cryptographic operations, at
the client side are acceptable compared to the upload opera-
tions and do not carry exhaustive computation capacities. For
example, a 8 ∗ 105 bytes data size requires only 0.1 seconds
to be enciphered, compared to 10 second be be uploaded.
Therefore, the encryption procedures involve 1% from the
OpenStack upload overhead.

3) Swift-Client Access Control Integration: In order to
include the security procedures at the client side, we first
choose an asymmetric algorithm based on the use of Elliptic
Curve Cryptography (ECC) [9]. In order to use the Elliptic
Curve Integrated Encryption Scheme (ECIES) asymmetric
encryption scheme [9], we append encryption functions to
upload swift command, in order to support encrypted data
key in user metadata. As such, the cloud client has to apply
the following command:

swift -A http://ip:port/auth/v1.0 -U account:login -K
password upload container object -I ECIES Encrypt.

The object will be hashed using SHA-256 and the result
will be written in the file object.AESkey. Then, object will
be encrypted using AES-256-CBC and the key in the file
object.AESkey. After the generation of (public, private) keys
using ECIES, we save the private and the public key. The
key (in the file object.AESkey) will be encrypted using the
ECIES encryption algorithm in the post method.

In order to support the proposed extension to the Swift
environment, we add the following option to the post method
options:

parser.add_option(’-S’,’--AESKey’,
dest=’AESKey, help=’To integrate the
encrypted AES key’,’the key length must
be : 32 bytes’,’AES key will be encrypted
by using the ECC encryption algorithm key’)

The following code allows to integrate the encryption
key in the meta-data after its encryption by using ECIES
encryption algorithm:

if options.AESKey is not None:
re_separateur=re.compile(r"[:]+")
liste_0=re_separateur.split(options.meta[0])

Input = open(liste_0[1], "r")
while 1:

ligne = Input.readline()
if not ligne:
break

ecc_pkey = ligne
Input.close()

options.meta[0]=liste_0[0]+":"+ecc_pkey
liste_1=re_separateur.split(options.meta[1])

# Generate the curve
crypto = ECIES();
# Upload the AESKey from the file
Input = open(options.AESKey, "r")
while 1:
ligne = Input.readline()

if not ligne:
break

my_AES_key = ligne
Input.close()

# Encrypt my AES key by public key
eccCurve = "p384"
secrect_key = crypto.eccEncrypt(ecc_pkey,
eccCurve, my_AES_key)
S = base64.urlsafe_b64encode(secrect_key)
options.meta[1] = liste_1[0]+":"+S

The command-line which allows to integrate the
encrypted key in meta-data is:
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swift -A http://ip:port/auth/v1.0 -U account:login -K

password post -m EcPkey:object.ECPkey
-m Enckey:”*****” container object -S object.AESkey.

• -m: is an option to integrate some informations in the
meta-data.

• EcPkey: is a static word meaning the elliptic curve
public key.

• object.ECPkey: is a file containing the elliptic curve
public key of the object.

• Enckey: is a static word meaning the encrypted key.
• ”****”: is a non-zero random string.
• -S: is an option for the AES key.
• object.AESkey: is the file containing the AES key (the

output of SHA-256 applied to the object).
In our implementation, we have chosen p384 as an elliptic

curve [9]. The encryption key will be encrypted by the
ECIES encryption algorithm and it will be encoded in 64
bit-basis.

In this part, we discuss the case when the recipient wants
to retrieve data which are stored in the cloud by another
user. In particular, when the data owner uses the upload
and post methods to encrypt data and encipher the related
data key (the result of data encryption is data.enc and the
encrypted key is k.enc). The recipient must obtain k.enc
from the meta-data and then decrypt it using its private key.
That is, the ECIES encryption algorithm uses the public
key for the recipient to encrypt k.

We add three functions in swift code, in particular in
the download method. The first one performs the ECIES
decryption algorithm. The second uses the private key of
the recipient. The third uses the deciphering data key.

parser.add_option(’-I’, ’--EC_IES’,
dest=’ECIES_mode’,help=’To introduce the
elliptic curve mode :’’the object is stored
crypted in the cloud, It will be decrypted’
’by using AES_256_cbc and the AES_key will
be decrypted by using’’ECIES which is
Elliptic Curve Integrate Encryption Scheme’)

parser.add_option(’-S’, ’--EccSkey’,
dest=’EccSkey’, help=’To decrypt the AES_key,
which is encrypted by elliptic curve public
key using ECIES’)

parser.add_option(’-H’, ’--Hashkey’,
dest=’Hashkey’, help=’To use the Hash-Key,
which is the AES_key encrypted by using
elliptic curve public key, the Hash-Key exists
as information of Meda-data object’)

The following code is used to decrypt the enciphering key
k.enc:

if (options.ECIES_mode and options.EccSkey
and options.Hashkey):

crypto = CryptoWrapper();
Input = open(options.EccSkey, "r")
while 1:

ligne = Input.readline()
if not ligne:

break
ecc_skey = ligne

Input.close()
encryptedMessage = options.Hashkey
encryptedMessage = base64.urlsafe_b64decode

(encryptedMessage)
eccCurve = "p384"
my_AES_key = crypto.eccDecrypt

(ecc_skey, eccCurve,

encryptedMessage)
ciphertext = args[1]
n = len(ciphertext)-4
plaintext = ciphertext[:n]
AESKey = plaintext+".AESkey"
File = open(AESKey, "w")
File.write("%s" %my_AES_key)
File.close()

The following code is used to decrypt the outsourced data:

if (options.ECIES_mode and options.EccSkey
and options.Hashkey):
ciphertext = args[1]
n = len(ciphertext)-4
plaintext = ciphertext[:n]
os.system("openssl enc -AES-256-CBC -d -in

"+ciphertext+" -out "+plaintext+"
-k "+AESKey)

os.system("rm "+ciphertext)

The following command-line, will be used to perform the
data backup:

swift -A http://ip:port/auth/v1.0 -U account:login -K pass-
word download container object.enc -I ECIES -S ob-
ject.ECSkey -H k.enc

• download: is the download method for swift.
• object.enc: is the encrypted data stored in the cloud.
• -I: is an option to indicate the ECIES.
• ECIES: is the Elliptic Curve Integrated Encryption

Scheme, used to call the ECIES decryption algorithm.
• -S: is an option to indicate the private key of the

recipient.
• object.ECSkey: is a file which contain the private key

of the recipient.
• -H: is an option to indicate the encrypted key stored in

the meta-data.
• k.enc: is the encrypted key.
4) Swift-Client Sharing scenario Implementation: In this

section, we present a cloud data sharing scenario between
two users Alice and Bob. We suppose that Alice needs
to receive data from Bob. So that, she sends her request
(the data identifier and his public key) to Bob. When
Bob receives the request, he prepares the data file. Then,
he uploads the encrypted data as data.enc (encryption of
data using the AES-256-CBC using a 256 bit size key) to
the cloud servers. Bob performs this operation using the
command-line:

swift -A http://ip:port/auth/v1.0 -U account:login -K
password upload container object -I ECIES Encrypt.

After encrypting the key k using the ECIES encryption
algorithm, Bob integrates k.enc in the meta-data of data.enc,
this operation is performed by using the command-line:

swift -A http://ip:port/auth/v1.0 -U account:login
-K password post -m EcPkey:object.ECPkey -m
Enckey:”*****” container object -S object.AESkey.

Alice accesses the meta-data of data.enc, she recovers
the encrypted key k.enc and decrypts it by using ECIES
decryption algorithm. Then, she uploads data.enc and she
encrypts it by using AES-CBC. To perform this operation,
Alice uses the following command-line:
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swift -A http://ip:port/auth/v1.0 -U account:login -K

password download container object.enc -I ECIES -S
object.ECSkey -H k.enc.

In summary, our performance evaluation presents the
efficiency of our proposal in content processing and delivery.
At the client side, our scheme brings acceptable computation
costs. The overhead of the implemented security mecha-
nisms does not affect the client resources. At the cloud
side, our deduplication proposal preserves the efficiency of
content upload/download operations with a smaller overhead
of cryptographic operations.

VII. CONCLUSION

The growing need for secure cloud storage services and
the attractive properties of the convergent cryptography lead
us to combine them, thus, defining an innovative solution to
the data outsourcing security and efficiency issues.

Our solution is based on a cryptographic usage of sym-
metric encryption used for enciphering the data file and
asymmetric encryption for meta data files, due to the highest
sensibility of these information towards several intrusions. In
addition, thanks to the Merkle tree properties, this proposal
is shown to support data deduplication, as it employs an
pre-verfication of data existence, in cloud servers, which is
useful for saving bandwidth. Besides, our solution is also
shown to be resistant to unauthorized access to data and to
any data disclosure during sharing process, providing two
levels of access control verification.

Finally, we believe that cloud data storage security is still
full of challenges and of paramount importance, and many
research problems remain to be identified.
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