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Abstract. A medium access control protocol based on quantum entan-
glement has been introduced by Berces and Imre (2006) and Van Meter
(2012). This protocol entirely avoids collisions. It is assumed that the
network consists of one access point and two client stations. We extend
this scheme to a network with an arbitrary number of client stations.
We propose three approaches, namely, the qubit distribution, transmit
first election and temporal ordering protocols. The qubit distribution
protocol leverages the concepts of Bell-EPR pair or W state triad. It
works for networks of up to four CSs. With up to three CSs, there is no
probability of collision. In a four-CS network, there is a low probability
of collision. The transmit first election protocol and temporal ordering
protocols work for a network with any number of CSs. The transmit first
election builds upon the concept of W state of size corresponding to the
number of client stations. It is fair and collision free. The temporal order-
ing protocol employs the concepts of Lehmer code and quantum oracle.
It is collision free, has a normalized throughput of 100% and achieves
quasi-fairness.

Keywords: Quantum computing, quantum communications, medium
access control, network protocol.

1 Introduction

The idea of a quantum computing assisted Medium Access Control (MAC) pro-
tocol has been introduced by Berces and Imre [3] and Van Meter [17]. The
protocol is building upon the concept of quantum entanglement. It controls the
access to a wireless channel. It is assumed that the network consists of one Access
Point (AP) and two Client Stations (CSs), e.g., CS1 and CS2. The AP is within
communication range of both CSs. The medium is synchronous. It consists of a
sequence of equal size Time Slots (TSs). There are two types of alternating TSs:
AP and CS, see Figure 1. Only the AP is allowed to transmit in the AP TS.
During each CS TS, only one CS is allowed to transmit. The right to transmit
is determined by an entangled pair of qubits sent, by the AP to the CSs, during
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Fig. 1. Alternating AP and CS TSs.

the preceding AP TS. Every CS gets one part of a Bell-Einstein Podolsky Rosen
(Bell-EPR) entangled qubit pair [15]. One qubit is given to client CS1. The other
is given to client CS2. This is modeled by the following equation:

|Φ〉 =
|0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2√

2
(1)

The outcome resulting from the measurement of each qubit (subscripts 1 and
2) can be either 0 or 1. When qubit 1 (qubit 2) is measured first, the result is
random, with both outcomes being equally probable. Then, when qubit 2 (qubit
1) is measured, the outcome is the opposite of qubit 1’s (qubit 2’s) outcome.
There is a correlation between what is resulting from the measurements of qubits
1 and 2. Because they are entangled, when one qubit is measured by one of the
CSs, the state of the qubit to be measured by the other CS is already determined.
The CS that measures value one is allowed to send. The CS that measures value
zero holds on. For balanced access by the two CSs, the probability amplitude is
set to 1√

2
in Eq. 1.

Arizmendi et al. [1] also proposed an adaptation of quantum communication
in a 802.11 MAC protocol. They propose sending a combination of a Bell-EPR
pair, to determine who transmits, and a W state entangled qubit triplet, to
control the transmission. This proposal also only works for a two-CS network.

This article addresses the question: How can quantum computing as-
sisted MAC be extended to a network of an arbitrary number of CSs?
We propose three solutions that extend the idea to a network consisting of an
arbitrary number of CSs. All three quantum assisted MAC protocols build upon
the concept of quantum entanglement. They are all contention-free with Collision
Avoidance (CA).

The first two protocols use the Bell-EPR pair and W state entanglement
concepts. The W state is a model of multi-qubit entanglement [8]. It comprises
two or several entangled qubits. The following equation models a three-bit en-
tanglement case:

|W 〉 =
|001〉+ |010〉+ |100〉√

3
(2)

Upon the complementation of the measurement of the three qubits, one of the
three collapses to value one while the two others collapse to value zero. It has
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been theorized that a W state can be generalized to n qubits. Thus, the quantum
superposition has equal expansion coefficients of all possible pure states in which
exactly one of the qubits is in an excited state |1〉, while all other ones are in the
ground state |0〉, as in the equation:

|W 〉 =
|100...0〉+ |010...0〉+ · · ·+ |000...1〉√

n
(3)

In this paper, we assume a network consisting of a single AP and n CSs, where
n is a positive non-null integer. The CSs are denoted as CS1, CS2, . . . , CSn.
Communications are AP-to-CS, and vice versa. There is a single multiple access
channel. Time is divided into equal-length TSs. During each TS, the AP or CSs
may attempt the transmission of data. If no station transmits, then the TS is idle.
If a single node attempts to transmit, then the transmission-attempt is a suc-
cess. If several network nodes attempt to transmit during the same TS, there is
a collision condition. To prevent collisions between the AP and CSs, the TSs are
either assigned to the AP or CSs. During an AP TS, solely the AP is allowed to
transmit. During a CS TS, solely the CSs are allowed to transmit. To prevent col-
lisions among the CS transmission-attempts, a quantum computing-based MAC
protocol is followed. Building upon the concept of quantum entanglement, we
present three new such quantum computing-assited MAC protocols, namely, the

– qubit distribution,
– transmit first election and
– temporal ordering protocols.

All three protocols have a cyclic behavior. Each cycle consists of a frame of
one or several AP TSs and one or several CS TSs. All three protocols use AP
TSs to distribute entangled qubits to the CSs. The distribution of the qubits
can be achieved using i) pre-sharing, ii) teleportation [2] or iii) free space-
transmission [16]. The AP TS may be used to send the classical bits of tele-
portation or for free space-transmission of qubits.

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

AP CS transmission time

Fig. 2. Frame format for the qubit distribution protocol for a three-CS network.

The qubit distribution protocol works for a one to four-CS network. Each
cycle consists of a multiple access frame. It is made of equal-length TSs. The
number of TSs needed in one frame is two for a one-CS network, three for a two-
CS network, eight for a three-CS network and sixteen for a four-CS network. The
frame format for a three-CS network is shown in Figure 2. TSs are subscripted
from one to eight. In TS1, the AP distributes entangled qubits to the three CSs.
In TS1, the AP also listens in case there are requests from new CSs to join the
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network. Every CS measures the qubits it receives. The result is interpreted as a
Transmission Number (TN). This TN determines the index of a TS allocated to
the CS. This behavior is executed repeatedly, frame-to-frame, involving all the
CSs that participate to the network.

TS1 TS2 TS3 TS4 TS5 TS6 TS7

AP 1st CS AP 2nd CS AP 3rd CS 4th CS

Fig. 3. Frame format for the transmit first election protocol for a four-CS network.

The transmit first election protocol works for any number n of CSs. Every
cycle is made of 2n − 1 TSs. Figure 3 shows a frame for a four-CS network. In
TS1, the AP prepares a four-entangled qubit W state. It transmits one qubit
to each of the four CSs. It also listens for requests from new CSs to join the
network. Upon reception, every CS measures the entangled qubit. The CS that
receives the state |1〉 transmits in TS2. This procedure is done two more times
in TS3 and TS5 with respectively a three and a two-qubit W state. The CS that
measures the state |1〉 in TS2 does not participate in TS3 and TS5. The CS
that measures the state |1〉 in TS3 does not participate in TS5. In the last step,
the CS that receives the state |0〉 transmits in TS7. This behavior is executed
repeatedly, frame-to-frame, with all the CSs that participate to the network.

The temporal ordering protocol leverages the concept of quantum oracle and
Lehmer Code. The oracle performs the following quantum computation. A ran-
dom number is generated. It is interpreted as the lexical order of a permutation
of all CS identifiers, i.e., 1, . . . , n. Using the factoradic system [12], this random
number is mapped to a Lehmer code. It is an encoding of the corresponding
permutation. The Lehmer code is decoded into that permutation. The qubits of
each item in the permutation are dispatched to one of the CSs. The measurement
of these qubits is mapped to a delay assigned to the CS. The delays computed
by the CSs determine an access order to the TS. When its delay expires and if
the medium is still idle, a CS may transmit in a TS. The frame format is as in
Figure 1. The TSs are alternatively assigned to the AP and CSs.

Related work is reviewed in Section 2. The qubit distribution, transmit first
election and temporal ordering protocols are respectively presented in Sections 3,
4 and 5. We conclude with Section 6.

2 Related Work

MAC protocols can be either without or with contention. A non-contention pro-
tocol ensures round-robin exclusive medium access to the CSs. This assures the
absence of collisions during transmissions. However, the overhead of such a pro-
tocol has a toll on the transmission efficiency. Contention protocols, such as the
Aloha and its numerous derivatives, have a simple logic. Any CS can transmit



5

at any time. There are collisions of transmissions when several CSs access the
medium at the same time. When a collisions occurs, the involved transmissions
are lost. The higher the collision number, the lower becomes the network effi-
ciency.

Our work is related to MAC protocols without contention. The bit-map,
binary-countdown assignment and assigned transmission frequencies are repre-
sentative contention-free protocols [7]. The bit-map protocol handles a n-CS
network. It has a cyclic behavior. Each cycle consists of n contention TSs fol-
lowed by n transmission TSs. When CSi wishes to transmit, it transmits a one
in the i-th contention TS. After going through the n contention TS, the protocol
begins a transmission cycle of a length equal to the number of CSs that declared
their intention in the contention TSs. The order of transmission follows the dec-
larations in the contention cycle. When all CSs have finished transmitting, the
contention cycle is repeated again. Since every CS has a predetermined trans-
mission TS, there are no collisions. This protocol overhead is n contention slots.
Even if all CSs do not wish to transmit, n contention TSs are allotted.

With the binary-countdown assignment protocol, every CS is assigned a fixed
length binary address. When it wishes to transmit, it first broadcasts its address,
starting with the most significant bit. To determine a transmission priority, the
binary addresses of all the CSs wishing to transmit are logically OR-ed together.
For example, four CSs wishing to transmit have addresses of 0010, 0100, 1010
and 1001. They first transmit their address most significant bit, i.e., 0, 0, 1
and 1 respectively. These bits are OR-ed resulting in the first two CSs being
dropped from the round. The other two CSs carry on since they both have a 1
as their most significant bit. The next bit for the remaining two CSs are both
0. They move on the third bit. The third bits are OR-ed together resulting in
CS 1001 being dropped. CS 1010 has the highest address and therefore the right
to transmit first. This behavior is repeated, for the remaining CSs wishing to
transmit, until all CSs have had their turn. After all the CSs have transmitted,
the behavior is repeated with all CSs wishing to transmit. Overhead is due to
determining the order of transmission.

In the assigned transmission frequencies protocol, the AP uses a frequency
to send information to all participating CSs. Each CSs gets its own individual
frequency to transmit back to the AP. The protocol requires the assignment of
bandwidth to each CS when it joins the network.

Our protocols leverage quantum computing and quantum communications.
Ursin et al. have achieved free-space transmission of an entangled qubit over a
record distance of 144 km [16]. Berces and Imre [3] and Arizmend [1] have ex-
plored medium access control protocols building upon the concept of quantum
entanglement. In a multi hop wireless network, forwarding a quantum state is an
important issue. The use of teleportation has been suggested [2]. Assuming that
two parties pre share one part each of a Bell pair, the state of a qubit can be
transferred from one location to another using two classical bits. Hence, telepor-
tation has the ability to transfer a quantum state over a classical communication
channel, e.g., using electromagnetic waves. Because pre-shared entanglement is
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required between the parties, long-term storage of qubits is needed by the partic-
ipants. Cheng et al. [6], Cao et al. [5] and Wang et al. [18] have developed wireless
network protocols for hop-by-hop [4] teleportation of qubits. Li and Yang [14] use
entanglement swapping [9] in wireless sensor networks to achieve confidentiality.

3 Qubit Distribution Protocol

The qubit distribution protocol uses Bell-EPR entangled qubit pairs or W state
entangled qubit triads. The number of TSs in a frame corresponds to the number
of CSs participating to the network, plus one AP TS. There is time allowed for
users to transmit as well as to join the network. The first TS of each frame,
i.e., TS1, is allocated to the AP. During that TS, the AP listens and accepts
requests to join in from any new CS. On the other hand, a CS that has been
idle for a number of cycles is eliminated from the network. It is not allocated
space in the upcoming frames. To re-join the network, it has to request again.
The network-entry-and-exit protocol is based on existing network-entry-and-
exit Time Division Multiple Access (TDMA) protocols. We consider that it is a
separate issue, which is not discussed further in this paper. The qubit distribution

TS1 TS2

AP CS

Fig. 4. Frame format for the qubit distribution protocol and a single-CS network.

protocol can handle a one, two, three or four-CS network. The frame format for
a single-CS network is shown in Figure 4. The AP transmits and listens in TS1.
The CS transmits in TS2.

TS1 TS2 TS3

AP TN=0 TN=1

Fig. 5. Frame format for the qubit distribution protocol and a two-CS network.

For a two-CS network, i.e., CS1 and CS2, the AP distributes a pair of entan-
gled qubits |q1〉 |q2〉. They are entangled according to Eq. 1. Each CS receives
one half of the pair. Qubit |q1〉 is assigned to CS1. Qubit |q2〉 is assigned to
CS2. When they receive their qubit, the CSs measure them. One of the CSs
obtains a zero, while the other gets a one. This is their Transmit Number (TN).
Its determines the index of their allocated TS. When the TN of a CS is zero,
it transmits in TS2. When it is one, it transmits in TS3. The frame format is
shown in Figure 5.
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|q11>

CS1 CS2

|q12> |q21> |q22>
qubit

pairs

CSs CS3

|q31> |q32>

|q11>

CS1 CS2

|q12> |q21> |q22>
qubit

pairs

CSs CS3

|q31> |q32>|q13> |q33>|q23> |q41> |q42> |q43>

CS4

Fig. 6. Qubit pair distribution in a three-CS network.

For a three-CS network, i.e., CS1, CS2 and CS3, the AP sends to each CS
two qubits from two different entangled qubit pairs. As shown in Figure 6, the
protocol requires the distribution of three pairs of entangled qubits: |q11〉 |q12〉,
|q21〉 |q22〉 and |q31〉 |q32〉. They are entangled according to Eq. 1. For a given
pair, a CS receives one half while another CS receives the other half. Qubits
|q11〉 |q32〉, |q12〉 |q21〉 and |q22〉 |q31〉 are respectively distributed to CS1, CS2 and
CS3. When each pair is measured, one side yields a one, and the other a zero.
When a CS measures a qubit qij of a pair i, it puts the result in position i
in a three-bit number. For example, CS1 receives |q11〉 |q32〉. It puts the results
obtained after measuring qubits |q11〉 and |q32〉 in positions one and three in
a three-bit number. Every CS does not receive a qubit from one of the pairs.
Because it does not receive a qubit for a pair with that index, every CS remains
with an empty position. For example, CS1 receives no qubit for position two. It
puts a zero in that empty position. All eight possible combinations are shown in

Table 1. Valid TNs for the qubit distribution protocol and a three-CS network.

CS1 CS2 CS3

1 0 1 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 0 1
0 0 1 1 0 0 0 1 0
0 0 1 1 1 0 0 0 0

Figure 1. This leaves every CS with an unique three-bit TN. The frame format
is shown in Figure 7. This TN determines the TS index allocated to the CS, i.e.,
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TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

AP CS transmission time

Fig. 7. Frame format for the qubit distribution protocol and a three-CS network.

the index is TN + 2. For example, when the TN is 000 the CS transmits in TS2.
When the TN is 110, it transmits in TS8.

Lemma 1: In a three-CS network running the qubit distribution protocol, at the
beginning of each frame, after qubit measurement, each CS gets an unique TN
in the range 0, . . . , 6.

Proof: For i in {1, 2, 3}, let us assume that CSi gets TNi. Note that in TNi,
position (i mod 3)+1 is empty and is assigned value zero. The minimum (max-
imum) value is zero (six) because the qubits used to define the other positions
may all collapse to value zero (one). �

Lemma 2: In a three-CS network running the qubit distribution protocol, at the
beginning of each frame, after qubit measurement, each CS gets an unique TN.

Proof: For 1 ≤ i < j ≤ 3, let us assume that CSi and CSj get TNi and TNj ,
with TNi = TNj . In TNi, position k = (i mod 3) + 1 is assigned value zero. In
TNj , position l = (j mod 3) + 1 is assigned value zero. In both cases, position
m 6∈ {k, l} (1 ≤ m ≤ 3) is assigned the same value after measuring a qubit from
the m-th pair. Which means that i and j are equal, a contradiction. �

Since the combination 111 is never generated, only seven CS TSs are required,
i.e., TS2, . . . , TS8. Since there are only three CSs but seven CS TSs, in each
frame there are four slots where no CSs transmit. These TSs can be used by the
AP(covered in more details in the sequel).

|q11>

CS1 CS2

|q12> |q21> |q22>

CS3

|q31> |q32>

|q11>

CS1 CS2

|q12> |q21> |q22>

CS3

|q31> |q32>|q13> |q33>|q23> |q41> |q42> |q43>

CS4

Fig. 8. Qubit triad distribution in a four-CS network.
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For a four-CS network, the AP distributes four W state entangled qubit triads
to the CSs: |q11〉 |q12〉 |q13〉, |q21〉 |q22〉 |q23〉, |q31〉 |q32〉 |q33〉 and |q41〉 |q42〉 |q43〉.
They are entangled according to Eq. 2. As shown in Figure 8, for the four
different triads, each CS receives one third of the triad while two other CSs
receive the two other thirds. When each triad is measured, one of the three
qubits yields a one. The other two yield zeros. For i = 1, 2, 3, 4 and j = 1, 2, 3,
when a CS measures a qubit qij of triad i, it puts the result in position i in a
four-bit number. For example, CS1 receives |q11〉 |q33〉 |q42〉. It puts the results
obtained after measuring qubits |q11〉, |q33〉 and |q42〉 in positions one, three and
four in a four-bit number. Every CS does not receive a qubit from one of the
triads. Because it does not receive a qubit for a pair with that index, every CS
remains with an empty position. For example, CS1 receives no qubit for position
two. It puts a one in that empty position. This leaves every CS with an unique
four-bit TN. This TN determines the index of a TS allocated to the CS, i.e., the
index TN + 1. For example when a CS has TN equal to 0001, it transmits in
TS2. When it has a TN equal to 0101, it transmits in TS6. The frame format is

TS1 TS2 TS3 TS4 TS5 TS6 · TS16

AP TN=0001 TN=0101

Fig. 9. Frame format for the qubit distribution protocol and a four-CS network.

shown in Figure 9. In each frame, only four of them are used by the CSs. Leaving
11 TSs for the AP.

Lemma 3: In a four-CS network running the qubit distribution protocol, at the
beginning of each frame, after qubit measurement, each CS gets an unique TN
in the range 1, . . . , 15.

Proof: For i in {1, 2, 3, 4}, let us assume that CSi gets TNi. Note that in
TNi, position (i mod 3) + 1 is empty and is assigned value one. The minimum
(maximum) value is one (15) beause the qubits used to define the other positions
may all collapse to value zero (one). �

Lemma 4: In a four-CS network running the qubit distribution protocol, at the
beginning of each frame, after qubit measurement, a TN collision involves at
most two CSs.

Proof: For 1 ≤ i < j < k ≤ 4, let us assume that CSi, CSj and CSk get TNi,
TNj and TNk, with TNi = TNj = TNk. In TNi, position k = (i mod 4) + 1
is assigned value one. In TNj , position l = (j mod 4) + 1 is assigned value one.
In TNm, position m = (j mod 4) + 1 is assigned value one. In all cases, for
position n 6∈ {k, l,m} they are assigned the same value after measuring a qubit
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from the n-th triad. Which means that i and j, or i and k or j and k are equal,
a contradiction. �

Table 2. Measurement outcomes leading to a double-collision with the qubit distri-
bution protocol in a four-CS network. The table displays three blocks of measurement
outcomes, for each of the four CSs. Each line shows the values assigned to the four-bit
value determined by a CS. For example, in the first block the TNs (1100) obtained by
CS1 and CS2 are equal and the TNs (0011) obtained by CS3 and CS4 are equal.

Bit positions

Outcome CS 1 2 3 4

1

1 1 1 0 0
2 1 1 0 0
3 0 0 1 1
4 0 0 1 1

2

1 0 1 0 1
2 1 0 1 0
3 0 1 0 1
4 1 0 1 0

3

1 1 1 0 0
2 0 0 1 1
3 0 0 1 1
4 1 1 0 0

Corollary 5: In a four-CS network running the qubit distribution protocol, for
1 ≤ i < j ≤ 4, a collision occurs when position l = (j mod 4) + 1 in TNi

is assigned value one and position k = (i mod 4) + 1 is assigned value one in
TNj , while in each TN the other two non-empty positions are assigned zeros.
There are three possible measurement outcomes creating double collisions, listed
in Figure 2.

Proof: Note that if TNi = TNj , then for i′, j′ /∈ {i, j} (1 ≤ i′ < j′ ≤ 4) we have
TNi′ = TNj′ . Hence, in a frame, collisions are always double. There are only
three measurement outcomes that lead to that situation. �

Lemma 6: In a four-CS network running the qubit distribution protocol, the
probability of (double) collisions in a frame is 3/81 (4%).

Proof: There are four W state triads. For each triad, there are three possible
measurement outcomes, see Eq. 2. Hence, there are 34, i.e., 81, possible different
assignments to the four-tuple of variables TN1, . . . , TN4. According to Corol-
lary 5, there are three possible assignments creating double collisions. Hence,
the probability of (double) collisions in a frame is 3/81. �
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In a three or four-CS network, it has been determined that there are respec-
tively four and eleven (thirteen when there is collision) TSs not allocated to the
CSs. Since the AP is unable to know ahead of time what entangled qubit combi-
nations each CS receives, it is unable to predict which slots are empty. To make
use of that space, the AP listens during each CS TS. If after a short interval,
no transmissions have yet to be received from a CS, it considers this to be an
empty TS. The AP makes use of the remaining time in the empty TS. It can be
used for (re)transmissions of packets intended for the CSs.

4 Transmit First Election Protocol

The transmit first election protocol uses W state entangled qubits. The one and
two-CS network cases are handled as in the qubit distribution protocol. In a
n-CS network, with n ≥ 3, the AP sends to each CS a qubit from a W state
entangled group of n qubits, as in Eq. 3. When it receives its qubit, each CSs
measures it. Only one of the CSs in a group of n CSs measures a one, all the
others n−1 CSs measure a zero. Figure 3 is an example of the possible outcomes

Table 3. Four combinations resulting from the measurement of qubits distributed by
the transmit first election protocol.

CS1 CS2 CS3 CS4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

in the case where n is four. The CS that measures a one, transmits in the next
TS. The remainder of the group repeat the cycle until there are only two of
them left at which point they move onto the distribution protocol for a two-CS
network. Figure 10 shows the total number of TSs that would be required if the

TS1 TS2 TS3 TS4 TS5 TS6 TS7

AP 1st CS AP 2nd CS AP 3rd CS 4th CS

Fig. 10. Total Transmission Cycle in a four-CS network.

round started with four CSs.
A cycle is completed when all the CSs have had a chance to transmit. In

the case of a one-CS networks, there are two TSs and 2n − 1 TSs for an n-
CS network, with n greater than one. The AP needs to transmit the qubits in
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the AP TS, consecutively n, n − 1, . . . , 2 qubits, for a total of n(n + 1)/2 − 1
qubits in a complete cycle. If the AP has tasks that it needs to perform, such
as forwarding packets, it does so in between cycles. This is also at that point
that the AP reassesses the CSs that participate to the network. Because each
CS participating to the network gets a TS in every cycle, the protocol is fair. It
is also collision free.

5 Temporal Ordering Protocol

The temporal ordering protocol leverages the concept of Lehmer Code and quan-
tum oracle.

5.1 Lehmer Code

A permutation of a set S is a bijection σ from S to itself. Let x1, x2, . . . , xn be
the elements of S. A permutation is described as the n-tuple

σ = (σ(x1), σ(x2), . . . , σ(xn)).

The number of different permutations of n distinct elements is n!. In the se-
quel, we assume that the set S consists of the numbers 1, 2, . . . , n, i.e., the CS
identifiers. A permutation σ is denoted as

σ = (σ1, σ2, . . . , σn).

A Lehmer code is an encoding of a permutation σ of n numbers 1, 2, . . . , n [13].
It is denoted as

(L(σ1), L(σ2), . . . , L(σn)).

For i = 1, . . . , n,

L(σi) = |{j : j = i+ 1, . . . , n and σj < σi}|.

Following item at position i in the sequence, it is the number of items σj that
are smaller than σi. By definition, L(σi) is between zero and n− i. For instance,
let n be equal to 3 and σ be equal to (2, 1, 3). The corresponding Lehmer code
is (1, 0, 0).

For i, j = 1, 2, . . . , n, the pair i, j is called an inversion if i is lower than j
but σi is greater than σj . An alternative interpretation of L(σi) is the number of
inversions for index i. Interestingly, the sum of inversions in σ, that is L(σ1) +
L(σ2) + . . . + L(σn), is the number of transpositions needed to transform an
identity permutation into σ.

We now explain decoding of a Lehmer code (L(σ1), L(σ2), . . . , L(σn)) into
a permutation (σ1, σ2, . . . , σn). For i equal to n down to one, σi is initialized
to L(σi). Do for j in the range i + 1, . . . , n, if σj is greater than or equal to
σi, then add one to σj . The resulting n-tuple (σ1, σ2, . . . , σn) is a permutation
of {0, . . . , n − 1}. Adding one unit to each element translates the n-tuple into
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a permutation of {1, . . . , n}. For instance, Lehmer code (1, 0, 0) is successively
decoded as (1, 0, 0), (1, 0, 1), (1, 0, 2) and finally (2, 1, 3).

Another interesting property is that the Lehmer code of a permutation σ
corresponds to its lexical order position in the list of n! possible permutations
of 1, 2, . . . , n. Note that the first position has number zero and last position has
number n!− 1.

An integer m in the range 0, . . . , n! − 1 can be mapped to the Lehmer code
at lexical position m using the factoradic system [12]. Let us define

si =

{
m i = 1
si−1 mod (n− i)! i = 2, . . . , n.

(4)

The corresponding Lehmer code is (L(σ1), L(σ2), . . . , L(σn)), where

L(σi) =

⌊
si

(n− i)!

⌋
. (5)

5.2 Quantum Oracle

An oracle is a boolean function that maps a k-bit Boolean input to a l-bit output.
An oracle can be transformed to a quantum oracle. The input and output of the
corresponding quantum oracle are both k+ l-bit long. The computational model
is as follows. There is a k-qubit input register, denoted as |x〉. The oracle output
is represented as function f(x), with corresponding unitary transformation Uf .
A l-qubit register is used to represent f(x).

The transformation Uf is applied to the computational basis |x〉k |y〉l as
follows:

Uf |x〉k |y〉l = |x〉k |y ⊕ f(x)〉l (6)

The operator ⊕ denotes modulo-two bitwise addition. The input-output qureg-
ister is initialized as the superposition:

H⊗k ⊗ Il |0〉k |0〉l
The term H⊗k denotes the tensor product of k Hadamard matrices, i.e.,

H⊗H⊗. . .⊗H. Our quantum oracle is a function f that maps m in 0, 1, . . . , n!−1
to a permutation (σ1, σ2, . . . , σn) of n. Let n be a non-null positive integer, corre-
sponding to the number of CSs participating to a network. Let m be an integer in
the range 0, . . . , n!− 1. Function f proceeds according to the method described
in Section 5.1. Firstly, using the factoradic system the integer m is mapped
to a Lehmer code. Secondly, the Lehmer code is decoded into a permutation
(σ1, σ2, . . . , σn) of n. Let p be largest power of two, such that 2p is smaller than
or equal to n!. In Equation 6, the subscript k is set to log2 p. The subscript l is
set to n log2 n. The general format of the quantum oracle’s output is

|m〉log2 p |f(m)〉n log2 n (7)

Let σ1, σ2, . . . , σn denote n groups of log2 n rightmost qubits in the output reg-
ister. For i in 1, . . . , n, the qubits σi are dispatched to client CSi. Client CSi
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measures the qubits in group σi. The corresponding numerical value is the index
of the TS allocated to CSi. In the end, once all the CSs have measured their
corresponding qubits, each of them get a value from the very same permutation.
In other words, from all the 2p superpositions, all the CSs partly observe exactly
the same permutation.

Note that the system state may not collapse in every possible permutation of
n. Indeed, the quantum oracle’s input register solely contains the superpositions
in the range 0, . . . , 2p − 1, which is lower than or equal to n! − 1. Hence, the
ordering of the CSs is not fairly distributed.

5.3 Protocol

In the temporal ordering protocol, the frame format is as in Figure 1. The TSs are
alternatively assigned to the AP then to the CSs. For each CS TS, the protocol
distributes n log2 n entangled qubits to the CSs. For each CS TS, each CS receives
log2 n qubits. There is a slot index i visible to all CSs. It is initialized to zero
and incremented modulo the number of stations (n). This operation randomizes
the access and mitigates the unfairness due to the fact that not every possible
permutation of n is generated, see the fairness analysis in Section 5.4.

The arrivals of packets in each CS are backlogged and stored in a FIFO queue.
When its FIFO queue is not empty, a CS is ready to transmit. At the beginning
of each CS TS, every ready CS measures the log2 n qubits it has received for
this TS. The binary value resulting from the measurement determines an order
among all the ready to transmit CSs. Let δ be a short delay, with δ << slot
time. Let k be the binary value measured by a CS. The CS waits for a delay
δ · (k + i) mod n from the beginning of the TS. If the medium is sensed idle
after the wait, then the CS transmits. Otherwise, it waits until the next CS TS
and tries again.

5.4 Simulation

Using simulation, we compare the normalized throughput versus the offered load
for the temporal ordering protocol and ALOHA protocol. We assume that the
packets are of constant size, network is single data rate and packet arrival is
λ packets per second (λ ≥ 0). Because of the first and second assumptions,
the packet transmission time is constant. Let τ denote the packet transmission
time, in seconds per packet. The network offered load is the product R = λτ
Erlangs. The network normalized throughput (T ) reflects the offered load and
rate of successfully transmitted packets. A successfully transmitted packet is a
packet not involved in a collision. The success rate S is the ratio of packets sent
with success over total number of transmitted packets. Hence, the normalized
throughput is T = R · S.

Figure 11 shows the performance of the temporal ordering protocol versus
the ALOHA protocol. The ALOHA’s performance is consistent with the original
analysis of Kleinrock and Tobagi [10, 11]. The normalized throughput peaks at
37%, when the offered load is one. It is used for reference purposes. Since the
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temporal ordering protocol entirely avoids collisions, its normalized throughput
reaches 100%. From 100% normalized throughput, the network is saturated. The
offered load remains one.

The results of a fairness analysis of the temporal ordering protocol are shown
in Figure 12 for an eight, a 12 and a 16 CS-networks. The x-axis lists the indices of
the CSs. The y-axis shows their relative airtime allocation. The boxplot describes
the statistical dispersion of the data. For each value of m, the ranked data is
divided into four equal groups. Each group, comprises a quarter of the data. They
are delimited by three values called quartiles. The box bottom indicates the first
quartile. The boxed horizontal bar corresponds to the second quartile, i.e., the
median. The box top indicates the third quartile. The lowest bar corresponds
to the lowest datum still within 1.5 of the interquartile range (i.e., difference
between the second and first quartiles) down of the first quartile. The highest
bar corresponds to the highest datum still within 1.5 the interquartile range
(i.e., difference between the third and second quartiles) up of the third quartile.
Crosses correspond to extremities, i.e., outliars. Quasi-fairness is obtained. In all
cases, there is slight variation around the ideal relative airtime, which is 12.5%,
8.3% and 6.3% for the eight, a 12 and a 16 CS-cases.

6 Conclusion

We have extended to a network with an arbitrary number of CSs the MAC pro-
tocol, building on quantum entanglement, introduced by Berces and Imre [3] and
Van Meter [17]. We have proposed three new protocols. The qubit distribution
protocol can handle a one, two, three or four-CS network. It uses Bell-EPR en-
tangled qubit pairs or W state entangled qubit triads. In a one, two or three-CS
network, there are no collisions. In a four-CS network, the probability of col-
lision is low (4%). The transmit first election and temporal ordering protocols
can handle a network with any number of CSs. The transmit first election pro-
tocol is fair and collision free. It distributes n(n+ 1)/2− 1 qubits in a complete
cycle. The temporal ordering protocol entirely avoids collisions and achieves a
normalized throughput of 100%. The protocol is quasi-fair. In a cycle compris-
ing n CS TS, it distributes n2 log n qubits. At this time, an important unknown
is the exact mechanism that will achieve low-cost distribution of qubits to the
CSs. This depends on further development in the science of quantum networking.
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