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Abstract

Modeling of distributions mixtures has rested on Gaussian distribu-
tions and/or a conditional independence hypothesis for a long time. Only
recently have researchers begun to construct and study broader generic
models without appealing to such hypotheses. Some of these extensions
use copulas as a tool to build flexible models, as they permit to model the
dependence and the marginal distributions separately. But this approach
also has drawbacks. First, the practitioner has to make more arbitrary
choices, and second, marginal misspecification may loom on the horizon.
This paper aims at overcoming these limitations by presenting a copula-
based mixture model which is semiparametric. Thanks to a location-shift
hypothesis, semiparametric estimation, also, is feasible, allowing for data
adaptation without any modeling effort.

Keywords: location; shift; copula; mixture; clustering; semiparametric;
nonparametric.
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1 Introduction

The modeling of a mixture of distributions has long rested upon Gaussian dis-
tributions [23] and it is only recently that researchers have started to construct
and study broader generic models [7, 18, 21, 17, 20, 29]. Among these exten-
sions, models featuring copulas are still rare, but certainly promising [20, 17, 29].
Indeed, copulas allow for building very flexible models, as they permit to handle
the marginal distributions and the dependence separately.

Let h be a mixture model density. It is of the form

h(x1, . . . , xd) =

K∑
z=1

πzhz(x1, . . . , xd),(1)

where K is the number of groups, and for z = 1, . . . ,K, hz and πz are the
conditional density and the weight of the z-th group respectively. The πz satisfy
πz ≥ 0 and

∑
z πz = 1. A copula-based mixture model is simply a standard

mixture model in which the conditional density hz has been decomposed into
the copula and the marginals, that is,

hz(x1, . . . , xd) = cz {H1z(x1), . . . ,Hdz(xd)}
d∏
j=1

hjz(xj),(2)

where cz is the copula in the z-th group, and Hjz and hjz denote the distribu-
tion function and the density of the j-th variable of interest in the z-th group
respectively. Such a decomposition is always possible as long as the marginals
are continuous. It is sometimes called the copula decomposition or Sklar’s de-
composition, in view of Sklar’s theorem [28]. For more details about copulas in
general, see e.g. [24, 15, 9] or the Appendix.

Thus, pluging (2) into (1), we get

h(x1, . . . , xd) =

K∑
z=1

πzcz{H1z(x1), . . . ,Hdz(xd)}
d∏
j=1

hjz(xj).(3)

As a matter of fact, as long as the marginals are continuous, any standard
mixture model (1) can be re-written as in (3). Nevertheless, it is wise to reserve
the term copula-based mixture model only to those models which make explicit
use of formula (3).

In order to build a parametric copula-based mixture model, d×K + d para-
metric families have to be chosen. In practice, this is quite a large number
of choices and therefore one often assumes that all the marginals come from
the same parametric family. But then this restriction can be too strong for
applications. This issue, in particular, was pointed out in [29].

In this paper, we aim at overcoming these limitations by presenting a new
copula-based model where there is no need to parametrize the marginal distribu-
tions. It is a semiparametric model with parametric copulas but nonparametric
marginals. In this respect it echos the common semiparametric copula models
of the “nonmixture” literature, see e.g. [10]. In each dimension, we assume the
existence of a symmetric distribution whose location shifts according to group
assignment. As a result, this symmetric distribution can be estimated non-
parametrically and therefore can adapt to many types of distributions with no
modeling effort.
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This paper is organized as follows. Section 2 presents the new location-shift
semiparametric copula-based mixture model. Section 3 deals with estimation.
Section 4 illustrates the model’s features. Section 5 discusses the possibility of
relaxing the location-shift assumption. A general Discussion closes the paper.

2 The model

Let (X1, . . . , Xd) be the vector of interest and let Z be the group (or cluster, or
class) assignment. For instance Z = 1 means that (X1, . . . , Xd) belongs to the
first group. The number of clusters is denoted by K, so that Z ∈ {1, . . . ,K}.
Let Hjz and hjz denote respectively the distribution function and the density
of Xj given Z = z. Let h denote the density of (X1, . . . , Xd) and define πz =
P (Z = z). R stands for the real line.

For all j = 1, . . . , d, we assume

Hjz(xj) = Gj (xj − µjz) , xj , µjz ∈ R,(4)

so that

(5)

h(x1, . . . , xd) =

K∑
z=1

πzcz {G1 (x1 − µ1z) , . . . , Gd (xd − µdz)}
d∏
j=1

gj (xj − µjz)

where Gj and gj are respectively the distribution function and the density of a
symmetric distribution, that is, Gj(xj) = 1−Gj(−xj) for all continuity points
xj . This location-shift hypothesis (4) implies that Xj , j = 1, . . . , d, is assumed
to have support (−∞,+∞). If it is not, then the data have to be distorted
to achieve unboundedness. Note that the support of Xj given Z = z does not
depend on z and is equal to (−∞,+∞). Hypothesis (4) means that the marginal
distributions in a cluster z and a cluster z′ differ only by a shift of location. Put
differently, we assume, given Z = z, that Xj = Yj + µjz where Yj ∼ Gj and Yj
is independent of Z. Note, however, that (Y1, . . . , Yd) is not independent of Z
(since its copula may depend on Z).

Several arguments can be made in favor of Hypothesis (4). First, it is in-
tuitively clear, and therefore the user is expected to know whether if he/she is
ready to accept it or not. This is certainly a plus. Second, conventional mix-
ture models satisfy a location-shift hypothesis, as a structured version of the
standard Gaussian mixture model, in which (4) holds with

gj(xj) =
1√

2πσj
exp

[
−1

2

(
xj
σj

)2
]
, xj ∈ R, σj > 0

To play the role of gj , other symmetric distributions can be called for, as for
instance, the student distribution

gj(xj) =
Γ((νj + 1)/2)
√
νjπΓ(νj/2)

(
1 +

x2j
νj

)−(νj+1)/2

, νj > 2, xj ∈ R,(6)
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or the Laplace distribution

gj(xj) =
1

2bj
exp

(
−|xj |
bj

)
, bj > 0, xj ∈ R.(7)

Last but not least, hypothesis (4) allows for nonparametric estimation, as ex-
plained in Section 3.

3 Estimation

This section presents an EM-like algorithm to estimate the unknown parameter
φ = (π,µ,θ,G) with π = (π1, . . . , πK), µ = (µ11, . . . , µd1, . . . , µ1K , . . . , µdK),
θ = (θ1, . . . ,θK), and G = (G1, . . . , Gd) of the model (5), in which we assumed
that each copula cz depend on a (possibly multivariate) parameter θz. The
parameters Gj , j = 1, . . . , d, are infinite-dimensional and therefore standard
EM algorithms [5, 23, 25] are unfeasible. There are however refinements on
which we can rest in order to perform estimation. One such refinement is given
in [4], where a stochastic and semiparametric EM-like algorithm is applied to a
univariate semiparametric location-shift mixture model. Capitalizing on their
results, we also present in Section 3.2 a stochastic and semiparametric EM-like
algorithm allowing for semiparametric estimation in our model (5). But first,
the ideas underlying the standard EM algorithm are recalled in Section 3.1.

3.1 A brief recap of the EM algorithm

Generally, consider a model of the form

h(x1, . . . , xd;φ) =

K∑
z=1

πzhz(x1, . . . , xd;χz),

where φ = (π,χ) with χ = (χ1, . . . ,χK) is the parameter to be estimated.

Let X(i), i = 1, . . . , n, with X(i) = (X
(i)
1 , . . . , X

(i)
d ), be a random sample (in-

dependent and identically distributed variables) and x(i), i = 1, . . . , n, with

x(i) = (x
(i)
1 , . . . , x

(i)
d ), be a realization of it. Likewise, let Z(i), i = 1, . . . , n,

be the associated unobserved sample of the group assignment variables. If the
complete data (x(i), z(i)), i = 1, . . . , n, were observed, we could maximize the
log-likelihood

L(X,Z;φ) =

n∑
i=1

log h(X(i), Z(i);φ),

where X stands for (X(1), . . . ,X(n)), Z stands for (Z(1), . . . , Z(n)), and h(X(i), Z(i);φ)
denotes the density of (X(1), Z(1)) at (X(i), Z(i)) assuming the true parameter
is φ. Since we do not have the data Z, the idea is to replace the log-likelihood
L(X,Z;φ) by its expectation given the data, E[L(x,Z;φ)|X = x], as the ob-
jective function to maximize over φ. For two points φ and φ′ in the parameter
set, define Q(φ|φ′) = Eφ′ [L(x,Z;φ)|X = x] where Eφ′ denotes the expectation
under the parameter φ′. The EM algorithm is an iterative two-step procedure.
Given an estimate φt of φ at the t-th step of the algorithm, one follows the two
steps given below.
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1. E step. Compute Q(φ|φt) ≡ Eφt [L(x,Z;φ)|X = x].

2. M step. Set φt+1 = arg max
φ

Q(φ|φt).

These two steps are repeated until the obtained estimates become stable.
Remarkably, for convergence properties of the EM algorithm to hold, finding

the exact maximizer is not needed. It is required only to find a parameter φ∗

such that

Q(φ∗|φt) ≥ Q(φt|φt).

For more details, see for instance [25, 23, 5, 22].

3.2 The estimation procedure

Let φt = (πt,µt,θt,Gt) be the list of parameters of interest at the t-th step,
where µt = (µt11, . . . , µ

t
d1, . . . , µ

t
1K , . . . , µ

t
dK), πt = (πt1, . . . , π

t
K), θt = (θt1, . . . ,θ

t
K)

and Gt = (Gt1, . . . , G
t
d). The density of Z(1) given X(1) = x(i) at z under the

parameter φt is written as

h(z|x(i);φt) =
πtzcz

(
Gt1

(
x
(i)
1 − µt1z

)
, . . . , Gtd

(
x
(i)
d − µtdz

)
;θtz

)∏d
j=1 g

t
j

(
x
(i)
j − µtjz

)
h(x

(i)
1 , . . . , x

(i)
d ;φt)

,

(8)

where the function h in the denominator was given in (5). According to the
formal EM algorithm given in Section 3.1, we should maximize over φ the
objective function

Q(φ|φt) =E

[
n∑
i=1

{
log h(x(i)|Z(i);φ) + logP (Z(i) = z)

} ∣∣X = x

]
(9)

=
∑
z,i

[
log cz

{
G1(x

(i)
1 − µ1z), . . . , Gd(x

(i)
d − µdz);θz

}

+

d∑
j=1

log gj(x
(i)
j − µjz) + log πz

]
h(z|x(i);φt),

which involves an infinite dimensional parameter. A solution of this problem
being unknown, we instead borrow ideas from [4] and propose a semiparametric
and stochastic EM-like algorithm, in which passing from the t-th state φt to
the (t+ 1)-th state φt+1 involves the following steps.

1. E step. Compute h(z|x(i);φt) for i = 1, . . . , n and z = 1, . . . ,K by us-
ing (8).

2. S step.

(a) Define Z̃t+1(u), u ∈ Rd to follow a multinomial distribution with
probabilities P (Z(1) = z|X(1) = u;φt), z = 1, . . . ,K.

(b) Given the data x(i), generate a sample Z̃t+1(x(i)), i = 1, . . . , n.

(c) Put x̃
(i),t+1
j = x

(i)
j − µtj,Z̃t+1(x(i))

for i = 1, . . . , n, j = 1, . . . , d.
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(d) Update the symmetric distributions by computing kernel estimates

ĝj(u) =
1

nhn

n∑
i=1

K

(
u− x̃(i),t+1

j

hn

)
, Ĝj(u) =

∫ u

−∞
ĝj(s) ds

where K is some kernel density and hn is some bandwidth.

(e) Symmetrize gt+1
j (u) ≡ {ĝj(u) + ĝj(−u)}/2

3. M step.

(a) Update the cluster weights

πt+1
z =

1

n

n∑
i=1

h(z|x(i);φt)

(b) Update the location parameters

µt+1
jz =

∑n
i=1 x

(i)
j h(z|x(i);φt)∑n

i=1 h(z|x(i);φt)

(c) Update the copula parameters; for z = 1, . . . ,K,

θt+1
z = arg max

θz

∑
i

log cz

{
Gt+1

1 (x
(i)
1 − µ

t+1
1z ), . . . , Gt+1

d (x
(i)
d − µ

t+1
dz );θz

}
In S step (c), a sample x̃

(i),t+1
j , i = 1, . . . , n is constructed. Note that if

X(i) is distributed according to h with parameter φt, then x̃
(i),t+1
j , i = 1, . . . , n,

constitutes a sample of Gtj by Lemma 1 in [4]. In S step (d), the bandwidth hn
for the kernel density estimates can be chosen following one of the numerous
methods available in the literature. See e.g. [16] for a review of bandwidth
selection methods and [27] for a book on nonparametric density estimation.
Note that the statistical software R (https://www.r-project.org/) uses plug-
in methods [30] by default.

We now explain the heuristic underlying the derivation of the proposed al-
gorithm. First, note that, because the term log πz is isolated in the expression
of Q in (9), the formula in M step (a) for the update of the cluster weights πz
is the same as in the common EM algorithm. To proceed, we use a heuristic
which mimics the strategy employed in many copula (non-mixture) models: we
first estimate the marginals and then plug their estimates into the part of the
likelihood which involves the copula term. See for instance [10] and [14] Chapter
10.

The objective function corresponding to the j-th marginal is given by

Qj(φj |φ
t) =

∑
i,z

[log gj(x
(i)
j − µjz) + log πz]h(z|x(i);φt),

where φj = ({µjz}Kz=1, gj); note that we have, in the marginal parameter vector
φj , deliberately forgotten the mixing proportions πz, since, in view of the above
remark, we know how to update them. The above objective function corre-
sponds exactly to the univariate model of [4] except that the original weights
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hj(z|x(i)j ;φj) have been replaced by the actual weights h(z|x(i);φt) of the mul-
tivariate model. Therefore, following the method of [4] but with the approriate
weights yields the updates for {µjz}Kz=1 in M step (b) and gj in the S step.
Finally, the updated estimates for µjz and gj are pluged in into the arguments
of the copulas cz in (9), and the maximization over θz can be performed as in
M step (c).

Initialization In order to obtain a first estimate φ0, we did the following.
We obtained a first clustering of the observations by applying a nonparametric
clustering procedure, as for instance the k-means algorithm [12]. The k-means
algorithm provides with the centers of groups, which we use for the µ0

jz. Then

a sample of G0
j can be constructed as

∪z{x(i)j − µ
0
jz : the i-th observation was classified in the z-th cluster}.

Finally, θ0
z is computed using data that were classified within the z-th group

and using the semiparametric procedure of [10].
The above estimation procedure assumed that the copula families and the

number of mixture components were known. To relax these assumptions, we
may adapt the methods of the standard literature on parametric mixture models,
see e.g. [23] Chapter 6. In the literature, a common method is to compare the
Akaike Information Criterion [26, 1, 2], also known as AIC, across all models
and for a different number of groups. Recall that the AIC is equal (strictly
speaking, proportional) to the maximum log-likelihood minus the number of
free parameters. In our case, however, it is not so clear what the number of
free parameters is because our model involves an infinite dimensional parameter
set. Nevertheless, if we wish to select a model among all semiparametric models
of the form (5), then the only choice to make is about the copula families.
Thus, among several semiparametric models with different copula families and
a different number of clusters, we propose to select the model which maximizes
the pseudo-AIC

(maximum log-likelihood)-(number of free copula parameters).(10)

It should be noted that this strategy is, at the moment, a heuristic, because the
theoretical properties of the EM-like algorithm have not been established yet
and therefore the assumptions on which are based the AIC of Akaike are not
met. That being said, we found through a simulation study that the pseudo-AIC
criterion (10) performs well, see Section 4.2.

4 Illustrations

This section provides with three illustrations of the location-shift semiparamet-
ric copula-based mixture model (5) at work. The first illustration compares this
model to the standard Gaussian mixture model. It shows that we can fit non-
Gaussian marginals and that marginal estimation can be robust with respect to
copula misspecification. The second illustration investigates the effect of noise
and the convergence speeds of the standard EM algorithm and its semiparamet-
ric and stochastic version. Finally the third illustration assesses the usefulness
of the proposed pseudo-AIC criterion (10) for model selection when the copula
families or the number of clusters is unknown.
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4.1 A first illustration

We simulated n = 300 observations of dimension d = 2 under the model (5) with
K = 3 groups and the following parameters: (µ11, µ21) = (0, 3), (µ12, µ22) =
(3, 0), (µ13, µ23) = (−3, 0) and π1 = π2 = π3 = 1/3. The symmetric distri-
butions G1 and G2 were respectively chosen to be a Student distribution with
4 degrees of freedom (6) and a Laplace distribution (7) such that its variance
equals 1/2. Finally, the copulas were Gaussian copulas, that is,

cz(u1, u2; θz) =
1√

1− θ2z
exp

{
− 1

2(1− θ2z)
[
(z21 + z22)θ2z − 2z1z2θz

]}
,

where u1, u2 ∈ [0, 1], zj is the quantile of order uj of the standard normal
distribution. The parameters were θ1 = 1/2, θ2 = 0, θ3 = −1/2.

Based on these simulated data, inference was performed with the semipara-
metric and stochastic EM-like algorithm of Section 3.2 under three different
models: the standard Gaussian mixture model (hereafter denoted by GMM for
Gaussian Mixture Model), our model with Gaussian copulas (SPG for Semi-
Parametric Gauss) and our model with Frank copulas (SPF SemiParametric
Frank), the formula for Frank copulas being

cz(u1, u2; θz) =
∂2Cz(u1, u2; θz)

∂u1∂u2
, where

Cz(u1, u2; θz) = − 1

θz
log

(
1 +

(e−θzu0 − 1)(e−θzuj − 1)

e−θz − 1

)
, u1, u2 ∈ [0, 1],

where θz 6= 0 and −∞ < θz < ∞ (see e.g. [24] p. 116). In the first model
GMM, the copula is correctly specified but the marginals are not and in the
third model SPF, it is the opposite: the marginals are correctly specified but
the copula is not. Note also that GMM corresponds to a copula-based mixture
model (2) in which the copulas cz are Gaussian copulas and the marginals hjz
are Gaussian distributions.

We used R (https://www.r-project.org/) and the package Mclust [8] for
estimation in the GMM model. For the semiparametric models, we implemented
the algorithm of Section 3.2. Kernel density estimation was performed with the
package ks [6] (we kept the bandwidth provided by default) and the starting
parameters were obtained with stats::kmeans, the default nearest neighbors
algorithm [12] of R. The raw simulated data are shown in Figure 1, while Figure
2 displays the expected complete log-likelihood conditionally on the data at each
step of the EM-like algorithm as a check of convergence. A quick stabilization
indicates that the algorithms have converged.

Figure 3 shows the estimated groups under the three tested models GMM,
SPG and SPF. The estimated contour lines of level 95% were added for com-
parison. These are defined as {(x1, x2) ∈ R2 : hz(x1, x2; φ̂) = c}, where φ̂ is the

estimated parameter vector and c is a constant such that P (hz(X1, X2; φ̂) ≤
c) ≈ 0.05 (the approximation was carried out by drawing a bootstrap sample of
size 10000). Note that the group symbols are interchanged from one picture to
another due to label switching, but the Figure is still easily readable. While, of
course, the shapes of the contour lines are elliptical under the GMM model, it
is not so for the models SPG and SPF: these are able to capture wider shapes.
In particular, one sees clearly the effect of nonparametric estimation. Note that

8
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the group assignments are different with respect to the point marked by the
symbol “P”. Neither the standard model GMM nor the misspecified model SPF
were able to correctly classify this point. But the correct model SPG did so,
which demonstrates the reliability of our estimation procedure.

Regarding the marginal distributions, the results, displayed in Figure 4, are
interesting, too. The univariate data are displayed along with the estimated
densities under the three tested models, plus the true underlying distribution.
For convenience, Table 1, which contains L2 rescaled distances between the
estimated densities and the true density, precisely

10000 ∗
∫ ∞
−∞

[
hz(xj ; φ̂)− hz(xj)

]2
dxj ,(11)

j = 1, 2, z = 1, 2, 3, summarizes the results.
One can see that the distances for the SPG and SPF models are much lower

than for the GMM model. In the first marginal, the error is reduced by about
22—68%. The gain in the second marginal is even more striking: the error is
reduced by about 81—90%. As the model GMM has misspecified marginals, it
comes as no surprise that it is unable to capture the shape of the true marginals.
It is not so for SPF and SPG. Interestingly enough, we found that the estimated
marginals for SPG and SPF were indistinguishable (and so were represented
by the same line on the graphs) and closer to the true marginal. Note that
one of these models, SPF, was wrong — as the copulas were misspecified —,
but this did not deteriorate marginal estimation. This suggests that, in the
model (5), marginal estimation is robust in regard to copula misspecification.
Thus, thanks to the nonparametric part of the semiparametric and location-
shift mixture model, marginals can be estimated correctly irrespective of copula
modeling.

The results of this section emphasize the following points. In the case of
heterogeneous data — in the sense that the marginal distributions may be dif-
ferent, as was the case in our illustration —, standard mixture models such
as the Gaussian or Student mixture models and their variants will likely fail.
Copula-based mixture models may come as a remedy, but a difficulty stands up
in front of the practitioner: which parametric families must be chosen for the
copulas and the marginals? The results of the model GMM showed that even
if the copula is correctly specified, marginal misspecifications will lead to poor
estimation. In this context, we think that the model proposed in this paper
brought a first answer to these questions at least for the marginals as they are
estimated nonparametrically.

4.2 A second illustration

Consider the following data generating process. All the copulas cz are Gaus-
sian copulas with correlation parameters θz = 0.5 for all z; the symmetric
distributions G1 and G2 are Gaussian distributions with variances 2 and 0.5
respectively; the location parameters and cluster weights are the same as in
Section 4.1. We simulated data according to the above data generating process
for different noise ratios, namely, for noise ratios of 0%, 10% and 20%. A noise
ratio of 10% means that 10% of the simulated vectors are removed and replaced
by vectors coming from a uniform distribution with independent coordinates
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Figure 1: The raw simulated data.
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Figure 2: Expected log-likelihood values conditionally on the data for SPG (a)
and SPF (b).

first marginal second marginal

GMM 62 248
group 1 SPG 35 60

SPF 30 59
GMM 76 210

group 2 SPG 27 35
SPF 24 39

GMM 45 442
group 3 SPG 28 43

SPF 35 48

Table 1: Rescaled L2 distances, see (11), between the estimated marginal dis-
tributions and the true distribution, for each group and each marginal.
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Figure 3: Estimated group assignments for the model GMM (b), SPG (c) and
SPF (d). The true group assignments corresponds to (a). The contour lines are
such that, for each group, the probability of falling inside them is 95%. The
group symbols are represented up to label switching.
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Figure 4: Histograms for the univariate data along with the estimated densities
under the three tested models (GMM: black dotted line; SPG and SPF: blue
dashed line), as well as the true density (plain green line). The first column
from the left is the first marginal, and each row represents one group: the first
row from top is the first group, etc.
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over a grid covering the range of the data. Estimation in the standard Gaus-
sian mixture model (GMM) and the semiparametric and location-shift mixture
model with Gaussian copulas (SPG) was performed with the standard EM algo-
rithm of Section 3.1 and the semiparametric and stochastic EM-like algorithm
presented in Section 3.2 respectively. In both cases we assumed the knowledge
that all groups have a common copula.

The results of our experiment are summarized in Figure 5, Figure 6 and
Figure 7. Figure 5 displays minus the objective function −Q(φt|φt−1), t =
0, 1, . . . , evolving through the iterations of the considered algorithms. First, we
observe that GMM and SPG perform quite similarly in terms of convergence
speed but also in terms of the magnitude of the objective values. This suggests
that SPG can perform as well as GMM even in situations where the parametric
assumptions of the later are met. Second, we observe that increasing the level
of noise will increase the fitting error, as expected. For the noise ratio of 20%,
the convergence of SPG is slower.

Figure 6 displays the quantities (t = 0, 1, . . . )

1

n

n∑
i=1

(∑
z π

t
zg
t
j(x

(i)
j − µtjz)− πzgj(x

(i)
j − µjz)

)2
∑
z πzgj(x

(i)
j − µjz)

, j = 1, 2,(12)

which are approximately the L2 distances between the estimated marginals at
the t-th step and the true marginals. Here πz, µjz and gj denote the truth.
Without noise, SPG performs better than GMM for the first marginal but poorer
for the second. (Note that the scales in the y-lines of the pictures are different.)
The fit deteriorates as the noise level increases; an exception being the noise
level of 20% for the first marginal. Again, the convergence speed of GMM and
SPG are similar. This observation is a point in favor of SPG since it makes no
parametric assumptions and yet performed as good as GMM. Figure 7 displays
the mean square error (MSE) values for the copula parameter |θt − θ| and the

cluster weights (
∑K
z=1(πtz − πz)2/K)1/2. Quite interestingly, for a noise ratio

less than 20%, the copula parameter was better estimated with SPG. As already
noticed before, the convergence speed of both SPG and GMM algorithms are
similar. For a noise ratio of 20% however, SPG did not converge yet after 50
iterations. The cluster weights were estimated similarly for both models at all
noise levels.

4.3 A third illustration

In this third illustration, data were simulated under the same generating process
as in the second Illustration of Section 4.2 but without noise only. We performed
estimation under 20 different semiparametric location-shift copula-based mod-
els: the number of clusters were assumed to be 2,3 or 4 and the copulas were
assumed to belong to the Gauss, Student, Frank family or assumed to be the
independence copulas. For the Gauss family, both the free model and the re-
stricted model were tried. The free model is that in which the different clusters
are allowed to have different copulas, and the restricted model is that in which
all clusters have a common copula. For the other models, all clusters were as-
sumed to have a common copula. Our goal is to compare the 20 pseudo-AIC
values and see wether this criterion is able to select the true model, that is, the
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Figure 5: Minus objective function values −Q(φt+1|φt) for t = 0, 1, . . . . There
are three different levels of noise and two models. The plain, dashed and dotted
lines correspond to a noise level of 0%, 10% and 20% respectively. The triangles
and the circles correspond to the standard Gaussian mixture model and the
semiparametric model, respectively.
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Figure 6: Approximated marginal L2 distances (12) for t = 0, 1, . . . . There are
three different levels of noise and two models. The plain, dashed and dotted
lines correspond to a noise level of 0%, 10% and 20% respectively. The triangles
and the circles correspond to the standard Gaussian mixture model and the
semiparametric model, respectively. (a) is the first marginal and (b) is the
second.
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Figure 7: Mean Square Error values for the copula parameter (a) and the cluster
weight (b) through the iterations of the estimation algorithms. There are three
different levels of noise and two models. The plain, dashed and dotted lines
correspond to a noise level of 0%, 10% and 20% respectively. The triangles
and the circles correspond to the standard Gaussian mixture model and the
semiparametric model, respectively.

model in which the copulas are Gaussian and the number of clusters is K = 3.
The computation of the maximum log-likelihood was approximated by the ob-
jective function Q. Indeed, heuristically, Q(φt+1|φt) tends to the maximum
log-likelihood as t→∞. The results are reported in Table 2.

K Gaussres Independence Student Frank Gaussfree

2 -1306 -1349 -1211 -1299 -1191
3 -1126 -1159 -1138 -1131 -1127
4 -1202 -1188 -1211 -1203 -1162

Table 2: Approximated pseudo-AIC values (10) for different parametric families
and assuming a different number of groups. Gaussres stands for the model where
all the K clusters have a common Gaussian copula. Gaussfree stands for the
model where the copulas of the K different clusters are allowed to have different
parameters (but all being Gaussian).

One can see that for each column of the table, that is, for each given para-
metric family, the pseudo AIC criterion is able to select the correct number of
clusters. Moreover, for the third row of the table, that, is, assuming the correct
number of clusters, we see that the pseudo-AIC criterion is able to select the
correct parametric family for the copulas. These results are encouraging and
suggest that the pseudo-AIC is a reasonable criterion for model selection within
the class of location-shift semiparametric copula-based mixture models.
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5 Beyond location-shift models: hints

While the location-shift hypothesis (4) may be in order in some applications, it
is nevertheless a strong hypothesis. Relaxing this assumption in the context of
semiparametric copula-based mixture modeling is still an open research problem.
In this section, we give some hints that may permit to get rid of this hypothesis.

In order to go beyond the location-shift hypothesis, a natural extension of
the model (5) may be to assume, in place of (4), a hypothesis of the form

Hjz(xj) = Gj

(
xj − µjz
σjz

)
, σjz > 0,

where, in addition to the symmetry properties, the Gj should verify∫
x2gj(x) dx = 1, j = 1, . . . , d.

The semiparametric and stochastic EM-like algorithm of Section 3.2 could be
adapted by modifying the S step. First, and obviously, we would replace S step
(c) by

x̃
(i),t+1
j =

x
(i)
j − µtj,Z̃t+1(x(i))

σt
j,Z̃t+1(x(i))

.

Then, we would need to find a nonparametric estimation procedure which per-

mits to compute an estimate gt+1
j based on the sample x̃

(i),t+1
j , i = 1, . . . , n.

Based on numerical experiments that we made, we believe that finding an esti-
mator which ensures that∫

xgt+1
j (x) dx = 0,

∫
x2gt+1

j (x) dx = 1(13)

is crucial as, if the estimator fails to satisfy these properties, then the variance
of the distribution represented by gj and the scaling parameters σjz could be
cofounded. The standard kernel estimator used so far does not satisfy the
properties (13).

Thus, it appears that a key issue in relaxing the location-shift hypothesis,
is to construct a nonparametric density estimator which satisfies the proper-
ties (13). To the best of our knowledge, such an estimator is not directly avail-
able in the literature, and one would have to adapt existing methods. Maximum
penalized likelihood methods, see e.g. [11] or [27] Chapter 5.4, might be adapted
to satisfy our requirements but one would have to take care of computational
convenience as these methods will have to be embedded within a EM-like al-
gorithm. Another direction of research would be to get rid of any structure
whatsoever for the marginals and try to estimate them with weighted kernel
estimators, as in [3, 19].

Finally, it is to be stressed that relaxing the location-shift only hypothesis
may raise identifiability issues. The advantage of the location-shift only hypoth-
esis is that these issues are conjectured to be limited, as was shown in [13] for
univariate semiparametric location-shift mixture models.
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6 Discussion

In this paper, we built a new copula-based mixture model. Novelty lies in the
fact that it is nonparametric, and therefore allows reduction of the modeling
assumptions. The nonparametric part of the model resides in its marginal dis-
tributions. For each dimension, an observation is assumed to come from a non-
parametric and symmetric distribution whose location shifts according to group
assignment. As a result, nonparametric estimation of this invariant distribution
is made possible, and thus one can estimate many different types of marginals
without any modeling effort. We saw that marginal estimation is robust with
respect to copula misspecification. Moreover, we saw on a simulation experi-
ment that the stochastic and semiparametric EM-like algorithm could converge
as fast as the standard EM algorithm. We also saw in this experiment that
the copula parameter was better estimated with the semiparametric approach.
Finally, in order to relax the assumption that the number of clusters is known
or that the parametric copula families are known, we proposed a version of
the Akaike Information Criterion (AIC) for model selection within the class of
semiparametric location-shift copula-based mixture models. This criterion was
shown to constantly select the true model in our simulations.

We showed that location-shift semiparametric copula-based mixture models
have several good properties, but they rely on the assumption that the clusters
have the same scale. Relaxing this assumption is an obvious and important
line of research for the future. A possible way one might want to follow for
addressing this open problem was given in a devoted section.
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A Appendix

Sklar’s theorem states that any distribution functionH with continuous marginals
H1, . . . ,Hd can be decomposed as

H(x1, . . . , xd) = C(H1(x1), . . . ,Hd(xd)),(14)

for any (x1, . . . , xd) in the domain of H. The function C : [0, 1]d → [0, 1] is
unique and is called the copula and can be viewed as the dependence structure
of the random vector (X1, . . . , Xd) ∼ H. In particular, C is itself a distribution
function with standard uniform marginals. It can be seen that it is the distribu-
tion of (H1(X1), . . . ,Hd(Xd)). Differentiating with respect to x1, . . . , xd in (14),
we get

h(x1, . . . , xd) = c(H1(x1), . . . ,Hd(xd))

d∏
j=1

hj(xj),

where h is the probability density function of H, hj is the probability density
function of Hj , and c is the the probability density function of C. If we apply
the above formula within each cluster, we get our formula (2).
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