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Abstract

Modeling of distributions mixtures has rested on Gaussian distribu-
tions and/or a conditional independence hypothesis for a long time. Only
recently researchers have started to construct and study broader generic
models without appealing to these hypotheses. Some of these extensions
use copulas as a tool to build flexible models, as they permit to model the
dependence and the marginal distributions separately. But this approach
also has drawbacks. First, it increases much the number of choices the
practitioner has to make, and second, marginal misspecification may loom
on the horizon. This paper aims at overcoming these limitations by pre-
senting a copula-based mixture model which is semiparametric. Thanks
to a location-shift hypothesis, semiparametric estimation, also, is feasible,
which allows for data adaptation without any modeling efforts.

Keywords: location; shift; copula; mixture; clustering; semiparametric;
nonparametric.
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1 Introduction

The modeling of a mixture of distributions has long rested upon Gaussian dis-
tributions [14] and it is only recently that researchers have started to construct
and study broader generic models [4, 12, 13, 11, 14].

Among these extensions, models featuring copulas are still rare, but certainly
promising [13, 11, 18]. Indeed, copulas allow for building very flexible models,
as they permit to handle the marginal distributions and the dependence sepa-
rately. More precisely, denoting by hz the conditional density within the z-th
population group, the copula cz associated to hz can be defined as

hz(x1, . . . , xd) = cz {H1z(x1), . . . ,Hdz(xd)}
d∏
j=1

hjz(xj),(1)

where, for j = 1, . . . , d, Hjz and hjz denote the distribution function and the
density of the j-th variable of interest in the z-th group. This decomposition
is sometimes called the copula decomposition or the Sklar’s decomposition, in
view of Sklar’s theorem [17]. For more details about copulas in general, see e.g.
[15, 10, 7].

So, in order to build a parametric model for the z-th group out of (1), d+ 1
parametric families have to be chosen: one for the copula cz, and one for each
marginal distribution hzj , j = 1, . . . , d. This situation can be embarrassing
in practice as testing all the existing parametric families of the literature is
unfeasible. Often, the practitioner simply assumes that all the margins come
from the same parametric family, that can be too restrictive in applications.
This issue, in particular, was pointed out in [18].

In this paper, we aim at overcoming these limitations by presenting a new
copula-based model where there is no need to parametrize the marginal distribu-
tions. It is a semiparametric model with parametric copulas but nonparametric
margins. In this respect it echos the common semiparametric copula models
of the “nonmixture” literature, see e.g. [8]. In each dimension, we assume the
existence of a symmetric distribution whose location shifts according to group
assignment. As a result, this symmetric distribution can be estimated non-
parametrically and therefore can adapt to many types of distributions with no
modeling efforts.

This paper is organized as follows. Section 2 presents our new location-shift
semiparametric copula-based mixture model. Section 3 deals with estimation.
Identifiability issues are also discussed. Section 4 illustrates the model’s features
and a Discussion closes this paper.

2 The model

Let (X1, . . . , Xd) be the vector of interest and let Z be the group (or cluster, or
class) assignment. For instance Z = 1 means that (X1, . . . , Xd) belongs to the
first group. The number of clusters is assumed to be known and is denoted by K,
so that Z ∈ {1, . . . ,K}. Let Hjz and hjz denote respectively the distribution
function and the density of Xj given Z = z. Let h denote the density of
(X1, . . . , Xd) and define πz = P (Z = z). As Sklar’s decomposition (1) can be
applied to each z = 1, . . . ,K, the density of any copula-based mixture model
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writes [11]

h(x1, . . . , xd) =

K∑
z=1

πzcz{H1z(x1), . . . ,Hdz(xd)}
d∏
j=1

hjz(xj).(2)

Now, for all j = 1, . . . , d, we assume

Hjz(xj) = Gj (xj − µjz) , xj ∈ R(3)

so that

(4)

h(x1, . . . , xd) =

K∑
z=1

πzcz{G1(x1 − µ1z), . . . , Gd(xd − µdz)}
d∏
j=1

gj(xj − µjz),

where Gj and gj are respectively the distribution function and the density of
a symmetric distribution, that is, Gj(xj) = 1 − Gj(−xj) for all −∞ < xj <
+∞. This location shift hypothesis induces that Xj , j = 1, . . . , d, is assumed
to have support (−∞,+∞). If it is not, then the data have to be distorted
to achieve unboundedness. Note that the support of Xj given Z = z does
not depend on z and is equal to (−∞,+∞). Hypothesis (3) means that the
marginal distributions in a cluster z and a cluster z′ differ only by a shift. Put
differently, we assume, given Z = z, that Xj = Yj + µjz where Yj ∼ Gj and Yj
is independent of Z.

Several arguments can be made in favor of Hypothesis (3). First, it is in-
tuitively clear, and therefore the user is expected to know whether if he/she is
ready to accept it or not. This is certainly a plus. Second, popular mixture
models satisfy a location-shift hypothesis, as the standard Gaussian mixture
model with equal variances, in which (3) holds with

gj(xj) =
1√
2πσ

exp

{
−1

2

(
xj − µjz

σ

)2
}
, xj ∈ R

where µjz and σ are the location and standard deviation of the j-th compo-
nent in the z-th cluster respectively. To play the role of gj , other symmetric
distributions can be called for, as for instance, the student distribution

gj(xj) =
Γ((ν + 1)/2)√

νπΓν/2
(1 +

x2j
ν

)−(ν+1)/2, ν > 2, xj ∈ R,(5)

or the Laplace distribution

gj(xj) =
1

2b
exp

(
−|xj |

b

)
, b > 0, xj ∈ R.(6)

Last but not least, hypothesis (3) allow for nonparametric estimation, as ex-
plained next.

3 Estimation

This section presents semiparametric estimation in the model (4) through a
semiparametric Expectation-Maximization (EM) algorithm. Recall that the
number of clusters is assumed to be known and fixed. But first, identifiability
results are given.
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3.1 Identifiability results

In statistics, for estimation to make sense, models have to be identifiable, that
is, one distribution in the model can be identified with one parameter vector.
But mixture models are particularly prone to identifiability issues.

Suppose that a parametric family has been chosen for cz, z = 1, . . . ,K, in
(4), so that cz(u1, . . . , ud) = cz(u1, . . . , ud; θz) for all u1, . . . , ud ∈ [0, 1], where
θz is the parameter vector in the z-th group. Denote the z-th parameter set by
Θz, so that θz ∈ Θz, and denote by Θ = Θ1 × · · · × ΘK the set of all copula
parameters. Also, let

Λ =

{
π = (π1, . . . , πK) ∈ [0, 1]K :

K∑
z=1

πz = 1

}

be the set containing the weigh parameters and write µ = (µ11, . . . , µd1, . . . , µdK) ∈
RdK for the location parameters. The set of all absolutely continuous symmetric
distributions is denoted by G and we write G = (G1, . . . , Gd) ∈ Gd or equiva-
lently g = (g1, . . . , gd) ∈ Gd.

The parametrized semiparametric model corresponding to (4) writes

H =
{
h(·;π, µ, θ,G) : π ∈ Λ, µ ∈ RdK , θ ∈ Θ, G ∈ Gd

}
,

where h(x1, . . . , xd;π, µ, θ,G) = h(x1, . . . , xd) in (4). The set of parameters
corresponding to H is given by Λ×RKd ×Θ× Gd and is called the admissible
set of parameters. In (4), not all distributions h are identifiable. As a counter
example, suppose that K = 2 and that the copula parametric families of both
groups are the same. The parameter vector is then (π1, µ11, µ21, µ12, µ22, θ1, θ2).
Since both (1, µ11, µ21, µ12, µ22, θ1, θ2) and (0, µ12, µ22, µ11, µ21, θ2, θ1) lead to
the same distribution h, it is not identifiable.

Thus, the set of all identifiable distributions h is a subset, even a proper
subset, of H. To this set of identifiable h corresponds a set of parameters, called
the effective parameter set. Naturally, the more the admissible set agree with
the effective set, the less we expect to have identifiability issues. The sense of
“agree” can be loose, but was given a precise meaning in [9].

Consider the j-th margin of our semiparametric location-shift mixture model
(4),

Hj =

{
hj(·;π, µj , gj) : hj(xj ;π, µj , gj) =

K∑
z=1

gj(xj − µjz)πz, ∀xj ∈ R

}
,

where µj = (µj1, . . . , µjK). The admissible parameter set is then Λ×RK × G.
Define the mapping ϕ : Λ×RK×G → Hj such that for each π ∈ Λ, µj ∈ RK and
gj ∈ G, the element ϕ(π, µj , gj) ∈ Hj is a function, defined by ϕ(π, µj , gj)(xj) =
hj(xj ;π, µj , gj) for all xj ∈ R. A distribution hj in Hj is identifiable if ϕ−1(hj)
is a singleton in Λ×RK × G. Let (Λ×RK)∗ be the biggest subset of Λ×RK
such that for all (π, µj) in (Λ×RK)∗, ϕ(π, µj , gj) is identifiable for all gj in G.
Let us call (Λ×RK)∗ × G the effective parameter set in the model Hj .

In [9], the authors established that for K = 2 and K = 3, the difference
between the admissible parameter set and the effective parameter set, that is,
the difference between Λ × RK and (Λ × RK)∗, is small, meaning that their
difference, in the sense of the set theory terminology, has Lebesgue measure 0.
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Proposition 1 (Hunter, Wang and Hettmansperger [9]). The set Λ×RK×G \
(Λ×RK)∗ × G is of Lebesgue measure zero for K = 2 and K = 3.

Proof. It was established in [9] Theorem 2 that (Λ × RK)∗ = {π ∈ Λ : π1 /∈
{0, 1/2, 1}} × RK for K = 2. For K = 3, Corollary 1 in the same reference
established that (Λ × RK)∗ ⊃ {π ∈ Λ : π1π2π3 6= 0} × {µ ∈ RK : (µ2 −
µ1)/(µ3 − µ2) 6= 1}. The proof is complete since a countable set has Lebesgue
measure zero.

For K ≥ 4, the authors left a conjecture.

Conjecture 1 (Hunter, Wang and Hettmansperger [9]). Proposition 1 carries
over for all K.

Proposition 1 and Conjecture 1 state that the distributions inHj , that is, the
marginal distributions of H, are almost all identifiable, as the difference between
the admissible parameter set and the effective parameter set is of Lebesgue
measure zero. Now, if we substitute “of Lebesgue measure zero” by “at most
countable”, Proposition 1 still holds, as, actually, the difference is at most
countable for K = 2 and K = 3. For larger K, this result is still unknown,
but, since it is also unknown in regard to the Lebesgue measure, it is logically
equivalent to slightly strengthen a bit Conjecture 1.

Conjecture 2. The set Λ×RK × G \ (Λ×RK)∗ × G is at most countable for
K ≥ 4.

The remaining of this section aims at extending these results to the multi-
variate case. One must take care that the joint model involves taking d times
the set RK but only one time the set Λ. Let ψ : Λ × RdK × Θ × Gd 7→ H.
Moreover, let Λ∗ be the set Λ from which we have removed all π such that
there exists a µ ∈ RK satisfying (π, µ) /∈ (Λ×RK)∗. The following proposition,
whose proof is given is the Appendix, identifies a set which is contained is the
effective parameter set of the joint model H.

Proposition 2. Assume the parametric families chosen for the copulas cz in
(4) are identifiable. Then, for K = 2 and K = 3, we have

Λ∗ ×RdK ×Θ ⊂ (Λ×RdK ×Θ)∗ ⊂ Λ×RdK ×Θ.(7)

Moreover, if Conjecture 2 holds, then the above statement holds for all K. Fi-
nally, we have that

(Λ×RdK ×Θ) \ (Λ∗ ×RdK ×Θ)

has Lebesgue measure zero.

Proposition 2 trivially implies that the difference between the admissible
parameter set and the effective parameter set has Lebesgue measure zero. But
this means that the distributions in the model H are almost all identifiable, in
the Lebesgue sense.
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3.2 Estimation

This section presents an EM algorithm to estimate the unknown parameters
πz, µjz, θz, Gj , j = 1, . . . , d, z = 1, . . . ,K of the model (4). The parameters Gj ,
j = 1, . . . , d, are infinite-dimensional and therefore standard EM algorithms [14,
16] are unfeasible. There are however refinements on which we can rest in order
to perform estimation. One such refinement is given in [1], where a stochastic
and semiparametric EM algorithm is applied to a univariate semiparametric
location-shift model.

Capitalizing on their results, we also present a stochastic and semiparametric
EM algorithm allowing for semiparametric estimation in our model (4). But
first, the ideas underlying the standard EM algorithm are recalled. Generally,
consider a model of the form

h(x1, . . . , xd;π, φ) =

K∑
z=1

πzhz(x1, . . . , xd;φz),

where π = (π1, . . . , πK) and φ = (φ1, . . . , φK) are the parameters to be esti-

mated. Let X(i), i = 1, . . . , n, with X(i) = (X
(i)
1 , . . . , X

(i)
d ), be a random sample

(independent and identically distributed variables) and x(i), i = 1, . . . , n, with

x(i) = (x
(i)
1 , . . . , x

(i)
d ), be a realization of it. Likewise, let Z(i), i = 1, . . . , n,

be the associated unobserved sample of the group assignment variables. If the
complete data (x(i), z(i)), i = 1, . . . , n, were observed, we could maximize the
log-likelihood

L(X,Z;π, φ) =

n∑
i=1

log h(X(i), Z(i);π, φ),

whereX = (X(1), . . . , X(n)), Z = (Z(1), . . . , Z(n)) and h(X(i), Z(i);π, φ) denotes
the density of (X(1), Z(1)) at (X(i), Z(i)). Since we do not have the data for Z,
the idea is to replace the log-likelihood L(X,Z;π, φ) by its expectation given
the data, E[L(x, Z;π, φ)|X = x], as the objective function to maximize over π
and φ. Thus, given an initial estimate (πt, φt), one wishes to solve

arg max
π,φ

Q(π, φ|πt, φt) ≡ arg max
π,φ

Eπt,φt [L(x, Z;π, φ)|X = x] ,

where the subscripts attached to the expectation symbol mean that the expec-
tation is taken with respect to these estimates. Remarkably, for convergence
properties of the EM algorithm to hold, finding the exact maximizer is not
needed. Only required is to find a parameter (π∗, φ∗) such that

Q(π∗, φ∗|πt, φt) ≥ Q(πt, φt|πt, φt).

One then proceeds iteratively, that is, sets (πt+1, φt+1) = (π∗, φ∗) and repeats
the process until the obtained estimates become stable. For more details, see
for instance [16, 14].

Our semiparametric and stochastic EM algorithm for doing estimation in
the model (4) is given next. Let φt = (πt, µt, θt, Gt) be the parameter vector
of interest, where µt = (µt11, . . . , µ

t
d1, µ

t
12, . . . , µ

t
dK), πt = (πt1, . . . , π

t
K), θt =
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(θt1, . . . , θ
t
K), and Gt = (Gt1, . . . , G

t
d). The density of Z(1) given X(1) = x(i) at z

under the parameter φt is written as

h(z|x(i);πt, φt) =
πtcz(G

t
1(x

(i)
1 − µt1z), . . . , Gtd(x

(i)
d − µtdz); θtz)

∏d
j=1 g

t
j(x

(i)
j − µtjz)

h(x
(i)
1 , . . . , x

(i)
d ;πt, φt)

,

where the function h was given in (4). The function to maximize over (π, φ) is
given by

Q(π, φ|πt, φt) =E

[
n∑
i=1

{
log h(x(i)|Z(i);φ) + logP (Z(i) = z)

} ∣∣X = x

]
=
∑
z,i

[
log cz

{
G1(x

(i)
1 − µ1z), . . . , Gd(x

(i)
d − µdz); θz

}

+

d∑
j=1

log gj(x
(i)
j − µjz) + log πz

]
h(z|x(i);πt, φt).

The maximization of the above function can be achieved with the following
steps.

1. Update the cluster weights

πt+1
z =

1

n

n∑
i=1

h(z|x(i);φt)

2. Update the location parameters

µt+1
jz =

∑n
i=1 x

(i)
j h(z|x(i);φt)∑n

i=1 h(z|x(i);φt)

3. Update the symmetric distribution

(a) For each i = 1, . . . , n, define Z̃(i)(u), u ∈ R, so that it follows a
multinomial distribution with probabilities P (Z(1) = z|X(1) = u),
z = 1, . . . ,K.

(b) Given the data x(i), i = 1, . . . , n, generate a sample Z̃(i)(x(i)), i =
1, . . . , n.

(c) Put x̃
(i),t+1
j = x

(i)
j − µtj,Z̃(i)(x

(i)
j )

for i = 1, . . . , n (this constitutes a

sample of Gj , see the Appendix), j = 1, . . . , d

(d) Compute kernel estimates

ĝj(u) =
1

nhn

n∑
i=1

K

(
u− x̃(i),t+1

j

hn

)
, Ĝj(u) =

∫ u

−∞
ĝj(s) ds

where K is some kernel density and hn is some bandwidth (see e.g.
[2] for more details about nonparametric estimation).

(e) Symmetrize gt+1
j (u) ≡ {ĝj(u) + ĝj(−u)}/2
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4. Update the copula parameters; for z = 1, . . . ,K,

θt+1
z = arg max

∑
i

log cz

{
Gt1(x

(i)
1 − µt1z), . . . , Gtd(x

(i)
d − µ

t
dz); θ

t
z

}
The update of the weights is the same as in the standard EM algorithm, see

e.g. [16, 12]. The update of the location parameters comes from the following
idea [1]. If the variables Z(i) were observed, maximizing the objective function
would lead to

µt+1
jz =

∑n
i=1 x

(i)
j 1(Z(i) = z)∑n

i=1 1(Z(i) = z)
,

where 1(·) is the indicator function. But since they are unobserved, 1(Z(i) = z)
in the above expression is replaced by E[1(Z(i) = z)|X = x] = h(z|x(i);πt, φt),
its expectation given the data, similarly as in [1]. Let us note that one could

have chosen to maximize
∑n
i=1 log gt+1

j (x
(i)
j − µjz)h(z|x(i);πt, φt) over µjz; in

fact these two possibilities coincide when the distribution gj comes from an
exponential family, see e.g. [16]. The update of the symmetric distributions
are as in [1]. The update of the copula parameters can be made more explicit
for some copula families. The updates of the weights, location and copula
parameters and the invariant distributions are independent of each other.

4 Illustrations

This section provides with an illustration of our model (4) at work. We sim-
ulated n = 300 observations of dimension d = 2 under the model (4) with
K = 3 groups and the following parameters: (µ11, µ21) = (0, 3), (µ12, µ22) =
(3, 0), (µ13, µ23) = (−3, 0) and π1 = π2 = π3 = 1/3. The symmetric distri-
butions G1 and G2 were respectively chosen to be a Student distribution with
4 degrees of freedom (5) and a Laplace distribution (6) such that its variance
equals 1/2. Finally, the copulas were Gaussian copulas, that is,

cz(u1, u2; θz) =
1√

1− θ2z
exp

{
− 1

2(1− θ2z)
[
(z21 + z22)θ2z − 2z1z2θz

]}
,

where u1, u2 ∈ [0, 1], zj is the quantile of order uj of the standard normal
distribution. The parameters were θ1 = 1/2, θ2 = 0, θ3 = −1/2.

Based on these simulated data, inference was performed with our EM algo-
rithm of Section 3 under three different models: the standard Gaussian mixture
model (hereafter denoted by S, for Standard), our model with Gaussian copulas
(LSG for Location Shift Gauss) and our model with Frank copulas (LSF for
Location Shift Frank), the formula for Frank copulas being

cz(u1, u2; θz) =
∂2Cz(u1, u2; θz)

∂u1∂u2
, where

Cz(u1, u2; θz) = − 1

θz
log

(
1 +

(e−θzu0 − 1)(e−θzuj − 1)

e−θz − 1

)
, u1, u2 ∈ [0, 1],

where θz 6= 0 and −∞ < θz < ∞ (see e.g. [15] p. 116). In the first model S,
the copula is correctly specified but the margins are not and in the third model
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LSF, it is the opposite: the margins are correctly specified but the copula is
not. Note also that the standard Gaussian mixture model corresponds to the
model (1) with the copulas cz being Gaussian copulas and the margins hjz being
Gaussian distributions.

We used R (https://www.r-project.org/) and the package Mclust for
estimation in the standard S model [5, 6] but implemented our own version of the
algorithm of Section 3, in which kernel density estimation was performed with
the package [3] (we kept the bandwidth provided by default). The raw simulated
data are shown in Figure 1, while Figure 2 displays the expected complete log-
likelihood conditionally on the data at each step of the EM algorithm as a
check of convergence. A quick stabilization indicates that our algorithms have
converged.

Figure 3 shows the estimated groups under the three tested models S, LSG
and LSF. The estimated contour lines of level 95% were added for comparison.
These are defined as {(x1, x2) ∈ R2 : hz(x1, x2; π̂, φ̂) = c}, where π̂, φ̂ are the

estimated parameter vectors and c is a constant such that P (hz(X1, X2; π̂, φ̂) ≤
c) ≈ 0.05 (the approximation was carried out by drawing a bootstrap sample of
size 10000). Note that the group symbols were interchanged from one picture
to another due to label switching, but the Figure is still easily readable. While,
of course, the shapes of the contour lines are elliptical under the S model, it is
not so for the models LSG and LSF: these are able to capture wider shapes.
In particular, one sees clearly the effect of nonparametric estimation. Note
that the group assignments are different with respect to the point marked by
the symbol “P”. Neither the standard model S nor the misspecified model LSF
were able to correctly classify this point. But the correct model LSG did so,
which demonstrates the reliability of our estimation procedure.

Regarding the marginal distributions, the results, displayed in Figure 4, are
interesting, too. The univariate data are displayed along with the estimated
densities under the three tested models, plus the true underlying distribution.
For convenience, Table 1, which contains L2 rescaled distances between the
estimated densities and the true density, precisely

10000 ∗
∫ ∞
−∞

[
hz(xj ; π̂, φ̂)− hz(xj)

]2
dxj ,(8)

j = 1, 2, z = 1, 2, 3, was made.
One can see that the distances for the LSG and LSF models are much lower

than for the S model. In the first margin, one gains an error reduction of about
22—68%. The gain in the second margin is even more striking: it ranges from
81—90%. This was expected because the second margin, a Laplace distribution,
differs more from the Gaussian distribution than the first margin, a Student
distribution. As the model S has misspecified margins, it comes as no surprise
that it is unable to capture the shape of the true margins. It is not so for
LSF and LSG. Interestingly enough, we found that the estimated margins for
LSG and LSF were indistinguishable (and so were represented by the same line
on the graphs) and closer to the true margin. Interestingly enough, note that
one of these models, LSF, was wrong — as the copulas were misspecified —,
but this did not deteriorate marginal estimation. This suggests that, in the
model (4), marginal estimation is robust in regard to copula misspecification.
Thus, thanks to the nonparametric part of our model, margins can be estimated
correctly irrespective of copula modeling.

9
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first margin second margin

S 62 248
group 1 LSG 35 60

LSF 30 59
S 76 210

group 2 LSG 27 35
LSF 24 39

S 45 442
group 3 LSG 28 43

LSF 35 48

Table 1: Rescaled L2 distances, see (8), of the estimated marginal distributions
to the true distribution, for each group and each margin.

The results of this section emphasize the following points. In the case of
heterogeneous data — in the sense that the marginal distributions may be dif-
ferent, as was the case in our illustration —, standard mixture models such
as the Gaussian or Student mixture models and their variants will likely fail.
Copula-based mixture models may come as a remedy, but a difficulty stands up
in front of the practitioner: which parametric families to choose for the copulas
and the margins? The results of the model S showed that even if the copula is
correctly specified, marginal misspecifications will lead to poor estimation. In
this context, we think that the model proposed in this paper brought a first
answer to these questions at least for the margins as they are estimated non-
parametrically.

5 Discussion

In this paper, we built a new copula-based mixture model. Novelty lies in
the fact that it is nonparametric, and therefore allows to reduce the model-
ing assumptions. The nonparametric part of the model resides in its marginal
distributions. For each dimension, an observation is assumed to come from a
nonparametric and symmetric distribution whose location shifts according to
group assignment. As a result, nonparametric estimation of this invariant dis-
tribution is made possible, and thus one can estimate many different types of
margins without any modeling effort. Moreover, we saw that marginal estima-
tion is robust with respect to copula misspecification. Finally, theoretical results
showed that identifiability issues are limited, if one accepts a slightly stronger
conjecture than that of Hunter, Wang and Hettmansperger [9].

Nevertheless, research questions still remain. First, sensibility of estimation
performance to the choice of the bandwidth in kernel density estimation would
need to be assessed. Second, the location shift hypothesis could be replaced,
in practice, by an affine transformation of the form hjz(t) = gj((t − µjz)/σjz),
but then identifiability results would not hold anymore. Last, the possibility of
carrying over our model to higher dimension is still unclear.

Acknowledgment. The research by G. Mazo was funded by a ”Projet de
Recherche” of the ”Fonds de la Recherche Scientifique — FNRS” (Belgium).

10



−5 0 5 10

−
2

0
2

4
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Figure 2: Expected log-likelihood values conditionally on the data for LSG (a)
and LSF (b).

11



−5 0 5 10

−
2

0
2

4

  

    

  

P

(a)

−5 0 5 10

−
2

0
2

4

  

  

  

P

(b)

−5 0 5 10

−
2

0
2

4

  

  

  

  

  

  

P

(c)

−5 0 5 10

−
2

0
2

4

  

  

  

  

P

(d)

Figure 3: Estimated group assignments for the model S (b), LSG (c) and LSF
(d). The true group assignments corresponds to (a). The contour lines are such
that, for each group, the probability of falling inside them is 95%. The group
symbols are represented up to label switching.
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Figure 4: Histograms for the univariate data along with the estimated densities
under the three tested models (S: black dotted line; LSG and LSF: blue dashed
line), as well as the true density (plain green line). The first column from the
left is the first margin, and each row represents one group: the first row from
top is the first group, etc.
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6 Appendix

Proof of Proposition 2

Let (π, µ, θ, g), (π̃, µ̃, θ̃, g̃) ∈ Λ∗ × RdK × Θ × Gd, with g = (g1, . . . , gd), and
suppose that, for all x1, . . . , xd ∈ R,

h(x1, . . . , xd;π, µ, θ, g) = h(x1, . . . , xd; π̃, µ̃, θ̃, g̃)(9)

so that

K∑
z=1

πzcz{G1(x1 − µ1z), . . . , Gd(xd − µdz); θz}
d∏
j=1

gj(xj − µjz)(10)

=

K∑
z=1

π̃zcz{G̃1(x1 − µ̃1z), . . . , G̃d(xd − µ̃dz); θ̃z}
d∏
j=1

g̃j(xj − µ̃jz).

By marginalizing, we obtain

K∑
z=1

πzgj(xj − µjz) =

K∑
z=1

π̃z g̃j(xj − µ̃jz).

But since π ∈ Λ∗, we have (π, µj) ∈ (Λ ×RK)∗ for all µj ∈ RK . This means,

by definition of (Λ×RK)∗, that
∑K
z=1 πzgj(xj − µjz) is identifiable, and there-

fore πz = π̃z, µjz = µ̃jz and gj = g̃j , for all j = 1, . . . , d and z = 1, . . . ,K.

Now, since, by (10), h(·;π, µ, θ, g) = h(·; π̃, µ̃, θ̃, g̃) are the densities of the same
distribution, we have

cz{G1(x1 − µ1z), . . . , Gd(xd − µdz); θz}
d∏
j=1

gj(xj − µjz)

=cz{G̃1(x1 − µ̃1z), . . . , G̃d(xd − µ̃dz); θ̃z}
d∏
j=1

g̃j(xj − µ̃jz),

hence cz(u1, . . . , ud; θz) = cz(u1, . . . , ud; θ̃z) for all u1, . . . , ud ∈ [0, 1] which im-
plies θz = θ̃z for all z = 1, . . . ,K. Therefore, h(·;π, µ, θ, g) in (9) is identifiable.
But since (Λ × RdK × Θ)∗ is the biggest subset of Λ × RdK × Θ such that
identifiability holds, we conclude Λ∗ ×RdK ×Θ ⊂ (Λ×RdK ×Θ)∗.

Now, note that Λ \Λ∗ is countable, hence of Lebesgue measure zero. There-
fore, since

Λ∗ ×RdK ×Θ ⊂ (Λ×RdK ×Θ)∗ ⊂ Λ×RdK ×Θ,

and because the Lebesgue difference between the set on the right and the set
on the left is zero, the claim follows.
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Proof that X̃
(i)
j , i = 1, . . . , n is a sample of Gj

The following proof is that in [1]. Let us show that x̃
(i)
j , i = 1, . . . , n, is a sample

of Gj . Let x = (x1, . . . , xd) ∈ Rd. The following calculations prove the result:

P (X̃
(i)
j ≤ tj) = P (X

(i)
j − µj,Z̃(i)(X

(i)
j )
≤ tj)

=

∫
· · ·
∫ ∑

z

P (xj − µj,z ≤ tj |X(i) = x, Z̃(i)(x) = z)P (Z̃(i)(x) = z|X(i) = x)h(x)dx

=

∫
· · ·
∫ ∑

z

P (xj ≤ tj + µj,z|X(i) = x, Z̃(i)(x) = z)P (Z(i)(x) = z|X(i) = x)h(x)dx

=
∑
z

∫
· · ·
∫

1(−∞,µj,z+tj ](xj)P (Z(i) = z|X(i) = x)h(x)dx

=
∑
z

∫
· · ·
∫

1(−∞,µj,z+t1](xj)hX(i)|Z(i)=z(x|z)πzdx

=
∑
z

πz

∫ µj,z+tj

−∞
hjz(xj)dxj

=
∑
z

πz

∫ µj,z+tj

−∞
gj (x− µjz) dx =

∑
z

πzGj(tj) = Gj(tj).
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