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I. INTRODUCTION

Many signal processing problems are undetermined in the sense that, from the available observations, it is not possible to infer unambiguously the signal of interest. The only way of circumventing this difficulty consists of incorporating prior information on the sought solution. In particular, the sparsity (possibly in some appropriate representation) is one of the most standard assumptions which can be made on the target signal in many situations of practical interest. A large literature has been devoted to signal/image recovery of sparse signals in connection with recent works on compressive sensing [START_REF] Candès | An introduction to compressive sampling[END_REF]. When the observations are obtained through a linear degradation model and some noise corruption process, many efforts have been undertaken in order to propose variational formulations of the problem. In such formulations, a sparsity measure is used in conjunction with a data fidelity term, such as a least squares criterion. The former can be introduced either as a penalization or under a constrained form, the two being related through Lagrangian duality under suitable conditions.

The natural sparsity measure is the ℓ 0 pseudo-norm which basically counts the number of nonzero components in the signal. It leads however to untractable NP-hard problems and to optimization difficulties due to the presence of many local minima [START_REF] Nikolova | Description of the minimizers of least squares regularized with ℓ 0 norm. uniqueness of the global minimizer[END_REF]. Let us also mention the existence of iterative hard thresholding (IHT) algorithms, which can be quite effective in some cases, while having a low complexity [START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF]. These algorithms can be viewed as instances of the forward-backward (FB) iteration in the nonconvex case [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward backward splitting, and regularized Gauss-Seidel methods[END_REF]. Stochastic blockcoordinate versions of IHT have also been recently proposed [START_REF] Patrascu | Random coordinate descent methods for ℓ 0 regularized convex optimization[END_REF] and are related to existing works on block-coordinate FB algorithms [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF], [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. Nonetheless, for all these algorithms in general, convergence can be expected only to a local minimizer.

To improve the numerical performance, surrogates for the ℓ 0 cost function have been proposed. A well-known convex relaxation of this function is the ℓ 1 norm, yielding iterative soft thresholding methods [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF], whose convergence is guaranteed. More generally, extensions of the ℓ 1 norm lead to so-called proximal thresholders which can be employed in provably convergent convex optimization schemes [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. Although in some favorable scenarios the use of the ℓ 1 norm can be shown to be optimal for recovering a sparse signal [START_REF] Davenport | Introduction to compressed sensing[END_REF], it is often suboptimal in terms of estimation of the support of its nonzero components and it introduces a bias in the estimation of their amplitudes. These drawbacks may be alleviated by making use of reweighted ℓ 1 minimization techniques [START_REF] Candés | Enhancing sparsity by reweighted ℓ 1 minimization[END_REF]. Using an ℓ 1 /ℓ 2 penalty may also lead to some improvements [START_REF] Hurley | Comparing measures of sparsity[END_REF], [START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ 1 /ℓ 2 regularization[END_REF].

Another kind of surrogates for the ℓ 0 pseudo-norm is provided by smoothed versions of the ℓ 1 or ℓ 0 function [START_REF] Chouzenoux | A majorizeminimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF], [START_REF] Soubies | A continuous exact ℓ 0 penalty (CEL0) for least squares regularized problem[END_REF]. In particular, one may be interested in sparsity measures of the form

(x t ) 1≤t≤T ∈ R T → T ∑ t=1 ψ δ (x t ) ,
where ψ δ : R → R is differentiable and δ ∈]0, +∞[ is a smoothing parameter. Provided that ψ δ ( √ •) is concave on [0, +∞[, a quadratic tangent function can be derived, which makes efficient majorization-minimization (MM) strategies usable for optimizing penalized criteria built from this function (see [START_REF] Chouzenoux | A majorize-minimize subspace strategy for subspace optimization applied to image restoration[END_REF] for more details). In addition if, for every ξ ∈ R, lim δ→0 ψ δ (ξ) = χ R\{0} (ξ) where χ R\{0} (ξ) = 0 when ξ = 0 and 1 otherwise, then the solution to the ℓ 0 penalized problem is recovered asymptotically as δ → 0 (under some technical assumptions) [START_REF] Chouzenoux | A majorizeminimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF]. Among the class of possible smoothed ℓ 0 functions, the Geman-McClure ℓ 2 -ℓ 0 potential was observed to give good results in a number of applications [START_REF] Geman | Bayesian image analysis: An application to single photon emission tomography[END_REF], [START_REF] Chouzenoux | A majorizeminimize subspace approach for ℓ 2 -ℓ 0 image regularization[END_REF], [START_REF] Florescu | A majorize-minimize memory gradient method for complex-valued inverse problem[END_REF]. It corresponds to the following choice for the function ψ δ :

(∀ξ ∈ R) ψ δ (ξ) = ξ 2 δ 2 + ξ 2 .
(

) 1 
Although efficient MM algorithms allow us to minimize penalized problems involving this function, they can get trapped by undesirable local minima due to the nonconvexity of the criterion. Note also that, when the signal to be recovered has positive values, a simplified form of (1) can be used:

(∀ξ ∈ [0, +∞[) ψ δ (ξ) = ξ δ + ξ . ( 2 
)
Adding a penalization term such as (1) or (2) to a least squares criterion yields a rational objective function. Interestingly, we can take advantage of this fact through dedicated methods proposed in the optimization community [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], [START_REF] Jibetean | Global optimization of rational functions: a semidefinite approach[END_REF], [START_REF] Laurent | Sum of squares, moment matrices and optimization over polynomials[END_REF], [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]. In these approaches, the minimization is recast as a problem of moments, for which a hierarchy of semidefinite positive (SDP) relaxations provides asymptotically an exact solution.

We investigate here the potential offered by these rational optimization methods for sparse signal deconvolution. Our method is based on recent developments in the field, providing theoretical guarantees of convergence to a global minimizer. In the present state of research, these methods are restricted to small or medium size problems and one of the main difficulties which we address is the large number of variables which have to be optimized. A new stochastic block-coordinate method will be proposed for this purpose.

The remainder of the paper is organized as follows. The convolutive model is introduced in Section II, as well as the associated variational formulation. Section III describes the optimization method used here, while Section IV presents the proposed stochastic block-coordinate strategy. A simulation example is shown in Section V and some concluding remarks are given in Section VI.

II. MODEL AND CRITERION

A. Sparse signal model

We consider the problem of recovering a signal (x t ) t∈Z which is assumed to be sparse: here, we simply assume that x t ̸ = 0 only for a few indices t. Additionally, it is assumed that, for every t ∈ R, x t ≥ 0. The signal (x t ) t∈Z is unknown and the following real-valued observations (y t ) 1≤t≤T are available:

(∀t ∈ {1, . . . , T }) y t = h t ⋆ x t + n t ,
where ⋆ denotes the convolution by the filter with impulse response (h t ) t and ( n t ) 1≤t≤T is an additive random independently and identically distributed (i.i.d.) noise. When the convolution filter has a finite impulse response (FIR) and cyclic boundary conditions are assumed, the above model can be rewritten as

y = Hx + n ,
where H is a circulant Toeplitz matrix and y, x, n are T × 1 column vectors containing the respective samples of the observations, unknown signal, and noise.

B. Criterion for recovery

As explained in the introduction, a classical approach for estimating x := (x 1 , . . . , x T ) ⊤ ∈ [0, +∞[ T consists of minimizing a penalized criterion which in our case reads:

J (x) = ∥y -Hx∥ 2 + λ T ∑ t=1 x t δ + x t , ( 3 
)
where λ and δ are positive parameters. The estimated signal is then x = arg min x∈[0,+∞[ T J (x), where the minimization is performed over the feasible set [0, +∞[ T . Note that the penalty term (2) has been chosen because of the nonnegativity assumption. However, the approach proposed in the paper remains valid when there is no such constraint and the penalization given by ( 1) is employed.

III. MINIMIZATION OF A SUM OF RATIONAL FUNCTIONS

With an obvious notation, Criterion (3) can be expressed under the form:

J (x) = p 0 (x) + T ∑ t=1 p(x t ) q(x t ) (4) 
and the problem to address then reads:

J ⋆ := inf x∈K J (x) . ( 5 
)
For technical reasons, we make the following assumption, which is easily satisfied when one knows an upper bound B on the variables (x t ) 1≤t≤T : the minimization set K is compact and decomposes as

K = K 1 × • • • × K T .
The K t 's are here identical and are defined for every t ∈ {1, . . . , T } by polynomial inequalities which read for simplicity

K t = {x t ∈ R | g t (x t ) ≥ 0} with g t (x t ) = x t (B -x t ).

A. Generalized problem of moments

Let M(K) (resp. M(K t )) be the space of finite Borel measures supported on K (resp. K t ). In [START_REF] Bugarin | Minimizing the sum of many rational functions[END_REF], the following infinite dimensional optimization problem is introduced:

P ⋆ := inf ∫ K p 0 (x) dµ 0 (x) + T ∑ t=1 ∫ Kt p(x t ) dµ t (x t ) s.t. ∫ K dµ 0 (x) = 1 and (∀α ∈ N)(∀t ∈ {1 . . . , T }) : ∫ Kt x α t q(x t ) dµ t (x t ) = ∫ K x α t dµ 0 (x) ,
where the variables are measures µ t , t ∈ {0, . . . , T }, with µ 0 ∈ M(K) and µ t ∈ M(K t ) for t ≥ 1. It can been shown that P ⋆ = J ⋆ under the assumption that K is compact. This can be accounted for by the fact that any global optimum point x ⋆ of (5) corresponds to the following set of Dirac measures µ 0 = δ x ⋆ and µ t = q(x ⋆ t ) -1 δ x ⋆ t , for every t ∈ {1, . . . , T }. This fact was first presented in the context of polynomial optimization in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. It must however be emphasized that the rational criterion (4) has very high numerator and denominator degrees when reducing it to a single fraction, which does not allow us to use the methods in [START_REF] Jibetean | Global optimization of rational functions: a semidefinite approach[END_REF] or [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF] for optimizing rational functions, and which was the motivation for the work in [START_REF] Bugarin | Minimizing the sum of many rational functions[END_REF].

B. A hierarchy of SDP relaxation

For numerical tractability, the infinite dimensional optimization problem P ⋆ needs to be relaxed to a finite dimensional SDP: the first ingredient is to represent the different measures µ 0 , µ 1 , . . . , µ T of problem P ⋆ by their respective moment sequences y 0 , y 1 , . . . , y T . Since µ 0 is a measure on K ⊂ [0, +∞[ T , y 0 is indexed with multi-indices in N T corresponding to the monomial exponents in the canonical basis (x α ) of R[x]. Conversely, for every t ≥ 1, the measure µ t is defined on K t ⊂ R, and y t is indexed by a number in N. For any moment sequence y, we define the following linear functional, which replaces any monomial in the polynomial f ∈ R[x] by the corresponding moment value in y:

L y : R[x] → R f = ∑ f α x α → ∑ f α y α .
For any order k ∈ N and for multi-indices α, β of order |α| = α 1 + • • • + α n ≤ k and |β| ≤ k, the moment matrix of y is defined by

[M k (y)] α,β := y α+β ,
and for a given polynomial g ∈ R[x], the localizing matrix associated to g and y is

[M k (gy)] α,β := ∑ γ g γ y γ+α+β .
Finally, define r t := ⌈(deg g t )/2⌉. In [START_REF] Bugarin | Minimizing the sum of many rational functions[END_REF], a hierarchy of sparse SDP relaxations has been proposed. Defining k ∈ N as the order of the relaxation in the hierarchy, the latter reads: [START_REF] Bugarin | Minimizing the sum of many rational functions[END_REF] that the associated monotone sequence of optimal values for the above hierarchy of SDP relaxations converges to the global optimum, that is

P ⋆ k := inf L y0 (p 0 ) + T ∑ i=1 L yi (p) s.t. M k (y 0 ) ⪰ 0, L y0 (1) = 1 and (∀t ∈ {1, . . . , T }) : M k (y t ) ⪰ 0 M k-rt (g t y 0 ) ⪰ 0 M k-rt (g t y t ) ⪰ 0 L yt (x α t q(x t )) = L y0 (x α t ) for α + deg q ≤ 2k . It has been proved in
P ⋆ k ↑ J * as k → ∞ .
In addition, under certain rank conditions, global minimizers of ( 5) can be extracted [START_REF] Henrion | Detecting global optimality and extracting solutions in GloptiPoly[END_REF]. Fortunately, low relaxation orders often provide satisfactory results.

IV. BLOCK-COORDINATE OPTIMIZATION

Although very appealing, the approach described in Section III has a major drawback: the numbers of variables in the moment sequences y 0 , y 1 , . . . , y T is large for even small values of the relaxation order k and of the number of samples T (e.g. SDP of size 5650 for T = 100 and k = 1). As a consequence, we propose to perform the optimization with respect to x using a stochastic block-coordinate descent method. Let x be an N × 1 column vector containing a subset of N components of x (N ≤ T ) and let x be the (T -N ) × 1 column vector containing the remaining components of x. We partition similarly the columns of H, and define H (resp. H) the N × T (resp. (T -N ) × T ) matrices obtained from H such that Hx = Hx + Hx. We then have J (x) = J (x) + const. where

J (x) := ∥y -Hx -Hx∥ 2 + λ N ∑ t=1 xt δ + xt ,
and the constant depends on x only. With an obvious notation, the above criterion takes the form (4) and the method from Section III-B can then be employed to optimize J (x). After initializing x to a value x ini , our optimization procedure is thus the iteration of the following steps: • optimize J (x), that is • build the corresponding relaxation P ⋆ k

• solve the SDP problem and extract its solution.

• update (x t1 , . . . , x tN ) ⊤ ← arg min x J (x).

V. SIMULATIONS

A. Software and implementation

The hierarchy P ⋆ k of SDP relaxations of the generalized problem of moments P ⋆ can be easily built and solved. Indeed, the Matlab software package GloptiPoly3 [START_REF] Henrion | Gloptipoly3: moments, optimization and semidefinite programming[END_REF] allows one to build the hierarchy in a user friendly way. GloptiPoly3 can then solve it by calling one of the publicly available SDP solvers. In our simulations, we used the solver SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF]. Finally, GloptiPoly3 can return the solution found for the SDP relaxation.

B. Illustration results

We have generated T = 700 samples of a sparse signal according to an i.i.d. process. Each component x t of x has a probability distribution given by 0.95δ 0 +0.05N + (0, 1) where N + (0, 1) is a positive truncated Gaussian law. The convolution filter is a low-pass FIR with length 25. The noise standarddeviation is set to σ = 0.02. A typical plot of the unknown x and the observed y is given in Figure 1. The corresponding recovered signal is shown at bottom. Such a scenario is likely to occur in several applications such as seismic deconvolution or spectroscopy. For comparison, we tried to perform the deconvolution on the same set of samples by minimizing the ℓ 1 penalized criterion ∥y -Hx∥ 2 + λ ℓ1 ∑ T t=1 |x t | subject to the positivity constraint x ∈ [0, +∞[ T , where λ ℓ1 ∈]0, +∞[. We also implemented an IHT method. The parameter values have been set empirically to get the best possible results (λ = 5 × 10 -3 , δ = 2 × 10 -1 ). Finally, to confirm that a global minimum is reached, different initializations have been tried: zero (x ini = 0), the observation vector (x ini = y), the result of ℓ 1 penalization (x ini = x ℓ1 ), values randomly drawn in [0, 1] (x ini = x rand ) and the true value (x ini = x true ). The last initialization is of no use in practice, but provides an interesting reference.

On Figure 2 we plot the objective value J (x) (top) and the mean square error (MSE) (bottom) with respect to the sought signal versus the block-coordinate iteration number. We performed 5000 iterations but only the 500 first ones have been plotted. We clearly observe that the objective decreases and converges to the same minimal value for any initialization point x ini : this advocates in favor of a global convergence. The final values of J (x) are given in Table I for our method, IHT and ℓ 1 penalization. Clearly, our method finds close optimal values for any initialization, whereas IHT is sensitive to local minima. Similarly, the results concerning the MSE appear to be quite consistent.

VI. CONCLUSION

The deconvolution of a sparse signal has been considered through the minimization of a least squares criterion penalized by a Geman-McClure like potential. The resulting objective is non convex but rational. For such minimization, we have employed recent methodological tools offering theoretical guarantee of global convergence. Due to the important number of variables, we have proposed to split the problem into a sequence of blockwise optimization steps. Very promising experimental results have been obtained.
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 1 Fig. 1. Typical observation and unknown sparse signal • draw randomly N indices t 1 , . . . , t N in {1, . . . , T } and define x := (x t1 , . . . , x t N ) ⊤ .

Fig. 2 .

 2 Fig. 2. Criterion J (x) and MSE versus iterations. See the legend box for the different initialization values of x ini .

TABLE I .

 I FINAL VALUES OF THE OBJECTIVE J (x) AND MSE FOR OUR METHOD, IHT AND THE ℓ 1 PENALIZATION.

		Proposed method	IHT		ℓ1 penalization
	xini	J (x)	MSE	J (x)	MSE	J (x)	MSE
	0	0.3758	0.0035	1.1951	0.0434		
	x ℓ 1 y	0.3760 0.3777	0.0022 0.0032	0.4030 0.4452	0.0048 0.0063	0.5394	0.0068
	xtrue	0.3760	0.0022	0.3877	0.0012		
	x rand	0.3758	0.0035	0.5693	0.0298