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Abstract—This paper deals with the problem of recovering a
sparse unknown signal from a set of observations. The latter are
obtained by convolution of the original signal and corruption
with additive noise. We tackle the problem by minimizing a
least-squares fit criterion penalized by a Geman-McClure like
potential. The resulting criterion is a rational function, which
makes it possible to formulate its minimization as a generalized
problem of moments for which a hierarchy of semidefinite pro-
gramming relaxations can be proposed. These convex relaxations
yield a monotone sequence of values which converges to the global
optimum. To overcome the computational limitations due to the
large number of involved variables, a stochastic block-coordinate
descent method is proposed. The algorithm has been implemented
and shows promising results.

I. INTRODUCTION

Many signal processing problems are undetermined in the
sense that, from the available observations, it is not possible
to infer unambiguously the signal of interest. The only way
of circumventing this difficulty consists of incorporating prior
information on the sought solution. In particular, the sparsity
(possibly in some appropriate representation) is one of the most
standard assumptions which can be made on the target signal in
many situations of practical interest. A large literature has been
devoted to signal/image recovery of sparse signals in connec-
tion with recent works on compressive sensing [1]. When the
observations are obtained through a linear degradation model
and some noise corruption process, many efforts have been
undertaken in order to propose variational formulations of the
problem. In such formulations, a sparsity measure is used in
conjunction with a data fidelity term, such as a least squares
criterion. The former can be introduced either as a penalization
or under a constrained form, the two being related through
Lagrangian duality under suitable conditions.

The natural sparsity measure is the ℓ0 pseudo-norm which
basically counts the number of nonzero components in the
signal. It leads however to untractable NP-hard problems and
to optimization difficulties due to the presence of many local
minima [2]. Let us also mention the existence of iterative hard
thresholding (IHT) algorithms, which can be quite effective
in some cases, while having a low complexity [3]. These
algorithms can be viewed as instances of the forward-backward
(FB) iteration in the nonconvex case [4], [5]. Stochastic block-
coordinate versions of IHT have also been recently proposed
[6] and are related to existing works on block-coordinate
FB algorithms [7], [8]. Nonetheless, for all these algorithms

in general, convergence can be expected only to a local
minimizer.

To improve the numerical performance, surrogates for the
ℓ0 cost function have been proposed. A well-known convex
relaxation of this function is the ℓ1 norm, yielding iterative soft
thresholding methods [9], whose convergence is guaranteed.
More generally, extensions of the ℓ1 norm lead to so-called
proximal thresholders which can be employed in provably
convergent convex optimization schemes [4]. Although in
some favorable scenarios the use of the ℓ1 norm can be shown
to be optimal for recovering a sparse signal [10], it is often
suboptimal in terms of estimation of the support of its nonzero
components and it introduces a bias in the estimation of their
amplitudes. These drawbacks may be alleviated by making use
of reweighted ℓ1 minimization techniques [11]. Using an ℓ1/ℓ2
penalty may also lead to some improvements [12], [13].

Another kind of surrogates for the ℓ0 pseudo-norm is
provided by smoothed versions of the ℓ1 or ℓ0 function [14],
[15]. In particular, one may be interested in sparsity measures
of the form

(xt)1≤t≤T ∈ RT 7→
T∑

t=1

ψδ(xt) ,

where ψδ : R → R is differentiable and δ ∈]0,+∞[ is a
smoothing parameter. Provided that ψδ(

√
·) is concave on

[0,+∞[, a quadratic tangent function can be derived, which
makes efficient majorization-minimization (MM) strategies us-
able for optimizing penalized criteria built from this function
(see [16] for more details). In addition if, for every ξ ∈ R,
limδ→0 ψδ(ξ) = χR\{0}(ξ) where χR\{0}(ξ) = 0 when ξ = 0
and 1 otherwise, then the solution to the ℓ0 penalized problem
is recovered asymptotically as δ → 0 (under some technical
assumptions) [14]. Among the class of possible smoothed ℓ0
functions, the Geman-McClure ℓ2− ℓ0 potential was observed
to give good results in a number of applications [17], [14], [18].
It corresponds to the following choice for the function ψδ:

(∀ξ ∈ R) ψδ(ξ) =
ξ2

δ2 + ξ2
. (1)

Although efficient MM algorithms allow us to minimize pe-
nalized problems involving this function, they can get trapped
by undesirable local minima due to the nonconvexity of the
criterion. Note also that, when the signal to be recovered has
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positive values, a simplified form of (1) can be used:

(∀ξ ∈ [0,+∞[) ψδ(ξ) =
ξ

δ + ξ
. (2)

Adding a penalization term such as (1) or (2) to a least
squares criterion yields a rational objective function. Interest-
ingly, we can take advantage of this fact through dedicated
methods proposed in the optimization community [19], [20],
[21], [22]. In these approaches, the minimization is recast as
a problem of moments, for which a hierarchy of semidefinite
positive (SDP) relaxations provides asymptotically an exact
solution.

We investigate here the potential offered by these rational
optimization methods for sparse signal deconvolution. Our
method is based on recent developments in the field, providing
theoretical guarantees of convergence to a global minimizer.
In the present state of research, these methods are restricted to
small or medium size problems and one of the main difficulties
which we address is the large number of variables which have
to be optimized. A new stochastic block-coordinate method
will be proposed for this purpose.

The remainder of the paper is organized as follows. The
convolutive model is introduced in Section II, as well as the
associated variational formulation. Section III describes the
optimization method used here, while Section IV presents the
proposed stochastic block-coordinate strategy. A simulation
example is shown in Section V and some concluding remarks
are given in Section VI.

II. MODEL AND CRITERION

A. Sparse signal model

We consider the problem of recovering a signal (xt)t∈Z
which is assumed to be sparse: here, we simply assume that
xt ̸= 0 only for a few indices t. Additionally, it is assumed that,
for every t ∈ R, xt ≥ 0. The signal (xt)t∈Z is unknown and
the following real-valued observations (yt)1≤t≤T are available:

(∀t ∈ {1, . . . , T}) yt = ht ⋆ xt + nt ,

where ⋆ denotes the convolution by the filter with impulse
response (ht)t and

(
nt)1≤t≤T is an additive random inde-

pendently and identically distributed (i.i.d.) noise. When the
convolution filter has a finite impulse response (FIR) and cyclic
boundary conditions are assumed, the above model can be
rewritten as

y = Hx+ n ,

where H is a circulant Toeplitz matrix and y, x, n are
T × 1 column vectors containing the respective samples of
the observations, unknown signal, and noise.

B. Criterion for recovery

As explained in the introduction, a classical approach
for estimating x := (x1, . . . , xT )

⊤ ∈ [0,+∞[T consists of
minimizing a penalized criterion which in our case reads:

J (x) = ∥y −Hx∥2 + λ
T∑

t=1

xt
δ + xt

, (3)

where λ and δ are positive parameters. The estimated signal is
then x̂ = argminx∈[0,+∞[T J (x), where the minimization is

performed over the feasible set [0,+∞[T . Note that the penalty
term (2) has been chosen because of the nonnegativity assump-
tion. However, the approach proposed in the paper remains
valid when there is no such constraint and the penalization
given by (1) is employed.

III. MINIMIZATION OF A SUM OF RATIONAL FUNCTIONS

With an obvious notation, Criterion (3) can be expressed
under the form:

J (x) = p0(x) +
T∑

t=1

p(xt)

q(xt)
(4)

and the problem to address then reads:

J ⋆ := inf
x∈K
J (x) . (5)

For technical reasons, we make the following assumption,
which is easily satisfied when one knows an upper bound
B on the variables (xt)1≤t≤T : the minimization set K is
compact and decomposes as K = K1 × · · · ×KT . The Kt’s
are here identical and are defined for every t ∈ {1, . . . , T} by
polynomial inequalities which read for simplicity Kt = {xt ∈
R | gt(xt) ≥ 0} with gt(xt) = xt(B − xt).

A. Generalized problem of moments

Let M(K) (resp. M(Kt)) be the space of finite Borel
measures supported on K (resp. Kt). In [23], the following
infinite dimensional optimization problem is introduced:

P⋆ := inf

∫
K

p0(x) dµ0(x) +
T∑

t=1

∫
Kt

p(xt) dµt(xt)

s.t.

∫
K

dµ0(x) = 1 and (∀α ∈ N)(∀t ∈ {1 . . . , T}) :∫
Kt

xαt q(xt) dµt(xt) =

∫
K

xαt dµ0(x) ,

where the variables are measures µt, t ∈ {0, . . . , T}, with µ0 ∈
M(K) and µt ∈ M(Kt) for t ≥ 1. It can been shown that
P⋆ = J ⋆ under the assumption that K is compact. This can
be accounted for by the fact that any global optimum point x⋆

of (5) corresponds to the following set of Dirac measures µ0 =
δx⋆ and µt = q(x⋆t )

−1δx⋆
t
, for every t ∈ {1, . . . , T}. This fact

was first presented in the context of polynomial optimization in
[19]. It must however be emphasized that the rational criterion
(4) has very high numerator and denominator degrees when
reducing it to a single fraction, which does not allow us to use
the methods in [20] or [22] for optimizing rational functions,
and which was the motivation for the work in [23].

B. A hierarchy of SDP relaxation

For numerical tractability, the infinite dimensional opti-
mization problem P⋆ needs to be relaxed to a finite dimen-
sional SDP: the first ingredient is to represent the different
measures µ0, µ1, . . . , µT of problem P⋆ by their respective
moment sequences y0,y1, . . . ,yT . Since µ0 is a measure
on K ⊂ [0,+∞[T , y0 is indexed with multi-indices in NT

corresponding to the monomial exponents in the canonical
basis (xα) of R[x]. Conversely, for every t ≥ 1, the measure
µt is defined on Kt ⊂ R, and yt is indexed by a number in N.
For any moment sequence y, we define the following linear
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functional, which replaces any monomial in the polynomial
f ∈ R[x] by the corresponding moment value in y:

Ly : R[x]→ R
f =

∑
fαx

α 7→
∑

fαyα .

For any order k ∈ N and for multi-indices α,β of order |α| =
α1 + · · · + αn ≤ k and |β| ≤ k, the moment matrix of y is
defined by

[Mk(y)]α,β := yα+β ,

and for a given polynomial g ∈ R[x], the localizing matrix
associated to g and y is

[Mk(gy)]α,β :=
∑
γ

gγyγ+α+β .

Finally, define rt := ⌈(deg gt)/2⌉. In [23], a hierarchy of
sparse SDP relaxations has been proposed. Defining k ∈ N
as the order of the relaxation in the hierarchy, the latter reads:

P⋆
k := inf Ly0(p0) +

T∑
i=1

Lyi(p)

s.t. Mk(y0) ⪰ 0, Ly0(1) = 1 and (∀t ∈ {1, . . . , T}) :
Mk(yt) ⪰ 0

Mk−rt(gty0) ⪰ 0

Mk−rt(gtyt) ⪰ 0

Lyt(x
α
t q(xt)) = Ly0(x

α
t ) for α+ deg q ≤ 2k .

It has been proved in [23] that the associated monotone
sequence of optimal values for the above hierarchy of SDP
relaxations converges to the global optimum, that is

P⋆
k ↑ J ∗ as k →∞ .

In addition, under certain rank conditions, global minimizers
of (5) can be extracted [24]. Fortunately, low relaxation orders
often provide satisfactory results.

IV. BLOCK-COORDINATE OPTIMIZATION

Although very appealing, the approach described in Sec-
tion III has a major drawback: the numbers of variables
in the moment sequences y0,y1, . . . ,yT is large for even
small values of the relaxation order k and of the number of
samples T (e.g. SDP of size 5650 for T = 100 and k = 1).
As a consequence, we propose to perform the optimization
with respect to x using a stochastic block-coordinate descent
method. Let x̃ be an N ×1 column vector containing a subset
of N components of x (N ≤ T ) and let x̄ be the (T −N)×1
column vector containing the remaining components of x. We
partition similarly the columns of H, and define H̃ (resp. H̄)
the N×T (resp. (T −N)×T ) matrices obtained from H such
that Hx = H̃x̃+ H̄x̄. We then have J (x) = J̃ (x̃) + const.
where

J̃ (x̃) := ∥y − H̃x̃− H̄x̄∥2 + λ
N∑
t=1

x̃t
δ + x̃t

,

and the constant depends on x̄ only. With an obvious notation,
the above criterion takes the form (4) and the method from
Section III-B can then be employed to optimize J̃ (x̃). After
initializing x to a value xini, our optimization procedure is
thus the iteration of the following steps:
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Fig. 1. Typical observation and unknown sparse signal

• draw randomly N indices t1, . . . , tN in {1, . . . , T}
and define x̃ := (xt1 , . . . , xtN )⊤.

• optimize J̃ (x̃), that is
◦ build the corresponding relaxation P⋆

k
◦ solve the SDP problem and extract its solution.

• update (xt1 , . . . , xtN )⊤ ← argminx̃ J̃ (x̃).

V. SIMULATIONS

A. Software and implementation

The hierarchy P⋆
k of SDP relaxations of the generalized

problem of moments P⋆ can be easily built and solved. Indeed,
the Matlab software package GloptiPoly3 [25] allows one to
build the hierarchy in a user friendly way. GloptiPoly3 can
then solve it by calling one of the publicly available SDP
solvers. In our simulations, we used the solver SeDuMi [26].
Finally, GloptiPoly3 can return the solution found for the SDP
relaxation.

B. Illustration results

We have generated T = 700 samples of a sparse signal
according to an i.i.d. process. Each component xt of x has a
probability distribution given by 0.95δ0+0.05N+(0, 1) where
N+(0, 1) is a positive truncated Gaussian law. The convolution
filter is a low-pass FIR with length 25. The noise standard-
deviation is set to σ = 0.02. A typical plot of the unknown
x and the observed y is given in Figure 1. The corresponding
recovered signal is shown at bottom. Such a scenario is likely
to occur in several applications such as seismic deconvolution
or spectroscopy. For comparison, we tried to perform the
deconvolution on the same set of samples by minimizing the
ℓ1 penalized criterion ∥y −Hx∥2 + λℓ1

∑T
t=1 |xt| subject to

the positivity constraint x ∈ [0,+∞[T , where λℓ1 ∈]0,+∞[.
We also implemented an IHT method. The parameter values
have been set empirically to get the best possible results
(λ = 5 × 10−3, δ = 2 × 10−1). Finally, to confirm that a
global minimum is reached, different initializations have been
tried: zero (xini = 0), the observation vector (xini = y), the
result of ℓ1 penalization (xini = xℓ1 ), values randomly drawn
in [0, 1] (xini = xrand) and the true value (xini = xtrue).
The last initialization is of no use in practice, but provides an
interesting reference.

On Figure 2 we plot the objective value J (x) (top) and
the mean square error (MSE) (bottom) with respect to the
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Fig. 2. Criterion J (x) and MSE versus iterations. See the legend box for
the different initialization values of xini.

TABLE I. FINAL VALUES OF THE OBJECTIVE J (x) AND MSE FOR
OUR METHOD, IHT AND THE ℓ1 PENALIZATION.

Proposed method IHT ℓ1 penalization
xini J (x) MSE J (x) MSE J (x) MSE
0 0.3758 0.0035 1.1951 0.0434

0.5394 0.0068xℓ1
0.3760 0.0022 0.4030 0.0048

y 0.3777 0.0032 0.4452 0.0063
xtrue 0.3760 0.0022 0.3877 0.0012
xrand 0.3758 0.0035 0.5693 0.0298

sought signal versus the block-coordinate iteration number. We
performed 5000 iterations but only the 500 first ones have
been plotted. We clearly observe that the objective decreases
and converges to the same minimal value for any initialization
point xini: this advocates in favor of a global convergence. The
final values of J (x) are given in Table I for our method, IHT
and ℓ1 penalization. Clearly, our method finds close optimal
values for any initialization, whereas IHT is sensitive to local
minima. Similarly, the results concerning the MSE appear to
be quite consistent.

VI. CONCLUSION

The deconvolution of a sparse signal has been consid-
ered through the minimization of a least squares criterion
penalized by a Geman-McClure like potential. The resulting
objective is non convex but rational. For such minimization, we
have employed recent methodological tools offering theoretical
guarantee of global convergence. Due to the important number
of variables, we have proposed to split the problem into a
sequence of blockwise optimization steps. Very promising
experimental results have been obtained.
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