
HAL Id: hal-01263351
https://hal.science/hal-01263351v1

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CloudaSec : a novel public-key based framework to
handle data sharing security in clouds

Nesrine Kaaniche, Maryline Laurent, Mohammed El Barbori

To cite this version:
Nesrine Kaaniche, Maryline Laurent, Mohammed El Barbori. CloudaSec : a novel public-key based
framework to handle data sharing security in clouds. SECRYPT 2014 : 11th International Conference
on Security and Cryptography, Aug 2014, Vienne, Austria. pp.5 - 18, �10.5220/0005010600050018�.
�hal-01263351�

https://hal.science/hal-01263351v1
https://hal.archives-ouvertes.fr

CloudaSec: A Novel Public-key based Framework to handle Data
Sharing Security in Clouds

Nesrine Kaaniche1, Maryline Laurent1, Mohammed El Barbori1
1Institute Mines Telecom, Telecom-SudParis

{nesrine.kaaniche, maryline.laurent, mohammed.el barbori}@telecom-sudparis.eu

Keywords: cloud storage systems, data security, access control, algorithm verification

Abstract: Recent years have witnessed the trend of leveraging cloud-based services for large scale content storage,
processing, and distribution. Data security and privacy are among top concerns for the public cloud envi-
ronments. Towards these security challenges, we propose and implement CloudaSec framework for securely
sharing outsourced data via the public cloud. CloudaSec ensures the confidentiality of content in the public
cloud environments with flexible access control policies for subscribers and efficient revocation mechanisms.
CloudaSec proposes several cryptographic tools for data owners, based on a novel content hash keying system,
by leveraging the Elliptic Curve Cryptography (ECC). The separation of subscription-based key management
and confidentiality-oriented asymmetric encryption policies uniquely enables flexible and scalable deploy-
ment of the solution as well as strong security for outsourced data in cloud servers. Through experimental
evaluation, we demonstrate the efficiency and scalability of CloudaSec, build upon OpenStack Swift testbed.

1 INTRODUCTION

Recently, the US International Data Corporation
(IDC) proclaims that the digital universe will grow
by a factor of 300, up to 40 trillion gigabytes of repli-
cated data by 2020 (Gantz and Reinsel, 2012). This
explosive growth of data continues to rise the demand
for new storage and network capacities, along with
an increasing need for more cost effective architec-
tures. As such, recent years have witnessed the trend
of leveraging cloud data storage, since it provides ef-
ficient remote storage services in pay per use business
model.
However, these promising data storage services have
brought many challenging design issues, considerably
due to the loss of control on outsourced data. One
of the biggest concerns is data confidentiality pro-
visioning which remains a fundamental security re-
quirement in cloud storage services.
It is commonly agreed that data encryption at the
client side is a good alternative to mitigate such con-
cerns of data confidentiality. Thus, the client pre-
serves the decrypting keys out of reach of the cloud
provider. Nonetheless, the confidentiality preserva-
tion becomes more complicated with flexible data
sharing among a group of users. First, it requires ef-
ficient sharing of decrypting keys between different
authorized users. The challenge is to define a smooth

group revocation which does not require updating the
secret keys of the remaining users. So, the complexity
of key management is minimized. Second, the access
control policies should be flexible and distinguish-
able among users with different privileges to access
data. That is, data may be shared by different users or
groups, and users may belong to several groups.
In this paper, we propose CloudaSec, a public key
based solution for improving data confidentiality in
cloud storage environments and enhancing dynamic
sharing between users. CloudaSec applies the con-
vergent encryption concept (Wang et al., 2010) on
data contents. That is, the data owner uploads en-
crypted content to the cloud and seamlessly integrates
the deciphering key encrypted into the metadata to en-
sure data confidentiality. In addition, CloudaSec in-
tegrates a conference key distribution scheme, based
on parallel Diffie Hellman exchanges, in order to
guarantee backward and forward secrecy (Burmester
and Desmedt, 2005). That is, only authorized users
can access metadata and decipher the decrypting data
keys. As such, user revocation is achieved without
updating the private keys of the remaining users.
Beyond these security properties, a deduplication
mechanism is deployed ensuring that only one copy of
content is stored in cloud servers. This feature enables
the efficient usage of storage capacities and achieves
fast data distribution.

Paper Organization– The remainder of this work
is organized as follows: Section 2 presents security
considerations and design goals. Then, Section 3 de-
scribes the system model, reviews some preliminaries
and cryptographic primitives, details the framework
design, and describes the prototype and its different
procedures. In Section 4, rigorous security discus-
sions are given, and implementation results are dis-
cussed in Section 5. Finally, we review the related
work in Section 6, before concluding in Section 7.

2 PROBLEM STATEMENT

Providing data confidentiality, in multi-tenant envi-
ronments, becomes more challenging and conflicting.
This is largely due to the fact that users outsource their
data on remote servers, which are controlled and man-
aged by possible untrusted Cloud Service Providers
(CSPs). That is why, it is compulsory to provide se-
crecy by encrypting data before their storage in cloud
servers while keeping the decryption keys out of reach
of CSP and any malicious user. Nonetheless, the con-
fidentiality preservation becomes more complex with
resilient data sharing among dynamic groups. Hence,
secure data sharing should support flexible security
policies including forward and backward secrecy.

• Forward secrecy – this property requires that the
confidentiality of previous encrypted data has to
be ensured even after the long-term secrets are ex-
posed. For example, a user cannot access stored
data before he joins a group.

• Backward secrecy – this property means that a
compromise of the secret key does not affect the
secrecy of future encrypted data. As such, a re-
voked group member is unable to access data that
were outsourced after he leaves the group.

Therefore, the design of our protocol is motivated
by providing the support of both robustness and effi-
ciency, while considering the limited storage and pro-
cessing capacities of user devices. It has to fulfill the
following requirements:

• Data confidentiality – our scheme has to protect
the secrecy of outsourced data contents against
both curious providers and malicious users.

• Flexible access control – CloudaSec should en-
sure flexible security policies among users with
different granted privileges, belonging to differ-
ent groups. These access control policies should
guarantee backward and forward secrecy of out-
sourced data contents.

• Efficient user revocation – the revocation of a
group member should not affect the remaining

users. That is, contrary to traditional fine-grained
access control schemes, the challenge is to de-
fine a smooth group revocation which does not re-
quires updating the secret keys of the non-revoked
members.

• Low computation overhead – on one hand, for
scalability reasons, the amount of computation at
the cloud storage server should be minimized, as
the server may be involved in concurrent interac-
tions. On the other hand, the proposed algorithms
should also have low processing complexity, at the
client side.

• Low communication overhead – CloudaSec
should minimize the usage of bandwidth, relying
on low communication cost.

• Low storage cost – the limited storage capacities
of the user devices has a critical importance in de-
signing our solution. So, low storage cost at the
client side is highly recommended.

3 CLOUDASEC FRAMEWORK

This section presents CloudaSec architecture with
four different types of players. Then, it introduces
CloudaSec, a public key based framework to han-
dle data sharing security, and it highlights the cryp-
tographic assumptions that should be fulfilled by our
proposed framework.

3.1 System Model

Figure 1 illustrates a descriptive network architec-
ture for CloudaSec framework. It relies on the follow-
ing entities for the good management of client data:

• Cloud Service Provider (CSP): a CSP has signifi-
cant resources to govern distributed cloud storage
servers and to manage its database servers. It also
provides virtual infrastructure to host application
services. These services can be used by the client
to manage his data stored in the cloud servers.

• Data owner: a data owner makes use of provider’s
resources to store, retrieve and share data with
multiple users. A data owner can be either an in-
dividual or an enterprise.

• Group Manager (GM): a group manager takes
charge of construction of a group, system param-
eters generation, user registration and user revo-
cation. Therefore, we assume that the group man-
ager is trusted by the other entities.

• Users: the users are able to access the content
stored in the cloud, depending on their access

rights which are authorizations granted by the data
owner, like the rights to read, write or re-store the
modified data in the cloud. These access rights
serve to specify several groups of users.

Figure 1: CloudaSec architecture

In practice, the CSP provides a web interface for data
depositors to store data into a set of cloud servers,
which are running in a cooperated and distributed
manner. In addition, the web interface is used by the
users to retrieve, modify and re-store data from the
cloud, depending on their access rights. We assume
that there is an established secure channel between the
cloud user and the CSP. This secure channel supports
mutual authentication and data confidentiality and in-
tegrity. It can be implemented through the Transport
Layer Security protocol (TLS) (Dierks and Rescorla,
2008), where the client can authenticate with a certifi-
cate or password.
Next, we refer to these authorized user(s) as the re-
cipient(s) and to the data owner as the depositor. We
must note that our proposal does not require from the
recipients to be connected during the sharing process.
Indeed, recipients’ access rights are granted by the
data owner and managed by the CSP. That is, the CSP
is in charge of verifying each recipient access permis-
sions before sending him a redirected access key ele-
ment.

3.2 CloudaSec Overview

To protect outsourced data in public cloud servers
from unauthorized entities, CloudaSec provides sev-
eral cryptographic tools for the data owner in order
to guarantee the secrecy of his outsourced data and
to ensure that only authorized users are able to obtain
the decrypting data keys.
Our framework relies on the convergent encryp-
tion (Wang et al., 2010) which is a content hash key-
ing cryptographic system. That is, it presents two en-
cryption levels: data encryption level and key encryp-
tion level as follows.

• symmetric data encryption level – before out-

sourcing data to cloud servers, the depositor en-
crypts file contents, using a symmetric algorithm.
That is, the enciphering data key is derived, from
the file plaintext, using a one way hash function.
Hence, the choice of the convergent encryption is
multifold. First, storage capacity is preserved as
the same data encrypted by several users produce
the same encrypted data that need to be stored
once. As such, the number of redundant copies
is minimized in order to preserve the efficiency of
the storage service. Second, convergent encryp-
tion leads to a per-data enciphering key thus mit-
igating the usual key sharing problem when con-
tent sharing is needed. Third, the generation of the
deciphering data key is possible only if the plain-
text is known.

• asymmetric key encryption level – the deposi-
tor enciphers the decrypting data key k, based on
an asymmetric algorithm, using the public key of
the recipient. Then, he includes this resulted en-
crypted key in user metadata, ensuring flexible
access policies. Indeed, any authorized recipi-
ent may access to user metadata, in order to deci-
pher the encrypted data key, using his private key.
Then, he can decrypt the enciphered contents.

This dual encryption scheme on data then on the
decrypting keys provides data confidentiality, as well
as flexible access control policies.
CloudaSec procedures involve two joint layers: data
layer and management layer. In the data layer, we
introduce the operations on data and the related
enciphering keys, namely GenerateParameters,
EncryptData, DecryptData, EncryptKeyOneToOne,
EncryptKeyOneToMany and ShrinKey. In the man-
agement layer, CloudaSec introduces procedures of
user revocation, when a group member leaves or is
revoked from the group, and user subscription, when
a new user joins the group.
CloudaSec supports flexible access to encrypted
contents, by dynamically sharing a group secret key
within the group. That is, when the group state is
modified due to a user subscription or revocation,
the GM broadcasts the new group arrangement to
authorized members in order to generate the new
secret group key, based on the published public
elements, without updating the private keys of the
remaining users, as presented in Section 3.5.
CloudaSec distinguishes two different data sharing
scenarios. First, the data sharing one to one, pre-
sented in Section 3.4.1, where a data owner stores
for one CloudaSec user. Second, the data sharing
one to many, described in Section 3.4.2, where a
data owner shares data among a group of authorized
users. These scenarios encompass two different data

key encryption algorithms EncryptKeyOneToOne and
EncryptKeyOneToMany.

The different notations used in this paper are listed
in Table 1.

Table 1: Our notations

Notation Description
f file content
k data key

idi identity of a CloudaSec user Ui
ski private key of a CloudaSec user Ui
pki public key of a CloudaSec user Ui
skc private key of the CSP
pkc public key of the CSP
d group secret key

3.3 Cryptographic Background

This section reviews a straightforward cryptographic
background, used in the design of our CloudaSec
framework.

3.3.1 Preliminaries

CloudaSec essentially relies on the use of one way
functions and bilinear maps, defined as follows.

Collision resistant hash functions(Boneh and
Boyen, 2006) – Let H : {0,1}∗ → {0,1}n be a hash
function. H is a collision resistant function if no
efficient algorithm can find a pair M 6= M′ ∈ {0,1}∗,
such that H(M) = H(M′).

Bilinear maps { (Regan,), (Ratna et al., 2004)}
– an admissible symmetric pairing function ê from
G1×G1 in G2 has to be bilinear, non degenerate and
efficiently computable. G1 is an additive subgroup of
the group of points of an Elliptic Curve (EC). How-
ever, G2 is a multiplicative subgroup of a finite field.
G1 and G2 have the same order q. In addition, G1 and
G2 are generated by P and the g = ê(P,P), respec-
tively.

3.3.2 Cryptographic Assumptions

Our proposal is based on two cryptographic assump-
tions, namely the Elliptic Curve Discrete Logarithm
Problem and the Computational Diffie Hellman
Problem.

Elliptic Curve Discrete Logarithm Problem
(ECDLP) – given an additive group G, a subgroup of
E(Fp), which is generated by the point P of prime

order n, it is intractable to find a, where Q = aP, and
P are known.

Computational Diffie Hellman problem (CDH) –
given a cyclic group G of order p and generator g,
there is no efficient algorithm to calculate gab , where
(g,ga,gb) are known.

3.3.3 Group Key Distribution (GKD)

Burmester and Desmedt propose an unauthorized key
exchange protocol (Burmester and Desmedt, 2005).
It is a two round protocol that extends the concept of
the Diffie Hellman assumption.
Let G = {U1, ...Um}, be a group of m users arranged
into a cycle. To generate a group key, each member
Ui, where i ∈ [1,m]N, first selects a random secret bi.
Then, he broadcasts zi = gbi , where g is a generator
of a multiplicative group G. Afterwards, this latter
publishes Xi = (

zi+1
zi−1

)bi . We must note that the number
of exponentiations per user is constant and each user
Ui computes K, as K ≡ gb1b2+b2b3+...+bmb1 mod(p).

3.4 CloudaSec Data Layer Procedures

This section describes the different CloudaSec data
layer procedures. CloudaSec, first, requires a sys-
tem setup procedure, ensured by the execution of
the GenerateParameters algorithm, before perform-
ing the sharing scenarios.
This CloudaSec GenerateParameters algorithm ini-
tializes the system and generates the public parame-
ters params, according to a required security parame-
ter ξ, as presented in Algorithm 1. That is, the system
setup procedure generates the groups G1 and G2 and
the pairing function ê from G1×G1 in G2. G1 is an
additive subgroup of the group of points of an Elliptic
Curve (EC), where G2 is a multiplicative subgroup of
a finite field. G1 and G2 have the same order n and
are generated by P and g = ê(P,P), respectively.
After the specification of the groups, CloudaSec Gen-
erateParameters procedure defines a secure one way
hash function H : E → {0,1}l , with respect to the
required security level, where E represents the finite
data domain and l is the length of the content encrypt-
ing key. In addition, it derives an application F to bind
an element belonging to the multiplicative group G∗2
to a binary sequence of length l.
The groups G1 and G2, the pairing ê, the point P, the
hash function H() and the application F form the pub-
lic parameters params as follows.

params = {G1,G2,n, ê,g,P,H(),F}.

We must note that each user has to derive a pair of

Algorithm 1 GenerateParameters

1: Input: Security parameter ξ

2: Output: System parameters params =
{G1,G2, ê,P,g,H,F,n}

3: Choose an elliptic curve EC over an additive sub-
group G1 of a prime order n, where BitLength (n)
> ξ and ECDLP is hard in G1;

4: Select P a generator of EC;
5: Choose a multiplicative subgroup G2 of a prime

order n, where BitLength (n) > ξ and CDH is hard
in G2;

6: Select g a generator of G2;
7: Generate ê from G1 ×G1 in G2 an admissible

pairing map;
8: Generate a one way hash function H : E →

({0,1}l)∗, where E is the data space and l is the
length of the encrypting key;

9: Generate F : G∗2→ {0,1}l an application to bind
an element of G∗2 to a binary sequence of length l

10: return params = {G1,G2, ê,P,g,H,F,n}

public and private keys, with respect to the published
authentic public parameters params and the required
security level ξ. As such, a CloudaSec user Ut is char-
acterized by his identity idt and the derived pair of
keys: his private key skt , where skt is a random secret
st ∈R Zn and his public key as pkt = st ·P.

Ut(idt , pkt ,skt)

In the following, we denote by · the scalar point mul-
tiplication in an additive group and by ? two elements
multiplication belonging to a multiplicative group.
We consider a data sharing process, where the client
outsources his data to the cloud and authorizes a
group of users to access the data. This group may
be a duo group or a multi-user group.

3.4.1 CloudaSec One to One Sharing Scenario

The One to One scenario is defined when a data owner
Ui wants to share data with only one recipient user
U j. The depositor Ui first enciphers the data file f ,
as presented in Algorithm 2, based on a symmetric
encryption scheme SymEnc, using a data enciphering
key k. Based on a convergent cryptographic solution,
the data key k is derived from the application of a
one way hash function over the original data file f .
Subsequently, Ui stores the encrypted content f for
the recipient user U j, in remote servers. In order to
assign the access rights to the recipient, the depositor
enciphers the data decrypting key k using the public
key of the recipient pk j, as described in CloudaSec
EncryptKeyOneToOne procedure (Algorithm 3). That

Algorithm 2 EncryptData

1: Input: { f ,H,SymEnc}, where f is the data file,
H is a one way hash function and SymEnc is a
symmetric encryption algorithm

2: Output: <C f ,k >

3: k = H(f);
4: C f = SymEnc(f ,k);
5: return <C f ,k >

is, CloudaSec introduces a novel asymmetric key en-
coding, to ensure flexible sharing of outsourced data.
For instance, the resulting enciphered key involves a
couple of elements < C1,C2 >. C1 is included in the
user metadata, by the depositor Ui. However, C2 is
sent to the CSP, in order to grant additional access
verifications on the outsourced data and to generate a
redirected access key element. We assume in our ap-

Algorithm 3 EncryptKeyOneToOne

1: Input: {params,k,ski, pki, pk j, pkc}
2: Output: <C1,C2 >

3: Use a deterministic secure pseudo random num-
ber generator (SPRNG) with a random secret
seed to generate r ∈R Zn;

4: C1 = k⊕F(ê(pki, pk j)
r);

5: C2 = ê(pkc,r ·P)ski ;
6: return <C1,C2 >

proach that all key elements belong to a finite domain
space D. We denote each key element by key.elt as
defined in Equation 1, where D can be either a user
metadata element space or a CSP metadata element
space.

key.elti∈{1,2,3} = {Ci,D(Ci)}i∈{1,2,3} (1)

We must note that the CSP has a pair of private and
public keys as < skc, pkc >, where skc = sc ∈R Zn
presents the provider private key and pkc = sc ·P∈G∗1
is his related public key. When the CSP receives the
second key element C2, he runs the ShrinKey algo-
rithm in order to derive a redirected key element C3, as
presented in Algorithm 4. This latter enciphers C2, us-
ing his secret key skc and generates the corresponding
C3. Afterwards, when the CloudaSec recipient U j,
where j 6= i, wants to recover the outsourced data file,
he has to retrieve the encrypted data key < C1,C3 >.
As such, the recipient user U j starts a data backup sce-
nario as follows.
After successfully authenticating with the CSP, U j
gets the redirected key element C3. Then, based on
the outsourced user metadata, the authorized recipi-

Algorithm 4 ShrinKey

1: Input: {C2,skc}
2: Output: C3

3: C3 = (C2)
1

skc ;
4: return C3

ent U j extracts the C1 key element, which was enci-
phered, using his public key pk j by the depositor Ui.
In the sequel, based on his local secret key sk j, the
recipient U j performs the DecryptKeyOneToOne proce-
dure, in order to decipher the encrypted data key k,
as presented in Algorithm 5. Finally, the recipient

Algorithm 5 DecryptKeyOneToOne

1: Input: {params,<C1,C3 >,sk j}
2: Output: Decrypting key k

3: C1⊕F((C3)
sk j);

4: return k

retrieves the data file content. That is, he locally runs
the CloudaSec DecryptData procedure, based on the
derived deciphering key k, using a symmetric algo-
rithm over encrypted data C f (cf. Algorithm 6).

Algorithm 6 DecryptData

1: Input: {C f ,k,SymEnc}
2: Output: f

3: f = SymEnc(C f ,k) ;
4: return f

3.4.2 CloudaSec One to Many Sharing Scenario

When a depositor Ui intends to share data with a
multi-user group, he has to encipher the data decrypt-
ing key based on his public key pki and a secret shared
group key d. The secret shared key is a private key,
only known to the authorized group members. It is
derived by performing the key agreement algorithm
(Algorithm ??), based on parallel Diffie Hellman in-
stantiations (Burmester and Desmedt, 2005), as ex-
plained in Section 3.5.
The depositor executes the EncryptKeyOneToMany pro-
cedure (cf. Algorithm 7), in order to encrypt the de-
ciphering data key. The resulting encrypted key in-
cludes a couple of elements < C1,C2 >, where C1 is
integrated in user metadata by the depositor, and C2 is
sent to the cloud provider, in order to generate an ac-
cessing key C3 element (Algorithm 4). When an au-

Algorithm 7 EncryptKeyOneToMany

1: Input: {params,k, pki,ski,d, pkc}
2: Output: <C1,C2 >

3: Use a deterministic secure pseudo random num-
ber generator (SPRNG) with a random secret
seed to generate r ∈R Zn;

4: C1 = k⊕F(ê(pki,r ·P)d);
5: C2 = ê(pkc,r ·P)ski ;
6: return <C1,C2 >

thorized group member wants to retrieve the data de-
crypting key, he has first to send a request to the cloud
provider to access to the outsourced data. The CSP
verifies the granted privileges of the requesting user.
Once accepted, the requesting group member receives
the redirected key element C3 obtained by performing
the ShrinKey procedure, as shown in Section 3.4.1.
Then, he runs the CloudaSec DecryptKeyOneToMany
procedure (cf. Algorithm 8) using the secret shared
group key d, in order to derive the deciphering data
key k.

Algorithm 8 DecryptKeyOneToMany

1: Input: {params,<C1,C3 >,d}
2: Output: Decrypting key k

3: C1⊕F((C3)
d);

4: return k

3.5 CloudaSec Management Layer
Procedures

Efficient data sharing between authorized cloud users,
among dynamic groups remains a challenging con-
cern. That is, it increases the computation complex-
ity and the bandwidth consumption, due to the shar-
ing of group secret keys. In addition, the heavy over-
head and the large size of outsourced data may reduce
the advantages of remote sharing services to resource-
constrained devices.
In order to tackle this challenging issue, CloudaSec
introduces the role of a group manager (GM).
This latter is responsible for elementary procedures,
namely the initialization of the group parameters and
the organization among authorized registered group
members. Then, the GM makes the group parame-
ters available by migrating them to the cloud. Such a
design can significantly reduce the computation over-
head, at the CloudaSec user side.
Let us consider Gr = {{U0, id0}, ...,{UN−1, idN−1}}
a dynamic group of N users. These group members

want to generate a common secret d ∈ Zn. In the fol-
lowing, we denote by pubeltsi the public elements of
a CloudaSec registered group member Ui as described
in Equation 2.

pubeltsi =< idi, pki > (2)

where i ∈ {1, ...,N−1} and N is the number of group
users including the manager. As such, we note that
the couple < id0, pk0 > presents the public group el-
ements of the Group Manager (GM). First, the GM

Algorithm 9 GenerateGroup

1: Input: n, p,ξ
2: Output: <G,h >

3: Choose a multiplicative subgroup G of a prime
order n, where BitLength (n) > ξ;

4: Select h a generator of G, where hn ≡ 1 mod p;
5: return <G,h >

runs a GenerateGroup procedure, in order to derive a
multiplicative group and makes public the output of
this algorithm, which is used to generate the secret
group key d (cf. Algorithm 9). We must note that
the order of the multiplicative group is strongly as-
sociated to the security level ξ of the cryptographic
algorithms.
Then, with respect to the published multiplicative
group G, each group user Ui chooses a random bi and
locally runs the CloudaSec UserKeyShareElt proce-
dure in order to get his first key share element hi, as
presented in Algorithm 10.
The GM receives the public elements pubeltsi of each

Algorithm 10 UserKeyShareElt

1: Input: idi,bi,h
2: Output: < idi,hi >

3: hi = hbi ∈G∗;
4: return < idi,hi >

group member Ui. Then, he updates a list of non
revoked users LNR, which contains the public ele-
ments of all non revoked group users. This list sets
the authorized group members arranged into a cy-
cle. As such, each user can easily identify his pre-
decessor Ui−1 and his successor Ui+1. Thus, using
the CloudaSec GenerateGroup and UserKeyShareElt
procedures, Ui computes his group key share (hi,Xi),
as depicted in Equation 3.

(hi,Xi) = (hbi ,(
hi+1

hi−1
)bi) (3)

Once computed, each user Ui sends his group key
share to the GM. This latter publishes the received

key shares of the non revoked users, as presented in
Table 2. Then, based on Algorithm ??, each user
should derive the secret group key d, using the pub-
lished elements in the LNR list, while respecting the
ring construction of the group members (Burmester
and Desmedt, 2005).

Table 2: List of Non Revoked users LNR

Group id User Pubelts User Key Share
U0(id0, pk0) (h0,X0)

idGr U1(id1, pk1) (h1,X1)
...

...
UN−1(idN−1, pkN−1) (hN−1,XN−1)

3.5.1 User Subscription

When a new user {UN , idN} wants to
join the group Gr, presented by Gr =
{{U0, id0}, ...,{UN−1, idN−1}}, where i /∈
{0, ...,N − 1}, he first runs the UserKeyShareElt
algorithm in order to get his public key share element
< idN ,hN >. Then, the new group member computes
and sends his key share (hN ,XN) to the group man-
ager. Hence, The GM sends a notification message to
the remaining group members and updates the list of
non revoked users LNR.
Afterwards, each group user computes the new secret
key dN , due to the group state modification. Since
the derivation of the group secret key depends on
members’ identifiers, the computation of key shares
(hi,Xi) may be restricted to the solicited members.
Consequently, CloudaSec significantly saves the
processing time and storage cost at CloudaSec user
side.
The user subscription operation prevents new users
from accessing to protected content, before joining
the group. As such, CloudaSec ensures the forward
security. In order to grant access privileges to new
subscribers to outsourced data, the sharing of a
secrets’ list LS is required.
Indeed, the group manager updates a list of previously
used secrets LS by including the new group secret
key. Then, he sends it to the CSP in an encrypted
format by using symmetric encryption algorithm
and the derived secret group key d. In the sequel,
any authorized group member authenticates with the
CSP and uploads the encrypted list. So that, he can
obtain LS using the derived secret group key and the
symmetric decryption algorithm.

3.5.2 User Revocation

When a group member U j leaves or is revoked
from the group Gr = {id0, id1, id2, ..., idk}, where j ∈
{0,1, ...,k}, the group manager first updates the list of
non revoked users LNR. That is, he removes the pub-
lic elements < id j, pk j > and the key share (hN ,XN)
of the revoked member from the LNR list. Then, he
sends a notification message to other group users and
sends the updated list to the CSP. Each group user
computes a new secret key dN by running the Group-
Key algorithm.
We note that the number of the revoked users RU has
to be strictly less than (N − 1), in order to keep the
One To Many sharing scenario. In fact, we consider
two cases.

1. Case 1 – There are RU revoked users, where
1 ≤ RU ≤ N − 2. The group manager revokes
RU users, and updates the LNR list. That is, he
withdraws the revoked users’ identities and reor-
ganizes the indexing system of the list. The group
manager optimizes the changes of the group list
based on a selection protocol, in order to save the
computation capacities of resource constrained
devices. As such, a non solicited group member
is requested to only compute the resulting group
key, using the published public group elements.

2. Case 2 – There are RU revoked users, where
RU ≥ N− 1. In this case, the group manager is
released from his role. As such, the multi-user
group becomes a duo group that shares data based
on a sharing One To One scenario.

4 SECURITY ANALYSIS

In the following security analysis, we discuss the re-
sistance of CloudaSec against two adversaries, based
on a realistic threat model. We briefly present the se-
curity of our proposed framework in terms of access
control and data file confidentiality.

4.1 Threat Model

For designing the most suitable security solutions for
cloud storage, we have to consider realistic threat
models. That is, we point out two adversaries: mali-
cious cloud user and honest but curious cloud server.

• malicious user adversary – an attacker can be
either a revoked user with valid data decryption
keys, an unauthorized group member or a group
member with limited access rights. As such, he
targets to get access to the outsourced shared data.

The objective of a malicious user is to convince
the cloud server that he is a legitimate data owner.
That is, we suppose that the adversary successes
to gain knowledge of an arbitrary part of the de-
crypting key.

• curious cloud server adversary – this storage
server honestly performs the operations defined
by our proposed scheme, but it may actively at-
tempt to gain the knowledge of the outsourced
sensitive data.

CloudaSec must provide the capabilities to the clients
and the service provider to thwart the two threats men-
tioned above. To this end, our proposed framework
must enforce a mutual verification of the actions con-
ducted by a CloudaSec client and the storage server.

4.2 Data Confidentiality

In our model, data files are stored encrypted in cloud
servers using a symmetric encryption algorithm, and
the secret key is protected relying on an asymmetric
scheme, in order to ensure efficient access control. As
such, the data confidentiality preservation is tightly
related to security of the used symmetric algorithm
and the secrecy of the data key.
Theorem 4.1. data confidentiality preservation
The proposed framework supports data confidential-
ity preservation.

Proof. The confidentiality of data contents is twofold.
First, it depends on the security level of the encryption
algorithm. This latter is a recurrent concept in cryp-
tography. It permits to evaluate the hardness of break-
ing an encryption or a signature algorithm. That is,
the harder the level of security is, the harder the crypt-
analysis of the algorithm becomes. Our employed en-
cryption algorithm inherits the unforgeable property
from the selected scheme. Therefore, CloudaSec en-
sures the confidentiality of encrypted content exposed
in public cloud servers.
Second, the confidentiality of data relies also on
the secrecy of the deciphering key hosted in cloud
servers. The demonstration of this state is derived
from these two lemmas.

Lemma 4.2. Unauthorized users cannot decrypt the
deciphering data keys.

Proof. The proof of this lemma is equivalent to the
security of the key encryption algorithms and the cor-
rectness of the key decryption algorithms.
Let us suppose that an unauthorized user can be a re-
voked group member or a malicious cloud user. Thus,
a brief security analysis can be done on the three fol-
lowing cases.

• Case A – a revoked group member UR should not
be able to decrypt new data contents, using the
old group secret key d. This latter knows the pub-
lic elements of the non revoked users published
in LNR and the previous organization of the group
arranged into a cycle. Moreover, he can merely
guess the solicited members after his revocation.
As such, taking advantage from published infor-
mation, UR tries to deduce the new group secret
key dN or to extract a data key after his revoca-
tion from the group. In this case, we may con-
sider two different sessions (α) and (β), where the
same data owner Ui shares two different data files
fα and fβ, after the revocation of UR. In the se-
quel, two key elements are defined as follows:

C(α)
1 = kα⊕F(ê(pki,rα ·P)dN)

C(β)
1 = kβ⊕F(ê(pki,rβ ·P)dN)

On one side, knowing the public key of the de-
positor pki, we state that the deduction of the new
group secret dN from C(α)

1 cannot hold. Obvi-
ously, this is due to the usage of a random value
rα. We also state that our scheme inherits the
unforgeablility property from the Burmester key
distribution algorithm (Burmester and Desmedt,
2005). On the other side, UR cannot deduce se-
cret information from C(α)

1 ⊕C(β)
1 , mainly due to

the exclusive-or function.
As such, a revoked group member UR has no ad-
vantage to guess the new secret group, based on
the old group key d and the previously published
public elements. However, we must note that
CloudaSec does not prevent a revoked member
from decrypting previously shared contents.

• Case B – The main advantage of a malicious cloud
user is to deduce information from an unbounded
number of sessions, where the same data owner
shares different contents with legitimate group
members. As such, two different cases are ex-
posed as follows.
On one hand, in a one to many sharing scenario,
let us suppose that a user Ui shares two data files
f1 and f2, respectively enciphered based on two
different keys k1 and k2, using the same random
r. That is, based on Equation 4 and Equation 5,
an attacker obtains indistinguishable data key ele-
ments key.elt1, as follows.

C(f1)
1 = k1⊕F(ê(pki,r ·P)d) (4)

C(f2)
1 = k2⊕F(ê(pki,r ·P)d) (5)

Hence, we notice that there is no polynomial-time
algorithm that can deduce secret information from

Equation 4⊕Equation 5 = k1⊕k2, due to the usage
of the exclusive-or function. As such, the secrecy
disclosure of the deciphering keys remains infea-
sible.
On the other hand, in a one to one sharing sce-
nario, we suppose that a depositor Ui shares data
with one recipient U j, using the same random se-
cret r, in order to encipher different data decrypt-
ing key. Thus, based on two successive sessions
(α) and (β), the malicious cloud user gets the fol-
lowing key elements key.elt1.

C(α)
1 = k1⊕F(ê(pki, pk j)

r(α))

C(β)
1 = k2⊕F(ê(pki, pk j)

r(β))

Therefore, the deduction from the enciphered con-
tents is protected, due to the usage of different
data encryption keys. In addition, the security of
metadata takes advantages from the properties of
the exclusive-or function which ensure the indis-
tinguishability of encryptions.

• Case C– Let us suppose that a depositor Ui be-
longs to two different groups GA and GB. Ui wants
to share the same data file f to these two groups.
GA and GB have two secrets dA and dB, respec-
tively. As such, we have two different key ele-
ments key.elt1, as follows:

C(A)
1 = k⊕F(ê(pki,rA ·P)dA) (6)

C(B)
1 = k⊕F(ê(pki,rB ·P)dB) (7)

We suppose that there a malicious group member
UM that belongs to the group of users GA. UM tries
to deduce the group secret key dB of GB.
From Equation 6, the recipient UM extracts the
data deciphering key k. In the sequel, from C(B)

1 ,
UM computes Equation 8 as follows:

C(B)
1 ⊕ k = k⊕F(ê(pki,rB ·P)dB)⊕ k (8)

= F(ê(pki,rB ·P)dB) (9)
From Equation 7 and Equation 8, the mali-
cious recipient UM calculates ê(pki,rA · P)dA ?
[1/(ê(pki,rB ·P)dB)]. So that, UM executes the fol-
lowing steps:

ê(ski ·P,rA ·P)dA ? [
1

ê(ski ·P,rB ·P)dB
] =

grAdA

grBdB

Knowing the group secret dA and the two quanti-
ties grAdA and grBdB , UM cannot extract the group
secret dB. Obviously, this contradicts the CDH as-
sumption.
Finally, as data may be shared by different depos-
itors or groups, and these depositors may belong
to several groups, our framework strongly ensures
the confidentiality of outsourced contents, based
on the hardness of the CDH assumption.

Lemma 4.3. The CSP is unable to learn the content
of outsourced data files in his public servers, based
on the CDH assumption.

Proof. A curious CSP tries to access to the stored data
contents. His main problem is that outsourced data
files are encrypted. However, the CSP tries to gain
knowledge of an arbitrary part of secret information.
That is, after each storage of data content, the CSP
receives the second key element key.elt2, from the de-
positor Ui as C2 = ê(pkc,r ·P)ski , where ski ∈Zn is the
secret element of the depositor Ui and pkc = skc ·P ∈
G∗1 is the public key of the storage provider. As such,
in order to extract secret information, the CSP com-
putes ê(pki,P) = gski . This deduction cannot hold.
Clearly, this contradicts the CDH assumption.

Given the redirected key element C3 = C
1
c
2 =

(ê(pkc,r ·P)ski)
1
c , the CSP computes C3 = (ê(pki,r ·

P)skc)
1
c = ê(pki,r ·P). Then, he executes Equation 10

and Equation 11 as follows:

C2 ? [
1

ê(pkc, pki)
] =

gskiskcr

gskiskc
= gr (10)

C3 ? [
1

ê(pki, pki)
] =

gskir

gski
2 =

gr

gski
(11)

From Equation 10 and Equation 11, this curious stor-
age server cannot extract the secret key of the depos-
itor ski or the used random value r. As such, the stor-
age server cannot learn the content of the outsourced
data files, based on the hardness of the CDH assump-
tion.

4.3 Access Control

CloudaSec is designed to ensure forward and back-
ward secrecy. When a new user joins the group or a
group member is revoked, a notification message is
sent to CSP and to the remaining members, in order
to adjust the access control lists.
On one side, when a new user UN joins the group,
he has to generate his own group public elements
pubeltsN . These elements will be later used to derive
the new group key dN . On the other side, when a user
UR leaves the group, the GM updates the sharing lists,
in order to generate the new decrypting key. Conse-
quently, a new user cannot decrypt the old data files,
using the new derived key, and a revoked user cannot
decrypt new files, with the old deciphering key.
The access control preservation is ensured, based on
the following two lemmas.

Lemma 4.4. Key Decryption Correctness Unrevoked
users are able to access the cloud.

Proof. The proof of this lemma is equivalent to the
correctness of the key decryption algorithms, on the
basis of the two sharing scenarios, as follows.

• One To One sharing scenario – the decryption
holds if, and only of the decrypting key k∗ =
C1⊕F((C3)

sk j).
This verification holds as follows. On one side,
the authorized recipient U j computes the data key
element included in user metadata as follows:

C1 = k⊕F(ê(pki, pk j)
r)

= k⊕F(ê(ski ·P,sk j ·P)r)

= k⊕F(ê(si ·P,s j ·P)r)

On the other side, the cloud provider sends the
redirected key element C3 to the CloudaSec recip-
ient, which is computed as follows.

C3 = (C2)
1

skc

= (ê(pkc,r ·P)ski)
1
sc

= (ê(skc ·P,r ·P)si)
1
sc

= (ê(sc
1
sc
·P,r ·P)si)

= (ê(P,r ·P)si)

In the sequel, given the non singularity property
of the bilinear functions, the verification holds
if, and only if k∗ = C1⊕F((C3)

sk j), where C1⊕
F((C3)

sk j) is denoted by (E).

(E) = k⊕F(ê(ski ·P,sk j ·P)r)⊕F(ê(P,r ·P)skisk j)

= k⊕F(ê(si ·P,s j ·P)r)⊕F(ê(si ·P,r ·P)s j)

= k⊕F(ê(si ·P,s j ·P)r)⊕F(ê(si ·P,s j ·P)r)

= k

• One To Many sharing scenario – the decryption
holds if, and only of the data key k∗ = C1 ⊕
F((C3)

d). This verification holds as follows.
On one hand, the authorized group member U j
computes the data key element C1 included in user
metadata as follows:

C1 = k⊕F(ê(pki,r ·P)d)

= k⊕F(ê(ski ·P,r ·P)d)

On the other hand, the CSP executes the follow-
ing operations on key.elt2, in order to get the redi-

rected element C3

C3 = (C2)
1

skc

= (ê(pkc,r ·P)ski)
1
sc

= (ê(skc ·P,r ·P)si)
1
sc

= (ê(sc
1
sc
·P,r ·P)si)

= (ê(P,r ·P)si)

As presented in the One To One sharing scenario,
given the non singularity property of the bilin-
ear functions, the verification holds if, and only if
k∗ = C1⊕F((C3)

d), where C1⊕F((C3)
d) is de-

noted by (F).

(F) = k⊕F(ê(ski ·P,r ·P)d)⊕F(ê(P,r ·P)skid)

= k⊕F(ê(si ·P,r ·P)d)⊕F(ê(si ·P,r ·P)d)

= k

We state that the authorized CloudaSec users are able
to decipher the decrypting data key, thanks to the cor-
rectness of the key decryption algorithms.

Lemma 4.5. Unauthorized entities are unable to ac-
cess the cloud.

Proof. The proof of this lemma is twofold.
On one side, after each group member UR revocation,
the group manager updates the list LNR and sends
a notification message to the authorized registered
group members. Then, he communicates this list to
the cloud provider. This latter sends LNR to the re-
maining group members after a mutual authentica-
tion, in order to verify the updated organization of
the group.Then, the remaining group members com-
pute the new secret group key dN by performing the
GroupKey algorithm. Therefore, the new data keys
are encrypted by using EncryptKeyOneToMany algo-
rithm.
As discussed in Lemma 4.2 and Lemma 4.4, only au-
thorized recipients, knowing the new key dN , are able
to decrypt the enciphered data. However, the CSP and
the revoked users cannot extract the key dN , based on
the previously published public elements and the list
of authorized members LNR. This is mainly due to the
computation of the group secret which requires the
private secret key ski of each deriving group member
Ui.
On the other side, when a group user wants to access
the cloud, the CSP has to verify the access control list.
That is, the cloud provider gives or rejects access to
data contents, based on the granted privileges of the
requesting recipient.

5 PERFORMANCE EVALUATION

In this section, we first present the context of
CloudaSec implementation with OpenStack Object
Storage, and then evaluate the system performances,
in terms of computation, communication and storage
costs.

5.1 Context

In order to evaluate the performances of our proposal,
we build a simulated CloudaSec framework, based
on OpenStack Storage system (Swift) (swi,). Swift
is a cloud based storage system, which stores data
and allows write, read, and delete operations on them.
To achieve security enhancement of Swift, we extend
its functionalities with algorithms and protocols de-
signed in CloudaSec.
We have designed a simplified CloudaSec architec-
ture, based on Swift. Indeed, our architecture consists
in dividing the machine drive into four physical vol-
umes. Then, each volume is divided into four logical
volumes. In total, we obtain sixteen partitions, each
one represents one logical storage zone.
The simulation consists of two components: the
client side and the cloud side. We implement
data layer cryptographic algorithms based on cryp-
tographic functions from the Open-SSL library (The
OpenSSL Project, 2003), the GMP library (et al.,
2002) and the Pairing Based Cryptography (PBC) li-
brary (Ben, 2007), with independent native processes.
We choose Advanced Encryption Standard (AES) as
our symmetric encryption algorithm and implement
the CBC mode of AES.
We have conducted a number of experiments to eval-
uate CloudaSec in the system and cloud levels. We
study the client efficiency of the cryptographic algo-
rithms with different pairing types and the user man-
agement costs for communication and storage.

5.2 Computation Cost Evaluation

In order to evaluate the performances at the client
side, we conduct data encryption and decryption tests
locally. For our tests, we used 1000 samples in or-
der to get our average durations. In addition, we con-
ducted our experiments on an Intel core 2 duo, started
on single mode, where each core relies on 800 MHz
clock frequency (CPU).
Figure 2 shows the computation overhead of data en-
cryption and decryption at the client side, with dif-
ferent sizes of data contents. We can notice that the
data encryption takes less than 12 ms, in order to en-
crypt 1MB data file. We can note that this computa-

Figure 2: Computation overhead of data encryption and de-
cryption at the client side with different data size (from 105

to 106 bytes) (ms)

tion cost remains attractive, as it provides better secu-
rity to outsourced data and does not deserve the client
resources.
Then, we perform the encryption of the deciphering
data key k. That is, as our proposed framework re-
lies on the use of bilinear maps, we choose two sym-
metric pairing functions from the PBC library (Ben,
2007), including type E pairing e.param and type A
a.param. Thus, we examine the impact of different
bilinear functions on the performances of CloudaSec,
while considering three different security levels (cf.
Figure 3).
In cryptography, the security level of a symmetric en-
cryption algorithm is defined as the number of op-
erations needed to break the algorithm when a k-bit
key length is used. The security level in our pro-
posal depends on the security level of the bilinear
function in use ê, which is related to the hardness of
solving the ECDLP in G1. As such, it is closely re-
lated to the groups being selected. As shown in Fig-
ure 3, the encryption time increases along with the
security level, while there is a tiny difference between
the two symmetric pairing functions. As such, the
type of the pairing function should be taken into ac-
count, while implementing CloudaSec data layer pro-
cedures. We must note that the type of the pairing
function is bound to the choice of the elliptic curve,
where the bilinear map is computed.

Finally, we investigate the impact of the crypto-
graphic operations, at CloudaSec client side. We
compare the encryption duration against OpenStack
upload and download duration, as depicted in Fig-
ure 4. In fact, we examine the encryption operations
vs Swift upload procedure and the decryption opera-
tions vs Swift download procedure. We must note that
the computation times include the key generation and
the data encryption with AES-256-CBC mode. We
notice that the cryptographic operations, at the client
side are acceptable compared to the upload operations

Figure 3: Computation duration of Type A vs Type E pair-
ing functions (ms)

and do not carry exhaustive computation capacities.
For example, a 8 ∗ 105 bytes data size requires only
0.1 seconds to be enciphered, compared to 10 sec-
ond be uploaded. Therefore, the encryption proce-
dures involve 1% from the OpenStack upload over-
head. As such, CloudaSec does not deserve the client
resources, and presents an interesting processing cost
for resource constrained devices.

Figure 4: Impact of cryptographic operations on CloudaSec
at the client side (log10(ms))

5.3 Communication Cost Evaluation

We investigate the communication overhead, when a
client stores his data file to remote servers and then
when he retrieves the outsourced content. As such, we
conduct some experiments with different data sizes
and we evaluate the upload and download times of
encrypted contents, as shown in Figure 5.
We can notice that the average communication times
are merely stable, with small data sizes, for the stor-
age and backup scenarios. However, this overhead
gradually increases, when the client intends to store
large data contents. We also analyze the communica-
tion cost, due to a group update, namely when a new
user wants to join the group. In our tests, we are based
on pre-computed tables, in order to optimize the com-
putation cost to resource-constrained devices. Thus,
we consider that the group includes 10 members at
the beginning. Then, 10 users join the group simulta-

Figure 5: OpenStack upload and download overhead with
different data size (ms)

neously, until reaching 100 members. We recall that
the computation complexity of the group update in-
creases with respect to the number of new subscribers,
as presented in Section 3.3.
As depicted in Figure 6, the derivation of the new
secret group key takes less than 6 ms for 100 users.
This computation cost remains interestingly attrac-
tive, along with our broadcasting approach.

Figure 6: Computation complexity of a group update (ms)

5.4 Storage Cost Evaluation

We investigate the storage cost for the key man-
agement operations at the client side. In order to
maintain a group membership, a registered user has
only to keep the secret group key.
Let suppose that the security parameter ξ = 80 bits.
We denoted by E(Fn) the elliptic curve defined over
the finite prime field Fn. Meanwhile, we denote
ê : G1 ×G1 −→ G2 the bilinear function. G1 cor-
responds to the q-torsion subgroups of E(Fn) and
E(Fnk) where k is the embedding degree of the curve
E. G2 is a multiplicative subgroup of Fnk of order q.
For example, according to the security parameter ξ =

80, we set q = 160 bits and n = 512 bits length, while
the embedding degree is equal to 2. As such, G2 is
a subgroup of Fn2 which has a order 1024 bits or-
der. Therefore, a client has to locally keep a secret
d, where |d| = 160. As such, CloudaSec introduces
an attractive storage cost, especially for limited stor-
age capacities.

6 RELATED WORK

Several security solutions have been recently de-
veloped, in order to provide data confidentiality in
public cloud storage environments { (Xiong et al.,
2012),(Zarandioon et al., 2011), (Yu et al., 2010),
(Zhou et al., 2011), (Liu et al., 2013),(Fugkeaw,
2012)}, while considering the group access control
issues.
In (Yu et al., 2010), Yu et al. proposed an attribute
based access control policy to securely outsource sen-
sitive client data to untrusted cloud servers. In this ap-
proach, data are encrypted using a symmetric encryp-
tion algorithm, while the enciphering key is protected
by a Key-Policy-Attribute Based Encryption scheme
(Goyal et al., 2006). In order to manage dynamic
groups, they delegate the key re-encryption proce-
dures to the cloud, without revealing the content of
outsourced data. As such, the membership revocation
mechanism brings additional computation overhead.
However, CloudaSec defines a new revocation system
based on (Burmester and Desmedt, 2005), without
updating the secret keys of the remaining group mem-
bers, in order to minimize the complexity of key man-
agement. That is, our design conveys performance
advantages for large scale sharing groups.
In addition, several storage systems are based on the
proxy re-encryption algorithms, in order to achieve
fine grained access control {(Xiong et al., 2012;
?),(Ateniese et al.,)}. When a recipient wants to re-
trieve outsourced data from the depositor, he has first
to ask the cloud server to re-encrypt data file using
its public key and the public master key, while con-
sidering the granted privileges. Ateniese et al. (Ate-
niese et al.,) propose a proxy re-encryption scheme
to secure distributed storage systems and achieve ef-
ficient access control among dynamic groups. How-
ever, a collision attack between the untrusted storage
server and a revoked group member can be launched,
which enables to learn the decryption keys of all en-
crypted blocks. In (Xiong et al., 2012), the authors
design an end to end content confidentiality protec-
tion mechanism for large scale data storage and dis-
tribution. They include many cryptographic mecha-
nisms, namely the proxy re-encryption and broadcast

revocation. Unfortunately, the subscription of a new
user or the revocation of a group member requires the
update of the entire group with new parameters and
secret keys. That is, the complexity of user partic-
ipation and revocation in their approach is linearly
increasing with the number of data owners and the
number of revoked users, respectively. To mitigate to
such concern, CloudaSec presents a flexible revoca-
tion procedure, while considering a restricted mem-
ber list, adapted to resource constrained devices.
Recently, in order to achieve efficient membership re-
vocation system, (Liu et al., 2013) adopts a group
signature mechanism. They propose a multi-owner
data sharing scheme, MONA, for dynamic groups in
the cloud, while preserving identity privacy from un-
trusted servers. Nevertheless, MONA brings an extra
storage overhead at both the cloud and the group man-
ager side, for each outsourced data file.
In (Seo et al., 2013), Seo et al. propose an improved
mediated certificateless approach, in order to secure
data sharing in cloud servers. In fact, the basic con-
cept of mediated cryptography is the usage of a secu-
rity mediator (SEM) which can control security capa-
bilities for the participating entities. Once the SEM
is notified that a group member is revoked, it can
immediately stop the user scenario. Unfortunately,
similarly to a proxy re-encryption scheme, this ap-
proach involves a trusted third party, in order to gen-
erate the partially decrypting keys. That is, it re-
quires additional storage capacities and computation
cost overhead, while considering flexible user man-
agement mechanisms.

7 CONCLUSIONS

The growing need for secure cloud sharing services
and the attractive properties of the convergent cryp-
tography lead us to combine them, thus, defining an
innovative solution to the data outsourcing security
and efficiency issues. In this paper, we design a secure
data sharing scheme CloudaSec, for dynamic groups
in untrusted cloud storage environments. Our ap-
proach ensures the confidentiality of outsourced data
in public untrusted cloud servers and defines a smooth
group revocation mechanisms. That is, flexible access
control policies are enforced among users belonging
to separate groups with different privileges.
Our experimental results show the efficiency of
CloudaSec in scalable data sharing, while consider-
ing the impact of the cryptographic operations at the
client side.

REFERENCES

https://github.com/openstack/swift.
Ateniese, G., Fu, K., Green, M., and Hohenberger, S. Im-

proved proxy re-encryption schemes with applications
to secure distributed storage. ACM Trans. Inf. Syst. Se-
cur., 9:1–30.

Ben, L. (2007). On the implementation of pairing-based
cryptosystems.

Boneh, D. and Boyen, X. (2006). On the impossibility of ef-
ficiently combining collision resistant hash functions.
In In Proc. Crypto 06, pages 570–583.

Burmester, M. and Desmedt, Y. (2005). A secure and scal-
able group key exchange system. Inf. Process. Lett.,
94(3).

Dierks, T. and Rescorla, E. (2008). RFC 5246 - The Trans-
port Layer Security (TLS) Protocol Version 1.2. Tech-
nical report.

et al., T. G. (2002). GNU multiple precision arithmetic li-
brary 4.1.2.

Fugkeaw, S. (2012). Achieving privacy and security in
multi-owner data outsourcing. pages 239–244. IEEE.

Gantz, B. J. and Reinsel, D. (2012). The digital universe
in 2020: Big data, bigger digital shadows, and biggest
growth in the far east. IDC iView, (December):1–16.

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006).
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications
security, CCS ’06, pages 89–98. ACM.

Liu, X., Zhang, Y., Wang, B., and Yan, J. (2013). Mona:
Secure multi-owner data sharing for dynamic groups
in the cloud. IEEE Trans. Parallel Distrib. Syst., 24(6).

Ratna, D., Rana, B., and Palash, S. (2004). Pairing-based
cryptographic protocols : A survey.

Regan, K. W. Minimum-complexity pairing functions.
Seo, S.-H., Nabeel, M., Ding, X., and Bertino, E. (2013).

An efficient certificateless encryption for secure data
sharing in public clouds. IEEE Transactions on
Knowledge and Data Engineering, 99:1.

The OpenSSL Project (2003).
Wang, C., guang Qin, Z., Peng, J., and Wang, J. (2010). A

novel encryption scheme for data deduplication sys-
tem. pages 265–269.

Xiong, H., Zhang, X., Yao, D., Wu, X., and Wen, Y. (2012).
Towards end-to-end secure content storage and deliv-
ery with public cloud. CODASPY ’12, pages 257–
266. ACM.

Yu, S., Wang, C., Ren, K., and Lou, W. (2010). Achieving
secure, scalable, and fine-grained data access control
in cloud computing. INFOCOM’10, pages 534–542.

Zarandioon, S., Yao, D. D., and Ganapathy, V. (2011). K2c:
Cryptographic cloud storage with lazy revocation and
anonymous access. In SecureComm, volume 96, pages
59–76. Springer.

Zhou, L., Varadharajan, V., and Hitchens, M. (2011). En-
forcing role-based access control for secure data stor-
age in the cloud. Comput. J., 54.

