
HAL Id: hal-01263312
https://hal.science/hal-01263312v1

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recommendations for IPsec configuration on homenet
and M2M devices

Daniel Migault, Tobias Guggemos, Daniel Palomares, Aurelien Wailly,
Maryline Laurent, Jean-Philippe Wary

To cite this version:
Daniel Migault, Tobias Guggemos, Daniel Palomares, Aurelien Wailly, Maryline Laurent, et al.. Rec-
ommendations for IPsec configuration on homenet and M2M devices. Q2SWINET 2015 : 11th ACM
International Symposium on QoS and Security for Wireless and Mobile Networks, Nov 2015, Cancun,
Mexico. pp.9 - 17, �10.1145/2815317.2815323�. �hal-01263312�

https://hal.science/hal-01263312v1
https://hal.archives-ouvertes.fr


Recommendations for IPsec Configuration on Homenet
and M2M devices

Daniel Migault
Ericsson

Tobias Guggemos
LMU Munich

Daniel Palomares
Orange

Aurelien Wailly
Orange

Maryline Laurent
Institut Mines-TELECOM,

UMR CNRS 5157 SAMOVAR

Jean Philippe Wary
Orange

ABSTRACT
Although there is a strong need to deploy secure communica-
tions in home networks and for Machine-to-Machine (M2M)
environment, to our knowledge the impact of authenticated
encryption migration has not been evaluated yet. As the
security performance issue is especially critical for wireless
environment, this paper measures the effect of the security
settings on the Quality of Service (QoS) for encrypted com-
munications in a home network environment. Security set-
tings include different configurations of IPsec tested over
several hardware platforms. The QoS is evaluated based on
CPU time and elapsed time for downloading different sized
files.

1. INTRODUCTION
The Internet community has recently realised the effects
of intrusive Internet surveillance on the end user’s privacy.
This phenomenon has been designated by Stephen Farrell
et al. [6] and the whole Internet community [7] as pervasive
monitoring. This resulted in a number of consequences [24],
and one of them is a clear shift for strong encryption.

In the area of encryption, Authenticated Encryption like
AES-GCM [16] is highly encouraged as it is considered as the
most efficient NIST standard scheme for Authenticated En-
cryption. In addition, several efforts have been provided by
vendors to enhance the AES-GCM performances [8, 10, 11].
For example, Intel provides specific instructions that opti-
mize AES-GCM like AES-NI [10] and PCLMULQDQ [11],
and publish patches for opensource software like OpenSSL [12].

Although there is a strong need to deploy secure communica-
tions in home networks and for Machine-to-Machine (M2M)
environment, to our knowledge the effects of authenticated
encryption migration has not been evaluated yet.
In fact, appliance communications in a home environment

are likely to leak information with privacy concerns. This
information range from your personal photos between your
Network Attached Storage (NAS) to your phone, to the
power consumption provided by your sensor that may re-
veal your activity, your presence, the type of appliance used
among others.
On the other hand, not all devices can provide AES-GCM
secure communications, as mostly recent equipments has
been designed for AES-GCM. This is especially true in home
network environment or in machine-to-machine communi-
cations where probes have been deployed out-of the box
with little attention provided for evolutions and possible
upgrades. In addition, AES-GCM optimization has mostly
been optimized over heavy load, which does not match probes
utilization.

This paper measures how the effect of the security settings
on the Quality of Service (QoS) for encrypted communi-
cations in a home network environment. Security settings
include different configurations of IPsec tested over several
hardware platforms. The QoS is evaluated based on CPU
time and elapsed time for downloading different sized files.
This paper is addressing the following questions:

- For a given hardware how can I chose the appropriate
security settings that have the lowest impact on QoS?

- As a Customer Premises Equipments (CPE) or Set-
Top Boxes (STB) designer how should I appropriately
design the hardware to support authenticated encryp-
tion?

The paper is organized as follows. Section 2 gives an overview
of some related works. Section 3 describes the devices as well
as the performance measurements methodology. Section 4
compares the effect of the AES modes on the QoS. Section 5
evaluates the effect of various IPsec configurations on the
QoS. Section 6 measures the effect of power saving modes.
Finally, section 7 compares IPsec vs TLS and section 8 con-
cludes this work.

2. RELATED WORK
A. Hoban [13] introduces some tests done by Intel using
IPsec in tunnel mode under loaded conditions. Although
our paper does not concern load tests, it focuses on singular



tests addressing homenet, IoT and M2M perspectives. A.
Hoban performed measurements among several AES imple-
mentations to evaluate AES-NI and AES-GCM crypto plu-
gin. The article analyzes various throughputs in Mbps and
emphasizes a benefit of 400% when the AES-GCM crypto
plugin is enabled. In addition, the results obtained in [13]
concerning original AES-NI vs AES-NI disabled, are similar
to ours in section 4.3.

In [16], McGrew & Viega demonstrated that modes of au-
thenticated encryption GCM and CCM are more efficient
than combining an encryption function (AES-CTR, AES-
CBC) and a MAC algorithm (e.g. HMAC-SHA-1). This is
indeed the trend today for getting higher performance and
security.

Granjal et al. [9] explain why IPsec is an interesting alter-
native to secure IoT communications. The paper focuses on
the evaluation of different encryption algorithms, and also
explains the need for IPsec as 6LoWPAN [15] requires IP
layer security. Other materials like 6LoWPAN-IPsec [21]
and RoHC [23] define compression to reduce IPsec overhead
to fit limited MAC-frames as in IEEE 802.15.4. Such com-
pression reduces communication costs for IoT devices, where
data transmission is usually much more resource consuming
than calculation.

Current investigations address application layer security for
IoT devices. The IETF DTLS In Constrained Environments
(DICE) working group focuses on DTLS for UDP-layer se-
curity on sensors. In addition, Raza et. al. [22] describe how
the packet overhead of the DTLS protocol can be reduced
significantly.

Our measurements confirm Granjal et.al’s works [9], as the
performances of IPsec are better or similar to TLS as long as
the implementation does not refer to highly optimized ap-
plication cryptographic tool-kit for some specific processor.

3. PLATFORM DESCRIPTION
Throughout this paper, different processors are used in sev-
eral performance tests. These processors are listed below:

- E6410 [5] (Intel(R) i5 CPU M540 @ 2.53 GHz) a mo-
bile Westmere based architecture also known as Ar-
randale. This processor has been tested on Mobile
Desktop and delivers the AES Instruction set (AES-
NI for Advanced Encryption Standard - New Instruc-
tions) [10] and Carry Less MULtiplication (PCLMUL-
QDQ) [11], as well as stitching mechanisms [8] used
to speed up cryptographic operations. This type of
hardware represents the upper bound of low powered
devices.

- NC10 [18] (Intel(R) Atom CPU N270 @ 1.6GHz [17])
a mobile Bonnell architecture designed for ultra low
voltage. This device represents either evolved M2M
homenet devices or homenet devices the end user in-
teracts with.

- RPi [20] (Rasberry Pi ARM 1176JZF-S (ARMv6k)
700 MHz [2]) a one core processor. This device typi-
cally represents low powered homenet devices used for

M2M, as Customer Premises Equipment (CPE) or Set-
Top-Unit (STU) provided by ISPs or vendors are likely
to embed this kind of technology.

For measuring performances related to security functions
only, the testing platform is limited to Ethernet connectivity
between devices. In addition, considering end-user require-
ments, performances are evaluated considering the following
parameters: 1) the download elapsed time, which is the time
between invocation and termination of the command (i.e.
to download the entire file), and 2) the resources involved
for the downloading, which are evaluated by considering the
time spent within the CPU during the linux command time.
Note that the CPU time considers both the user CPU time
spent executing instructions of the calling process and the
system CPU time spent in the system while executing tasks
on behalf of the calling process.

4. AES MODES WITH IPSEC
This section provides inputs to adequately select a crypto-
graphic mode of AES according to 1) the packet size of the
IP payload, 2) the number of cores available on the hard-
ware, 3) the hardware —E6410 , NC10 , RPi —and 4) AES
implementations: software AES implementation (sAES) vs.
hardware AES implementation (AES-NI).

This paper only considers AES [1] for encryption support as
recommended by the NIST (National Institute of Standards
and Technology). AES is provided by multiple vendors as
an AES hardware embedded within the CPU, such as AES-
NI [10]. In this paper, AES is tested in the following modes:
1) CBC, 2) CTR, 3) CCM [3] and 4) GCM [4, 16]. CCM
and GCM use AES-CTR for encryption, while CCM (resp.
GCM) uses CBC-MAC (resp. GMAC) for authentication.
AES-CBC and AES-CTR only supports encryption function
and refer to the external HMAC-SHA1-96 mechanism for
authentication. Please refer to table 1 to understand the
AES modes considered throughout this paper.

Notation CTR CBC CCM GCM

Encryp. AES-CTR AES-CBC AES-CTR

Auth. HMAC-SHA1-96 CBC-MAC GMAC

Table 1: Encryption and Authentication for each
AES mode

4.1 Mode vs. Packet Size
This section measures how significant is the packet size on
the choice of the AES mode. IPsec is used with transport
mode. Note that with IPsec the encrypted data are inde-
pendent of the MTU, as IPsec fragmentation occurs over the
encrypted payload. Thus, reducing the MTU size increases
the number of IP headers transmitted as well as the number
of networking packet processing, but encrypted data remain
the same.

Figures 1 and 2 respectively depict the elapsed time and
the CPU time for E6410 , NC10 and E6410 with AES-NI
and sAES. The ratio over CBC is represented in order to
easily compare the different AES modes where the horizontal
line with elapse time equal to 1 means symbolizes the CBC
mode. Note that CPU time represents both the kernel-land
and user-land CPU time. Although it is not represented in



MTU 180 200 - 1000 1000 - 1500
Soft AES CBC CTR CBC
AES-NI CBC CBC (CPU) / CTR (elapsed)

Table 2: Encryption recommendations for different
MTUs

the figure, the user-land CPU time is marginal and is always
less than 10%.

With sAES, the elapsed time in figure 1 and CPU time in
figure 2 clearly show two groups of modes: ’CCM, GCM’
and ’CTR, CBC’. The first group requires from 20% up to
40% more time for both elapsed and CPU time. The differ-
ence between both groups is that ’CTR, CBC’ authenticates
with HMAC-SHA1-96 over the whole payload, while ’CCM,
GCM’ authenticate on a per block basis. This increases the
number of operations. For 180 byte MTU, there is no clear
advantage between CBC and CTR and performances depend
on the CPU. However, for small MTUs, CTR seems to pro-
vide better performances, probably because CTR does not
have blocks whereas CBC has 128 bits blocks. As a result,
CBC has to wait to fill in the blocks with incoming pack-
ets before proceeding to AES decryption. ’CCM, GCM’ are
based on CTR and are more sensitive to MTU than CTR
for large MTU. When cryptographic operation costs are re-
duced with AES-NI —see figures 1b and 2b —all CTR-based
modes ’CTR, CCM, GCM’ have similar behaviors to CBC.
This shows that the MTU variations have an effect on cryp-
tographic operations. In fact, ’CCM, GCM’ have additional
cryptographic operations than CTR, making the operation
susceptible to be interrupted. In addition, with larger pack-
ets, context switching takes more time, which makes ’CCM,
GCM’ with software implementation more sensitive to MTU
variations.

As summed up in table 2, although CBC and CTR have
similar performances, CBC performs better for 180 bytes
packets, CTR performs better for packets smaller than 600
bytes, and CBC performs better for larger packets.

With AES-NI, CBC overcomes the other modes by a factor
of 2 to 3 for 180−200 bytes packets. For larger packets, CTR
provides the fastest downloading, CBC and CCM are similar
but slower than CTR, and GCM has the worst performances
(see figure 1b). For CPU in figure 2b, CBC is more efficient,
but for packets greater than 800 bytes, CTR has similar
performances. With AES-NI, CCM clearly performs better
than GCM, at least in Linux kernel. The reason why CCM
outperforms GCM is most probably because the authenti-
cation is optimized for CCM using a CBC-MAC, whereas
GMAC needs a memory extension to optimize GCM (espe-
cially to support the polynomial complexity of GCM-MAC).

We recommend using AES-CBC and AES-CTR combined
with HMAC-SHA1-96 over CCM and GCM, and this for
devices equipped with hardware acceleration or not. Note
that CBC has 128 bit block size which adds overhead over
CTR. For this reason, we recommend CTR for small size
data.

4.2 Mode vs. Multi Cores

This section measures how cryptographic modes take advan-
tage of multiple cores. Elapsed and CPU time are measured
with 4 cores on E6410 and 2 cores onNC10 , AES and AES-
NI. Figures 3 and 4 depict the ratio over a single core. Multi
cores and parallelism can be used at two different levels.
First, different IPsec packets can be treated independently
by different cores. In fact, the encryption can be parallelized
for AES-CTR-based modes (CTR, GCM and CCM), but not
AES-CBC-based modes. Authentication can also be paral-
lelized according to its authentication algorithm (see Table
1 and Table 2 in [19]). For combined modes (i.e. GCM
and CCM) the parallelization can be performed only if both
encryption and authentication are parallelizable. As CCM
uses CBC-MAC for authentication, it cannot be parallelized.
Parallel processing induces synchronization, so the usage of
multiple cores provides an advantage when processing time
overcomes synchronization time. This suggests that AES
decryption is a very small operation that cannot really take
advantage of multiple cores.

The effect of the MTU is well illustrated in figures 3 and 4,
where small packets processed by multiple cores increase by
1.35 − 1.7 the elapsed and CPU times. When AES-NI is
involved, processing is even faster, increasing the synchro-
nization overhead over the computation as represented by
CBC in figure 3b. Figure 4 depicts the CPU time and shows
that multiple core provides a slight advantage when decryp-
tion is heavy (GCM, CCM) and with a high number of cores.

Overall, multiple cores adds a huge (1.3 − 1.7) overhead for
small packets in both elapsed and CPU time. For larger
packets, elapsed time is at least 1.1 times larger. Multiple
cores may decrease by 0.85 the CPU time with heavy oper-
ations (GCM, CCM). As a result, for homenet devices, we
recommend using a single core for very small packet com-
munications.

We recommend using a single core for a singular IPsec pro-
tected communication.

4.3 Mode vs. AES Implementation
This section evaluates the effect of the AES-NI when using
sAES over the mode performances on an IPsec communi-
cation. IPsec is used in transport mode with one core.

For packets greater than 250 bytes, CCM takes the maxi-
mum advantage of AES-NI for the elapsed time with a 1.3
times faster download. CBC minimizes its advantage with
a 1.1 times faster download. On the other hand, for packet
size lower than 250 bytes, CBC maximizes the advantage of
AES-NI with a 3.3 times faster download.

CPU time depicts similar results for any mode except for
AES-NI, with higher impact on CBC, much more than the
other modes. The main reason is that CBC does not enable
parallel decryption, which means that for a given payload,
CBC reflects the performance of AES−NI

AES
. In other AES-

CTR-based mode (CTR, CCM, GCM), each block may be
decrypted separately, for example, in different threads. Par-
allelism induces a thread synchronization that counter bal-
ances the advantage of hardware acceleration. The reason
why CPU time and elapsed time are not correlated with
CBC, is that for a single packet, CBC still requires more



 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

180

200

250

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

El
ap

se
d 

Ti
m

e 
R

at
io

MTU (bytes)

AES-256-CTR-SHA1
AES-256-GCM16
AES-256-CCM16

(a) E6410

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

El
ap

se
d 

Ti
m

e 
R

at
io

MTU (bytes)

AES-256-CTR-SHA1
AES-256-GCM16
AES-256-CCM16

(b) E6410 (AES-NI)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

El
ap

se
d 

Ti
m

e 
R

at
io

MTU (bytes)

AES-256-CTR-SHA1
AES-256-GCM16
AES-256-CCM16

(c) NC10

Figure 1: AES modes (CTR, CBC, CCM, GCM) vs. MTU: Elapsed time with considered Ratio: EncryptionMode
CBC−SHA−1

time than CTR-based modes, and elapsed time is limited by
networking capability of the NIC.

The maximum benefit of AES-NI is obtained for the CBC
mode in terms of resource consumption. 180 − 200 bytes
packets optimizes the download speed for CBC, whereas in
the case of larger packets, it is optimized for CCM. As a
result, to optimize the use of AES-NI over a IPsec com-
munication we recommend using of CBC mode.

We recommend using of hardware acceleration to reduce the
CPU time. CCM and CBC are the modes maximizing this
advantage.

5. NETWORKING OVERHEAD
In this section and upcoming sections, we consider the sin-
gle cryptographic mode – AES-CBC with HMAC-SHA1-96
– which characteristics have been previously given in sec-
tion 4. The objective of this section is to measure the effect
of different IPsec parameters over the communication. Net-
work parameters are usually addressing different architec-
tures and thus may not be optional. The goal of this section
is to measure the effect of the architecture design on secure
communications within a home network environment.

5.1 Network and Encryption Overhead
IPsec involves both cryptographic and networking compu-
tation. Figures 6 and 7 respectively show the IPsec en-
cryption overhead —AES-CBC-HMAC-SHA1-96 encryption

over the NULL encryption —and the IPsec networking over-
head —NULL encryption over a HTTP with no IPsec —.
Note that IPsec does not allow NULL encryption simultane-
ously with NULL authentication. As a result, the integrity
protection is included in the evaluation of the IPsec network
overhead itself.

With sAES, the use of multiple cores reduces the CPU time,
but makes cryptographic operations longer, especially with
small packets. Overall, for a single communication, multi-
ple cores do not provide significant advantages as analyzed
in section 4.2. Regarding cryptographic overhead in fig-
ure 6, E6410 needs more CPU time to perform the cryp-
tographic operation than the RPi . One possible explana-
tion is that E6410 makes more interruptions than the RPi
, especially to handle incoming packets in the NIC. Note
that these interruptions are not necessary to complete the
crypto part, even though they are designed to handle more
packets per seconds. For large packets, E6410 is roughly
1.3 times faster than RPi which may results from the 3.6
times faster CPU frequency. Regarding the network over-
head in figure 7, elapsed time and CPU time are highly cor-
related and elapsed time is affected by the CPU frequency
and its interactions with the NIC. Hence, the limiting fac-
tor is the communication with the NIC (Network Interface
Card), which may involve additional interruptions. Then,
the higher the frequency is, the faster the packets are proces-
sed. Consequently, building ESP packets costs 1.5 time more
over a non IPsec protected packet and encrypting ESP pack-
ets costs 3.75 more CPU time.



 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

K
er

ne
l +

 U
se

r T
im

e 
R

at
io

MTU (bytes)

AES-256-CTR-SHA1
AES-256-GCM16
AES-256-CCM16

(a) E6410

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

K
er

ne
l +

 U
se

r T
im

e 
R

at
io

MTU (bytes)

AES-256-CTR-SHA1
AES-256-GCM16
AES-256-CCM16

(b) E6410 (AES-NI)

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

K
er

ne
l +

 U
se

r T
im

e 
R

at
io

MTU (bytes)

AES-256-CTR-SHA1
AES-256-GCM16
AES-256-CCM16

(c) NC10

Figure 2: AES modes (CTR, CBC, CCM, GCM) vs. MTU: CPU time with considered Ratio:
EncryptionMode

AES−256−CBC−SHA−1

For homenet, IoT and M2M devices, considering CPU and
elapsed time for a singular IPsec protected communication,
we recommend using NULL encryption only if confidential-
ity is not necessary. However, we recommend using IPsec,
because the network overhead is not the significant factor
where time and resources are spent.

5.2 IPsec Tunnel mode
The IPsec tunnel mode may be used if a device is connected
to a security gateway acting as the entry point towards a
trusted network. Using tunnel mode adds an IP header to
the encrypted payload, resulting in a larger payload to en-
crypt.

Figure 8 compares elapsed and CPU time overhead of the
IPsec tunnel mode over transport mode. For packet larger
than 500 bytes and one CPU, the tunnel mode does not in-
crease the elapsed time for E6410 , NC10 nor RPi . Of course
the limiting factor in our test is the hardware, so this may
not be true anymore in bandwidth limited networks. Using
2 or 4 cores makes the tunnel mode faster. This means that
tunnel encapsulations are heavy enough operations so they
can benefit from multiple cores, overcoming the synchro-
nization overhead. Tunnel overhead is independent of the
packet size as suggested by sAES implementations. With
AES-NI processor, the tunnel overhead actually depends on
the packet size, probably because IPsec header decryption
requires an additional involuntary context switch. Note also
that with AES-NI, synchronization does not overcome the

additional computation.

Similarly, CPU time presents an overhead over the trans-
port mode when a single CPU is used or when using AES-NI
with packets smaller than 700 bytes. For larger packets, us-
ing tunnel mode does not add additional CPU time. With
sAES, CPU time takes advantage of multiple cores, with
up to 0.2 times CPU time. In contrast to transport mode,
implementation optimizations have been focused on tunnel
mode, as it is widely used for VPNs. With AES-NI, the us-
age of one single core is preferred if energy consumption has
a higher priority than download speed over high bandwidth
environments.

Thus, using multiple cores reduces tunnel overhead with
sAES. With AES-NI, multiple cores boost downloadings whereas
a single core is more energy efficient. Tunnel mode may be
used instead of the transport mode only under high band-
width networks.

We recommend the transport mode of IPsec when possible.
Tunnel overhead is negligible for large packets, but we recom-
mend to use one single core with AES-NI and multiple cores
with sAES

5.3 UDP encapsulation
UDP encapsulation is used for NAT/middle box traversals
which are not aware of IPsec traffic, and drop any non UDP
or non TCP traffic. UDP encapsulation is defined for IKEv2



 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

El
ap

se
d 

Ti
m

e 
R

at
io

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(a) E6410 – Ratio: 4CPUs
1CPU

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

El
ap

se
d 

Ti
m

e 
R

at
io

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(b) E6410 (AES-NI) – Ratio: 4CPUs
1CPU

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

El
ap

se
d 

Ti
m

e 
R

at
io

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(c) NC10 – Ratio: 2CPUs
1CPU

Figure 3: AES mode vs. multiple cores: Elapsed time

and ESP [14], and results in all IPsec and IKEv2 packets
sent and received on port 4500. Typically UDP encapsula-
tion inserts an UDP header between the IP header and the
ESP payload, but leave unchanged the IP header and the
ESP payload. Incoming packets are then decapsulated and
processed as in the standard IPsec. The main difference be-
tween the UDP encapsulation and the IPsec tunnel mode is
that the UDP encapsulation does not introduce any addi-
tional cryptographic operation whereas in the tunnel mode
the inner IP header is encrypted.

Figure 9 depicts a high similarity between UDP encapsula-
tion and IPsec tunnel mode. This shows that the limiting
factor is not the encryption, but the networking operations.
It also shows that the encapsulation layer has not signifi-
cant impact on performance. In fact UDP encapsulation or
IP encapsulation results both in pointer manipulation over
the kernel structure (sk buff).

We recommend not to perform UDP encapsulation by de-
fault, but only when required. However, UDP encapsulation
has similar effect on the performances than the tunnel mode,
and thus is negligible for large packets.

6. POWER USAGE OVERHEAD
This section measures the effect of different power saving
policies on an IPsec communication (see Figure 10a and 10b).
Power saving policies, in our case are based on frequency
scaling [25]. All information are located under the /sys/

devices/system/cpu/cpu0/cpufreq directory. NC10 CPU

is configured with a minimum frequency of 800 MHz and a
maximum frequency of 1.6 GHz, and E6410 from 1.2 GHz
to 2.6 GHz. The current frequency is determined by an
element called the governor. The governor automatically
applies one of the following frequency policies: by default,
the ondemand policy increases the frequency from minimum
to maximum, the conservative policy increments the CPU
frequency by steps, the performance policy keeps the CPU
at its highest frequency, and finally, the powersave policy
maintains the frequency at its minimum level.

Figures 10c and 10d illustrate the ratio of the different fre-
quency policies over the default ondemand policy. It shows
that for huge packets, using a governor represents a better
performance in elapsed time. This is not the case for smaller
packets due to the overhead generated when changing the
CPU frequency. Using a fixed frequency also reduces the
time spent in the CPU, at least for frequencies higher than
1700 MHz.

We recommend a governor fitting the required use case.
Since there is no big effort in using a performance policy in-
stead of a conservative policy, we suggest using conservative
as it is better in case of power consumption. If the device has
a limit number of functions, we recommend using a fixed fre-
quency according to the function as it removes the overhead
caused by the governor.

7. TLS VS. IPSEC



 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

K
er

ne
l +

 U
se

r T
im

e 
R

at
io

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(a) E6410 – Ratio: 4CPUs
1CPU

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

K
er

ne
l +

 U
se

r T
im

e 
R

at
io

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(b) E6410 (AES-NI) – Ratio: 4CPUs
1CPU

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

180
200

250
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

K
er

ne
l +

 U
se

r T
im

e 
R

at
io

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(c) NC10 – Ratio: 2CPUs
1CPU

Figure 4: AES mode vs. multiple cores: CPU time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(a) Elapsed time

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

C
P

U
-C

y
c
le

s 
R

a
ti

o
 w

h
il

e
 d

o
w

n
lo

a
d

MTU (bytes)

AES-256-CBC-SHA1
AES-256-CTR-SHA1

AES-256-GCM16
AES-256-CCM16

(b) CPU time

Figure 5: Different AES modes – Ratio sAES
AES−NI

Even though there are significant design differences between
TLS and IPsec, this section does not concentrate on list-
ing them. This section actually compares end-to-end com-
munications protected with TLS or IPsec and evaluates its
performances. The major difference is that IPsec encrypts
the whole TCP payload, while TLS encrypts the application
payload only. For TLS, authentication (HMAC-SHA1-96) is
performed once per HTTP download, whereas IPsec authen-
ticates each IP packet and then encrypts each TCP header.
Finally, the decryption process is performed within the ker-
nel for the IPsec databases, and at the user-land for TLS.

Figure 11 compares IPsec and TLS considering huge file
downloads (e.g. 500MB). Measurements over small 50Kb

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(a) Elapsed time (transport)

 1

 2

 3

 4

 5

 6

 7

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

MTU (bytes)

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(b) CPU time (transport)

Figure 6: Cryptographic overhead – Ratio
AES−CBC−SHA1
NULL Encryption

files fitting one single TCP frame showed similar perfor-
mance.

Given the additional overhead of IPsec, RPi and NC10 per-
form poorly at least for large packets. As measured in sec-
tion 5.2, the tunnel modes (optimized) outperform TLS.
In addition, TLS provides huge advantage over IPsec with
sAES onE6410 , probably due to OpenSSL optimizations
taking advantage of the Western architecture —stitching,
PCLMULQDQ (see section 3).

This section points out differences between IPsec and TLS.
For homenet devices like RPi or NC10 , IPsec seems to be



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(a) Elapsed time (transport)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

MTU (bytes)

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(b) CPU time (transport)

Figure 7: Network overhead – Ratio
IPsec Transport NULL Encryption

HTTP Plaintext

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

E6410-4CPU-AES_NI
E6410-1CPU-AES_NI

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(a) Elapsed time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

MTU (bytes)

E6410-4CPU-AES_NI
E6410-1CPU-AES_NI

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(b) CPU time

Figure 8: IPsec Tunnel overhead – Ratio
IPsec Tunnel Mode

IPsec Transport Mode

recommended over TLS. On the other hand, TLS takes more
advantage of hardware acceleration and specific instructions
than IPsec does (at least for the transport mode). For sen-
sors, IPsec and TLS are much closer as data are proba-
bly sent in a single IP packet and such devices perform all
operations at the same level (no difference between kernel-
land and user-land). At last, sensors do not have optimized
openSSL implementation, which seems to be the main ad-
vantage of TLS over IPsec.

8. CONCLUSION
There is a strong need to deploy secure communications in
home networks and for Machine-to-Machine (M2M) environ-
ments. Even though most of the devices of these environ-
ments do not always benefit from the state-of-art hardware
acceleration for encryption. However, it should not refrain
from securing communications with authenticated encryp-
tion.

From the measurement results, our recommendations for se-
cure home networking applications or designing home net-
work equipments like CPE STB that perform authenticated
encryption are listed below:

- AES modes: On a QoS aspect prefer AES-CBC and
AES-CTR with HMAC-SHA1. Using a single core is
sufficient and provides better QoS performance for a
single communication. Hardware acceleration (AES-
NI) improves significantly the QoS performance mak-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

E6410-4CPU-AES_NI
E6410-1CPU-AES_NI

E6410-4CPU
E6410-1CPU
NC10-2CPU

RASPBERRY_PI

(a) Elapsed time

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

MTU (bytes)

E6410-4CPU-AES_NI
E6410-1CPU-AES_NI

E6410-4CPU
E6410-1CPU
NC10-2CPU

RASPBERRY_PI

(b) CPU time

Figure 9: UDP encapsulation – Ratio
UDP Encapsulation

IPsec Transport Mode

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

1CPU performance
1CPU powersave

1CPU conservative
4CPU performance

4CPU powersave
4CPU conservative

(a) Elapsed time Ratio Governor
OnDemand

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

MTU (bytes)

1CPU performance
1CPU powersave

1CPU conservative
4CPU performance

4CPU powersave
4CPU conservative

(b) CPU time Ratio Governor
OnDemand

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1199

 1333

 1466

 1599

 1733

 1866

 1999

 2133

 2266

 2399

E
la

p
se

d
 T

im
e
 R

a
ti

o

CPU Frequency (MHz)

4CPU-1500-MTU
1CPU-1500-MTU

4CPU-500-MTU
1CPU-500-MTU
4CPU-180-MTU
1CPU-180-MTU

(c) Elapsed time Ratio Frequency
OnDemand

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1199

 1333

 1466

 1599

 1733

 1866

 1999

 2133

 2266

 2399

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

CPU Frequency (MHz)

4CPU-1500-MTU
1CPU-1500-MTU

4CPU-500-MTU
1CPU-500-MTU
4CPU-180-MTU
1CPU-180-MTU

(d) CPU time Ratio Frequency
OnDemand

Figure 10: Frequency Scaling Policies

ing communications 1.5faster, and requires 2 times
less CPU cycles.

- Network overhead: Networking overhead is not neg-
ligible and is almost equivalent to the encryption over-
head for large packets (without AES-NI). As tunnel in-
creases network overhead, when possible, IPsec trans-
port mode should be preferred and UDP encapsulation
should be avoided.

- Power usage: For a single communication, the gover-
nor overhead may not balance its advantages. As such,
for regular devices, a fix frequency may be sufficient.

- TLS/IPsec: TLS is likely to be more optimized for
faster communications than IPsec. On the other hand,
the speed of the communication is performed at the ex-
pense of more CPU cycles. As such, we would recom-
mend IPsec for constraint devices with limited energy.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

E
la

p
se

d
 T

im
e
 R

a
ti

o

MTU (bytes)

E6410-4CPU-AES_NI
E6410-1CPU-AES_NI

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(a) Elapsed time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

180
200

250
300

400
500

600
700

800
900

1000

1100

1200

1300

1400

1500

K
e
rn

e
l 

+
 U

se
r 

T
im

e
 R

a
ti

o

MTU (bytes)

E6410-4CPU-AES_NI
E6410-1CPU-AES_NI

E6410-4CPU
E6410-1CPU
NC10-2CPU
NC10-1CPU

RASPBERRY_PI

(b) CPU time

Figure 11: TLS vs. IPsec –Ratio TLS
IPsec Transport Mode

9. ACKNOWLEDGMENTS
Testing measurements were funded and performed at Francet-
elecom / Orange. We would like to thank Adam Ouorou for
its support. We also would like to thank Benjamin Richard
for its cryptographic review and comments.

10. REFERENCES
[1] Advanced Encryption Standard (AES). Federal

Information Processing Standards Publication 197,
National Institute of Standards and Technology
(NIST), Nov. 2001.

[2] ARM1176. URL: http://www.arm.com/products/
processors/classic/arm11/arm1176.php.

[3] M. Dworkin. Recommendation for Block Cipher
Modes of Operation: Methods and Techniques: The
CCM Mode for Authentication and Confidentiality,
2004.

[4] M. Dworkin. Recommendation for Block Cipher
Modes of Operation: Methods and Techniques:
Galois/Counter Mode (GCM) for Confidentiality and
Authentication, 2007.

[5] Latitude E6410 Laptop. URL: http:
//www.dell.com/us/business/p/latitude-e6410/pd.

[6] S. Farrell. Why pervasive monitoring is bad. Internet
Computing, IEEE, 18(4):4–7, July 2014.

[7] S. Farrell and H. Tschofenig. Pervasive Monitoring Is
an Attack. RFC 7258 (Best Current Practice), May
2014.

[8] V. Gopal, W. Feghali, J. Guilford, E. Ozturk,
G. Wolrich, M. Dixon, M. Lochtyuhin, and
M. Perminov. Fast Cryptographic Computation on
IntelÂő Architecture Processors via Function Stiching.
White paper, Intel, Apr. 2010.

[9] J. Granjal, J. S. Silva, E. Monteiro, and F. Boavida.
Why is IPSec a viable option for wireless sensor
networks. In Mobile Ad Hoc and Sensor Systems,
2008. MASS 2008. 5th IEEE International Conference
on, pages 802–807, 2008.

[10] S. Gueron. IntelÂő Advanced Encryption Standard
(AES) Instructions Set. White paper, Intel, Sept. 2012.

[11] S. Gueron and M. E. Kounavis. IntelÂő Carry-Less
Multiplication Instruction and its Usage for
Computing the GCM Mode. White paper, Intel, Sept.
2012.

[12] S. Gueron and V. Krasnov. The fragility of aes-gcm

authentication algorithm. In Information Technology:
New Generations (ITNG), 2014 11th International
Conference on, pages 333–337, April 2014.

[13] A. Hoban. Using IntelÂő AES New Instructions and
PCLMULQDQ to Significantly Improve IPSec
Performance on Linux. White paper, Intel, Aug. 2010.

[14] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and
M. Stenberg. UDP Encapsulation of IPsec ESP
Packets, january 2005. RFC 3948.

[15] IEEE Standard for Local and metropolitan area
networks–Part 15.4: Low-Rate Wireless Personal Area
Networks (LR-WPANs). IEEE Std 802.15.4 2011
(Revision of IEEE Std 802.15.4 2006), pages 1–314,
2011.

[16] D. A. McGrew and J. Viega. The Security and
Performance of the Galois/Counter Mode (GCM) of
Operation. In INDOCRYPT, pages 343–355, 2004.

[17] Intel Atom Processor N270 with Mobile Intel 945GSE
Express Chipset. URL:
http://ark.intel.com/de/products/36331/

Intel-Atom-Processor-N270-512K-Cache-1_

60-GHz-533-MHz-FSB.

[18] 10” netbook (NC series) NP-NC10. URL: http://www.
samsung.com/ae/consumer/computers-peripherals/

notebook/netbook/NP-NC10-KA01AE-spec.

[19] Petr Svenda. Basic comparison of Modes for
Authenticated-Encryption: (IAPM, XCBC, OCB,
CCM, EAX, CWC, GCM, PCFB, CS), 2005.

[20] Rasberry Pi. URL: http://www.raspberrypi.org.

[21] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt,
and U. Roedig. Securing communication in 6LoWPAN
with compressed IPsec. In Distributed Computing in
Sensor Systems and Workshops (DCOSS), 2011
International Conference on, pages 1–8, 2011.

[22] S. Raza, D. Trabalza, and T. Voigt. 6LoWPAN
Compressed DTLS for CoAP. In Distributed
Computing in Sensor Systems (DCOSS), 2012 IEEE
8th International Conference on, pages 287–289, 2012.

[23] K. Sandlund, G. Pelletier, and L.-E. Jonsson. The
RObust Header Compression (ROHC) Framework,
march 2010. RFC 5795.

[24] strint report. , W3C/IAB workshop on Strengthening
the Internet Against Pervasive Monitoring (STRINT),
Mar. 2014.

[25] TLP. URL: https:
//github.com/linrunner/TLP/blob/master/default.


