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Abstract: In this article, we present a set of musical transformations based on the representations of chord spaces derived
from the Tonnetz. These chord spaces are formalized as simplicial complexes. A musical composition is represented in
such a space by a trajectory. Spatial transformations are applied on these trajectories and induce a transformation of
the original composition. These concepts are implemented in two applications, the software HexaChord and the Max
object bach.tonnetz, dedicated to music analysis and composition, respectively.

Spatial structures are commonly used by music
theorists to represent sets of symbolic objects such as
notes, chords, and rhythms. If geometry and topology
play a major role in the representation of the musical
objects, an algebraic formalization is necessary to
grasp the combinatorial potential of all these
structures. The study of the combinatorial properties
of these geometrical and topological spaces is also a
source of inspiration for new approaches in music
theory, analysis, and composition. Geometrical and
topological spaces are conceived as “support spaces”
in the representation of given musical objects.
This is the case for the Tonnetz, a support space
for representing neo-Riemannian transformations
(Cohn 2012). Other examples of topological spaces
used for musical analysis include work by Dmitri
Tymoczko (2011) on “orbifolds,” which can be used
to describe voice-leading progressions, and Elaine
Chew’s work with spiral arrays, which can be used
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to track key boundaries (Chew 2002), although we
will not delve further into these representations in
this article.

Our focus in this article is on the harmonic di-
mension, and we use a set of chord spaces to describe
and execute certain musical transformations in the
pitch domain. These spaces, which are generaliza-
tions of the Tonnetz, are formalized as simplicial
complexes, a topological concept that has proved to
be useful in many music-theoretical and analytical
situations (Bigo et al. 2013). In this work, we focus
on the use of simplicial complexes in the repre-
sentation of musical structures and process, with
particular emphasis on musical transformations.
After briefly introducing the concepts of simplicial
complexes, simplicial collections, and structural
inclusion in the next section, in the subsequent
section we discuss the main support space of our
approach (the Tonnetz and its generalized versions).
Generalized Tonnetze are then described as sim-
plicial complexes in which trajectories represent
musical sequences. This is followed by a discussion
of transformation of a sequence in a generic chord
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space, and we discuss two musical cases correspond-
ing to the isomorphism between two support spaces
and the automorphism within a given support space.
Finally, we present two environments that are based
on the geometric approach described in the arti-
cle. The first environment, called HexaChord, is
experimental software dedicated to computer-aided
music analysis. The second one is the Max object
bach.tonnetz, which focuses primarily on musi-
cal notation and new strategies for computer-aided
music composition (Agostini and Ghisi 2015).

Technical Background

In this section, we present several spatial tools
used in the course of this article. First, we describe
simplicial complexes and collections, which allow
us to formalize chord spaces. Then, we describe
structural inclusions, which provide a formalization
of transformations within chord spaces.

Simplicial Complexes

Given a set V of elements, a simplicial complex
K defined on V is a collection of nonempty finite
subsets of V, called simplices and denoted σ ∈ K,
verifying the closure condition:

for any simplex σ ∈ K, every nonempty subset
σ ′ ⊂ σ is also an element of K, i.e., σ ′ ∈ K.

The definition of the closure condition is equivalent
to saying that there is an incidence relation between
two simplices σ ′ and σ , which will be written as
σ ′ ≺ σ . Every simplex σ of K is characterized by
its dimension, dim() such that dim(σ ) = card(σ ) − 1,
where the function card() gives the cardinality of σ .
A simplex of dimension n is called an n-simplex.
Vertices can be used to represent 0-simplices, edges
for 1-simplices, triangles for 2-simplices, tetrahedra
for 3-simplices, etc.

The closure condition implies that an edge is
incident to two vertices, a triangle is incident
to three edges, etc. In general, every n-simplex
is incident to n + 1 (n − 1)-simplices. A proper
subset of a simplicial complex K that is also a
simplicial complex is called a subcomplex of K.

Figure 1. A 0-simplex (a), a
1-simplex (b), a 2-simplex
(c), and a 3-simplex (d).

For the sake of simplicity, we will often consider
that the term “simplex” designates the subcomplex
containing a simplex and all its incident simplices
of lower dimensions. Figure 1 illustrates examples
of n-simplices for n ∈ {0, 1, 2, 3}.

A simplicial d-complex is a simplicial complex
where the highest dimension of any simplex is d.
Graphs are special cases of simplicial complexes
where the highest dimension of any simplex is equal
to 1. Figure 2a illustrates a simplicial 3-complex. For
any natural integer n, the n-skeleton of a simplicial
complex K is defined by the subcomplex Sn(K) of
this complex formed by its simplices of dimension
n or less. Figure 2a illustrates a complex and its
1-skeleton (see Figure 2b).

Simplicial Collections

A simplicial collection K is a simplicial complex in
which every simplex is labeled by an arbitrary value,
as illustrated in Figure 2c. The term “collection”
comes from the notion of topological collections
used in the MGS programming language (Giavitto
and Michel 2001), which has strongly inspired this
work.

More formally, a simplicial collection is a func-
tion that associates values from an arbitrary set with
the simplices of a simplicial complex. The notation
K(σ ) enables one to address the label associated with
the cell σ in the collection K. We denote as |K| the
support of the collection K, which is the simplicial
complex without labels. A collection K′ is a subcol-
lection of K if |K′| ⊂ |K| and K′(σ ) = K(σ ) for every
σ of K′. When there is no danger of ambiguity, the
notation | · | can be omitted. Similarly, we will often
use the term “complex” to designate a simplicial
collection, that is, the simplicial complex and its
labels.
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Figure 2. A simplicial
complex K (a), the
1-skeleton S1(K) (b), and a
simplicial collection
whose support is a
subcomplex of K (c).

Figure 2

Structural Inclusions

In this work, we will be interested in the ways
one complex can be embedded into another (or into
itself). In order to deal with this notion, we introduce
the concepts of morphism and structural inclusion.

Let K and K′ be two simplicial complexes. A
function φ : K → K′ is a morphism of simplicial
complexes if for every cell σ and σ ′ of K:

σ ≺ σ ′ ⇒ φ(σ ) ≺ φ(σ ′),

dimK′ (φ(σ )) = dimK(σ ).

These two conditions preserve, respectively, the
neighborhood between simplices and their dimen-
sion. In other words, a morphism of complexes
is a function in which structure is preserved.
Two complexes are said to be isomorphic if
they have exactly the same structure (i.e., φ is
bijective).

A morphism between the support complexes of
two simplicial collections provides a way to modify
values labeling the simplices. Let K and K′ be two
simplicial collections and φ : |K| → |K′| a morphism
of complexes from the support complex of K into
the support complex of K′. We denote as Kφ the
simplicial collection having the support complex
|K| such that for every simplex σ of |K|:

Kφ (σ ) = K′(φ(σ )). (1)

Structural inclusion enables us to formulate
how one complex can be embedded into a second
one. A structural inclusion of a complex K in
complex K′ is an injective morphism from K

Figure 3. Two possible
structural inclusions of
one simplicial complex in
another.

Figure 3

into K′. A morphism of complexes is injective if
∀σ , σ ′ ∈ K, φ(σ ) = φ(σ ′) ⇒ σ = σ ′. Injectivity enables
one to distinguish in K′ a subcomplex that has
the same structure as K. We thus say that K is
structurally included in K′. Figure 3 illustrates
two different ways in which a complex may be
structurally included in another.

Finally, every automorphism in a complex defines
a structural inclusion into itself. The set of auto-
morphisms of a complex represents its structural
symmetries.

Musical Representations

In this section, we present two well-known music-
theoretical constructions: the Tonnetz and the
catalog of T/I classes. The first notion refers to a
very particular organization of pitches, which will
be generalized by using the second notion, providing
a classification of musical chords with respect to an
equivalence relation. (We will use the mathematical
term “up to transposition/inversion relation” to
indicate the underlying group-theoretical basis
of this equivalence relation, without entering
into more technical aspects related to algebraic
combinatorics and group actions.)
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Figure 4. The neo-
Riemannian Tonnetz and
the three neo-Riemannian
operations P, L, and R (a),
and a three-dimensional
derivation of the Tonnetz

by Edward Gollin (1998)
enabling the representation
of dominant seventh and
half-diminished chords by
tetrahedra (b).

The Tonnetz

One of the strongest motivations for this work is to
better understand some mathematical properties of
the Tonnetz. This construction represents a widely
used tool in music theory, analysis, and composition,
and it refers to a symbolic organization of pitches
in the Euclidean space following infinite axes
associated with particular musical intervals. It was
independently investigated by Leonhard Euler (1739)
and Jean-Philippe Rameau (1750) for acoustical
purposes with the aid of similar two-dimensional
representations, organizing pitches in just intonation
along an axis of pure fifths and an axis of pure major
thirds. This representation was rediscovered later
by musicologists Arthur von Oettingen and Hugo
Riemann, and this enabled the music-theoretical
community to generalize the application domain
of this construction and to adapt it to the case of
twelve-tone equal temperament. More recently,
music theorists have shown a strong interest in this
model, in particular for the representation of typical
post-romantic chord progressions (Cohn 2012) or
neo-Riemannian transformations, according to
the transformational paradigm proposed by David
Lewin in the late 1980s (see Lewin 2007). This model
has also been used in musical composition, from
contemporary music experiments (Chouvel 2009)
to stylistic practices more characteristic of popular
music (Bigo and Andreatta 2014).

The neo-Riemannian Tonnetz (see Figure 4a) is
a graph in which pitches are organized along the
intervals of the fifth (horizontal axis), and the major
and minor thirds (diagonal axes). This representation
has the interesting property of revealing major and
minor triads as triangles. The three arrows illus-
trate the neo-Riemannian operations P (parallel),
L (leading-tone), and R (relative), which describe
the different transitions between pairs of triads
having two common notes. Music theorists have
investigated different derivations of the Tonnetz
by adding other axes, allowing the representation
of chords having more than three elements. For
instance, Figure 4b illustrates a generalized Ton-
netz represented by a three-dimensional Tonnetz
space (Gollin 1998). This model adds new interval
axes to the two-dimensional representation of the
traditional Tonnetz in such a way that dominant sev-
enth and half-diminished chords are represented by
tetrahedra pointing upwards (for the dominant sev-
enth chord) or downwards (for the half-diminished
chord). Three-dimensional models are well suited
to studying progressions of four-note chords. Note
that the generating axes do not necessarily need to
label chromatic intervals. One may build diatonic
versions of the Tonnetz by associating axes with
intervals that are diatonic instead of chromatic
(diatonic Tonnetze). In this way, vertices and shapes
only represent notes and chords belonging to a single
tonality.

12 Computer Music Journal



Our work is based on the assumption of twelve-
tone equal temperament and octave reduction
(i.e., we are dealing with pitch classes, without
consideration of octaves). For example, the notes
C�3, C�4, and D�4 are all considered to be repre-
sentatives of the same pitch class. In particular,
what we call a Tonnetz refers more specifically to
the pitch-class Tonnetz. In this context, the graph
in Figure 4a infinitely repeats the twelve pitch
classes along its axes. An important consequence
of this representation is that every pitch class is
represented in multiple locations. However, the
methods presented here could be applied in more
general contexts (e.g., just intonation, octave distinc-
tion). For example, the Max object bach.tonnetz,
presented in the final section of this article, does
not respect the hypothesis of octave identification,
which is commonly and tacitly admitted in most
Tonnetz-based analyses.

Generalized Tonnetze and T/I Classes

By considering the role played by particular chords
(minor and major chords as triangles in the neo-
Riemannian Tonnetz, and dominant seventh and
half-diminished chords as tetrahedra in the three-
dimensional Tonnetz), one can argue that the
starting point for the construction of a Tonnetz
is more related to the choice of a set of chords
than to a set of interval axes. This observation has
been our starting point for studying generalized
versions of the Tonnetz with the help of the notion
of an equivalence relation up to a given musical
transformation. In the two earlier examples, the
chords represented in a Tonnetz are all equivalent
up to transposition and inversion (i.e., they belong
to the same T/I class). More algebraically, saying
that two chords belong to the same equivalence
class corresponds tacitly to the assumption that
there exists a group structure that induces the
equivalence relation. Two chords Aand B are said to
belong to the same T/I class if there is an element of
the group generated by transpositions and inversions
that transforms A into B (and, conversely, although
via a different transformation, B into A, thanks to
the symmetry property of the equivalence relation).

This group is known as the dihedral group DN,
and the previous sentence can be reformulated, as
we suggested previously, in terms of equivalence
classes (or “orbits”) induced by an underlying group
transformation (more precisely a group action, as
defined, for example, by Andreatta and Agon 2003).

This fact is surely true for all the generalized
Tonnetze proposed in our approach, but the reader
should pay attention to the fact that some equiva-
lence relations can be “non-paradigmatic,” meaning
that it is not possible to easily find a group struc-
ture in such a way that two chords belonging to
the same equivalence class are equivalent up to
a transformation of the underlying group. This
is, for example, the case of the music-theoretical
relationship known as the Z-relation, for which the
possible group-induced equivalence is still an open
problem (see Mandereau et al. 2011). A T/I class is
usually identified by the intervallic structure that is
shared by all the chords of the class, eventually by
considering some cyclic permutations or retrograde
versions of its elements. For instance, major and mi-
nor chords correspond to the intervallic structures
[4, 3, 5] and [3, 4, 5], respectively, where the second
structure is clearly obtained by a retrograde reading
of the elements of the first structure (starting from
the second element). They therefore both share
the intervallic structure [3, 4, 5], because the row
of intervals between pitch classes they result from
is composed of a minor third (three semitones), a
major third (four semitones), and a perfect fourth
(five semitones). Intervals are not ordered in the
same direction for major ([4, 3, 5]) and minor chords
([3, 4, 5]). With the same reasoning, dominant sev-
enth and half-diminished chords are identified by
the intervallic structure [2, 3, 3, 4]. Note that the
elements of the intervallic structure add up to the
number of steps N dividing the octave, e.g., N = 12
in the chromatic system and N = 7 in the diatonic
system.

T/I classes can be easily calculated, which for
N = 12 leads to the catalog of 224 pitch-class
sets (Forte 1973), also known as “Forte classes.”
In the diatonic system (N = 7), which divides the
octave into seven parts (of unequal size), there exist
18 such classes. Following this line of thought, we
now show how it is possible to automatically build
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Figure 5. Representing
notes and chords with
simplices (a). The complex
(b) corresponds to the
C-major chord and all
2-note chords and
individual notes included
within it.

Figure 5

Figure 6. A region of the
complex K[3, 4, 5]
composed of major and
minor chords (a) and the
complex K[2, 3, 3, 4],
composed of dominant
seventh and
half-diminished chords (b).

Figure 6

the generalized Tonnetze associated with the 224
T/I chromatic classes and 18 T/I diatonic classes.

Chord Complexes and Trajectories

In this section we introduce the representation
of a musical sequence by a trajectory in a chord
space. Chord spaces are inspired by the Tonnetz and
formalized as simplicial complexes. Trajectories are
sequences of regions of these complexes.

Chord-Based Complexes

In the following, we call a set of pitch classes
a chord. This means that we make abstractions
of some parameters, such as duration and octave
position of the notes.

Generalized Tonnetze as Simplicial Collections

We use a method presented by the first author to
represent chords as simplices (see Bigo 2013). In

this article, the term “n-note chord” refers to a
chord containing n pitch classes (not n notes in
the usual sense), which can be represented by a
(n − 1)-simplex. A 0-simplex represents a single
pitch class, a 1-simplex represents a 2-note chord
(or interval), a 2-simplex represents a 3-note chord
(or triad), etc. (see Figure 5a). Figure 5b illustrates
a simplicial collection representing the C-major
chord. It includes seven simplices representing each
subchord of C-major (including three individual
pitch classes, which are 0-simplexes, three inter-
vals, which are represented as 1-simplexes, and a
2-simplex representing the entire chord as a
triangle).

We represent a generalized Tonnetz as a simplicial
collection composed of n-simplices representing the
chords of a given T/I class. In the following, we
denote as K[a1, . . . , ai] the complex associated
with the T/I class identified by the intervallic
structure [a1, . . . , ai]. Figure 6 illustrates regions
of the complexes K[3, 4, 5] and K[2, 3, 3, 4]. They
correspond to the two graphs of Figure 4, in which
2-simplices and 3-simplices have been integrated.

14 Computer Music Journal



In other words, the neo-Riemannian Tonnetz and
the three-dimensional Tonnetz correspond to the
1-skeletons of K[3, 4, 5] and K[2, 3, 3, 4], respectively.
As previously mentioned, dominant seventh and
half-diminished chords are represented by tetrahedra
pointing up or down, respectively, although the
tetrahedra are not fully visible in this representation.
The reader is referred to the skeleton in Figure 2 to
see all the pitch classes.

Chord Complex Construction

The construction of the chord complex K[a1, . . . , ai]
proceeds as follows. First, an n-note chord belonging
to the class identified by the intervallic structure
[a1, . . . , ai] is chosen and represented by an (n − 1)-
simplex (for example, the C-major chord illustrated
in Figure 5b for the class [3, 4, 5]). The simplex is
then embedded in an equilateral manner in the
(n − 1)-dimensional Euclidean space. For a 3-note
chord, this space is the Euclidean plane, and the
chord is embedded as an equilateral triangle. The
directions given to the 1-simplices (i.e., edges) define
axes associated with particular intervals, as in the
Tonnetz. Then, simplices are naturally replicated
along these axes, in such a way that the chords
represented respect the transpositions induced by
the intervals along these axes. The transposition is
chromatic or diatonic, depending on the T/I class.
Note that the simplices of a complex associated
with a diatonic T/I class only represent pitch classes
and chords belonging to a single tonality (i.e., key).

A consequence of this generic method of con-
struction is that two complexes associated with
chord classes of the same size are isomorphic. For
example, the two complexes K[3, 4, 5] (see Figure 6a)
and K[2, 3, 7] (see Figure 7) are both two-dimensional
infinite triangular tessellations.

Representation of a Musical Sequence
in a Chord Complex

In this section we present the representation of a
musical sequence by a trajectory in a chord complex.

A trajectory is a sequence of regions of the
complex. Note that it is not necessarily continuous

Figure 7. A region of the
complex K[2, 3, 7]
isomorphic to the complex
K[3, 4, 5] illustrated in
Figure 6a.

Figure 7

Figure 8. Segmentation of a
sequence based on the set
of pitch classes played. The
duration unit corresponds
here to the quarter note.

Figure 8

in space, which means that successive regions do
not need to be spatial neighbors. Each successive
region represents a temporal segment of a musical
composition. In our work, we use a very simple
segmentation method, based on the appearance
and disappearance of pitch classes. Each time
a pitch class enters or leaves the set of played
notes, the current segment stops and a new one
begins. This principle is illustrated in Figure 8.
Each segment is characterized by its duration
relative to the other segments. Thus, we reduce a
musical sequence P to a sequence of pitch-class
sets, each labeled by a relative duration. So we have
P = [(A0, d0), . . . , (AN, dN)], where Ai is the set of
active pitch classes with a duration di.

As previously noted, each pitch class is rep-
resented in multiple locations in the pitch-class
Tonnetz. In the same way, an n-note chord is
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Figure 9. Trace (in black)
of a trajectory representing
the sequence illustrated in
Figure 8 in K[3, 4, 5].

represented by multiple (n − 1)-simplices in a chord
complex.

A trajectory in a chord complex K is a sequence
of subcollections of K, which are all labeled by
a duration. Let TK = [(K0, d0), . . . , (KN, dN)] be a
trajectory in K and P = [(A0, d′

0), . . . , (AN, d′
N)] a

musical sequence. We say that the trajectory TK
represents a musical sequence P if for every i,
di = d′

i and Ki is a simplicial subcollection such that:

∀σ ∈ |Ki|, K(σ ) ⊆ Ai (2)

In other words, the subcollection Ki only represents
the set of pitch classes present in the ith segment
of the sequence. The trace of a trajectory TK is the
subcollection T ⊆ K constituted by the simplices
included in TK:

T =
⋃

(Ki ,di )∈TK

Ki (3)

Figure 9 illustrates the trace of a sequence
representing the sequence illustrated in Figure 8 in
the chord complex K[3, 4, 5]. Because each chord is
represented in multiple locations in the complex K,
the definition enables a large number of different
trajectories to represent a given sequence P within
the specific complex. To automatically attribute a
trajectory to a sequence, we use an algorithm based
on two main criteria:

1. Chords must be represented as compact
subcomplexes.

2. Chord transitions must correspond to small
movements.

For a complete description of the algorithm, please
refer to the first author’s doctoral work (Bigo 2013).

Transformations of Trajectories

Several musical transformations can be interpreted
as spatial operations on trajectories. The list of
musically relevant operations includes translations,
rotations, and embeddings of the trajectory in a
new support space. Some of these transformations
correspond to well-known musical operations, as
in the case of translations (which are equivalent to
musical transpositions) and rotations (which can be
interpreted as inversions). The case of the embed-
ding of a given trajectory in a new support space
is interesting, because it does not correspond to
any currently familiar musical transformation. The
musical interpretation of this geometric transforma-
tion is therefore an open problem in computational
musicology.

Transformation of a Sequence

Let P be a musical sequence, K and K′ two chord
complexes, and T ⊂ K the trace of a trajectory TK
that represents the sequence P in K. Let φ be a
structural inclusion of |T | in |K′|. The morphism φ

allows a relabeling of the simplices of K to shape
a trace T φ in K′. This modification of labels then
induces a transformation Tφ of the sequence P into
a different sequence P ′ defined by:

Tφ (Ai, di) =
({n ∈ ZN | ∃ σ ∈ S0(Ki), T φ (σ ) = n}, di),

where Ki represents Ai in TK.
The notation Tφ stresses the fact that the trans-

formation depends only on the function φ (not on
the sequence P). We observe that the transformation
Tφ can be applied just on the vertices to determine
the new set of pitch classes. To produce a new
sequence P ′ from the new segments given by Tφ , it
is necessary to provide the octave information for
each transformed pitch class. In the next examples,
we choose the octave of the transformed pitch class
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Figure 10. The first
measures of the chorale
“Ach lieben Christen, seid
getrost,” by J.S. Bach
(BWV 256), represented by

a trajectory in K[3, 4, 5] (a),
and the transformation of
the sequence resulting
from the embedding of the
trajectory in K[2, 3, 7] (b).

in a way that the distance from the original pitch
is minimized. Then a transformation affects pitch
classes with only a minimal alteration of the pitch
register in which the new sequence is evolving.
Note that this implicitly makes use of the equiva-
lence between the toroidal structure of the Tonnetz
and its multiple representations as selected regions
of the infinite bidimensional space, according to
the number of octaves we want to take into ac-
count. Furthermore, as this work concentrates on
pitch transformations, segment durations are left
unchanged.

Isomorphism between Two Support Spaces

Let K1 and K2 be two chord complexes, and φ a
structural inclusion of |K1| in |K2|. It is easy to
see that the function φ can be applied to any tra-
jectory in K1. This kind of transformation can be
understood intuitively as embedding a trajectory
coming from one complex into another one. In
particular, every isomorphism between two com-
plexes K1 and K2 enables a given trajectory built
in one of the complexes to be embedded into the
second.

As mentioned in the section “Chord Complexes
and Trajectories,” the property of having the same
dimension is sufficient to establish an isomorphism
between two chord complexes K[a1, . . . , ai]. For
example, K[3, 4, 5] and K[2, 3, 7] are isomorphic,
because they both result from the infinite repetition
of 2-simplices along axes in three directions. A
natural consequence is that any trajectory built in
one of these complexes can be embedded into the
other.

Figure 10 illustrates this transformation with the
first measures of the chorale “Ach lieben Christen,
seid getrost,” by J.S. Bach (BWV 256). The trajectory
in Figure 10a represents the sequence in K[3, 4, 5]. In
this complex, triangles represent major and minor
chords. In Figure 10b the same trajectory is embed-
ded into K[2, 3, 7], in which triangles represent “in-
complete minor seventh chords” (i.e., minor seventh
chords without the fifth, and minor or dominant sev-
enth chords without the third). These chords have
the interesting property of including typical inter-
vals of the pentatonic scale, which gives a particular
color to the transformed sequence. The result of the
transformation is available online in MIDI format as
supplementary content on the MIT Press Web site
(http://mitpress.mit.edu/10.1162/COMJ a 00312).

Bigo et al. 17



Embedding a trajectory into a chord complex,
when the trajectory was built in another chord
complex, gives a musical sequence a new harmonic
color, with conservation of its characteristic shape.
In particular, embedding a trajectory into a diatonic
complex has the obvious consequence of giving the
transformed sequence the tonality characterizing
the complex.

Automorphism in a Support Space

When the chord complex K includes structural
symmetries, the associated automorphisms define
isometries that can be applied to any trajectory of
K. By definition, a complex built from a T/I class
is structurally included into itself at least N times
(where N is the number of pitches into which the
octave is divided). Indeed, the construction method
described earlier ensures that for any pitch-class set
represented in the complex, its N − 1 transpositions
are represented as well. For a T/I class including
3-note chords, the symmetries of the corresponding
complex (which is a triangular tessellation) can be
associated intuitively with the possible “simplex-
to-simplex” superpositions of two copies of the
complex, after any translations or rotations. The
numerous symmetries in T/I chord complexes en-
able a large number of distinct transformations for a
given trajectory. Some of these transformations can
intuitively be interpreted as discrete translations
or rotations of the trajectory. Some musical trans-
formations produced by automorphisms in chord
complexes are available at the MIT Press URL listed
previously.

Discrete Translations

Let K be a complex and σ1 and σ2 two 0-simplices of
K. The translation φ, which transforms σ1 into σ2, is
characterized by the interval class j that transforms
the pitch classes associated with these vertices
by the quantity j = K(σ2) − K(σ1). We observe that
for any vertex σ labeled by the pitch class n, the
transformed vertex φ(σ ) will be labeled by the pitch
class n + j. We thus have for any sequence P:

Tφ (Ai, di) = ({(n + j) mod N | n ∈ Ai}, di) (4)

The application of a translation on a trajectory
in a complex associated with a T/I class corre-
sponds to a transposition. In the case of N = 12,
the translation of a trajectory corresponds to a
chromatic transposition. On the other hand, a trans-
lation processed in a diatonic complex (in which
case N = 7) produces a diatonic (or modal) trans-
position. If the sequence belongs to a tonality, a
translation in the associated diatonic complex will
achieve a change of mode (e.g., a major-to-minor
transformation).

Discrete Point Reflections

A discrete point reflection in a complex has the
consequence of transforming intervals into their
inversions. Indeed, every direction is associated
with a particular interval, and the point reflection
reverses directions. The pitch class m, labeling the
center vertex of the point reflection, is unchanged
by the transformation. The interval separating m
from a pitch class is inverted to produce the new
pitch class. As with translations, a pitch class is
transformed according to its value, not according to
the position of its simplex in the complex. We thus
have for a given sequence P:

Tφ (Ai, di) = ({(m− n) mod N | n ∈ Ai}, di) (5)

Figure 11 illustrates a point reflection applied on
a trajectory in K[3, 4, 5]. The center of the point
reflection is a vertex labeled by the pitch class
C. The result of a point reflection is a pitch-class
inversion. In chromatic and diatonic complexes,
these inversions are, respectively, chromatic and
modal.

Other Transformations

As discussed earlier, the two preceding transforma-
tions have the property of producing pitch classes
entirely determined by their original values, not
by the positions of their vertices. Moreover, these
two spatial transformations result in well-known
musical operations (transpositions for translations
and inversions for point reflections). On the other
hand, some other automorphisms cannot be simply
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Figure 11. A trajectory
representing the first
measures of the Bach
chorale BWV 256 in
K[3, 4, 5] (a). A point
reflection is applied on the
trajectory and produces a
new sequence (b).

specified as transformations of pitch classes. For
example, line symmetries or rotations can trans-
form vertices labeled with the same pitch class into
vertices labeled with different pitch classes. The
same generally applies when embedding a trajectory
into a new chord complex. These transformations do
not have any conventional musical interpretation,
to the best of our knowledge, and they result in
new musical operations. By leaving the realm of
music analysis, this clearly shows the potential of
these tools in music composition, particularly when
these tools are integrated into a computer-aided
composition environment, as described in the next
section.

Computer Programs

In this section, we present two software applications
enabling one to work with the notions presented in
the previous sections: HexaChord, which is mostly
devoted to music analysis, and the Max object
bach.tonnetz, which is dedicated to computer-
aided music composition.

HexaChord

HexaChord (at www.lacl.fr/˜lbigo/hexachord) is a
computer-aided music analysis environment based
on the spatial representations discussed in this
article. The software provides a three-dimensional
visualization of the complex representing any set
of chords. Chord complexes related to a T/I class
that groups 3-note chords in diatonic and chro-
matic scales are represented as infinite triangular
tessellations (as in Figures 10 and 11). HexaChord
also includes other musical representation spaces,
such as the chromatic circle, the circle of fifths,
and a voice-leading space that spatially organizes
chord intervallic structures of size 3, depending
on their voice-leading proximity (Tymoczko 2011).
Figure 12 illustrates the graphical user interface of
the software.

Musical pieces are imported as MIDI files. An
algorithm described by the first author is used to
compute a trajectory for any pair of musical pieces
and chord complexes (Bigo 2013). The different
visualization spaces are updated in real time when
a file is played. The musical sequence is then
represented as a path that evolves in complexes
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Figure 12. Graphical user
interface of HexaChord.

chosen by the user. The spatial harmonization
functionality highlights at any instant of the piece
the pitch class (or classes) not played but having
the highest number of neighborhood relation-
ships with the played pitch classes. HexaChord
also accepts input from any MIDI device, includ-
ing MIDI keyboards. The interface then displays
the trajectory corresponding to the performance
of the player in any chord complex and in real
time.

The transformations described in the section
“Transformations of Trajectories” can be applied
to any trajectory in a planar chord complex. For
each transformation, the user specifies: (1) the
reference complex in which the trajectory is ini-
tially computed; (2) a destination complex in
which the trajectory is going to be embedded;
(3) an angle of rotation; and (4) two vector coor-
dinates (e.g., “North” and “Northeast”), enabling
one to specify any translation in a triangular
lattice.

The interface allows one to compose one rotation,
one translation, and one embedding in a unique

transformation. To proceed by a rotation or a
translation only, the embedding complex will have
to be the same as the reference complex. Also, to
proceed with an embedding without any additional
geometrical transformation, translation and rotation
fields will have to be set to zero. The musical
sequence resulting from any transformation can be
exported to a MIDI file. The examples included as
supplementary content at the URL listed earlier
were generated using HexaChord.

Other features dedicated to analysis have been
integrated in the application. For instance, Hexa-
Chord automatically determines the chord complex
that is the most suitable for representing a musical
sequence. This task is connected to the notion
of compliance (Bigo et al. 2013) and is achieved
by comparing the compactness of the trajectories
representing the piece in the different complexes.
The hypothesis behind this functionality is that the
high compactness of the trajectory in a particular
complex might be seen as a stylistic signature of
the piece. Following this idea, the computation
of the compactness has been experimented with,
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yielding interesting preliminary results in music
classification (Bigo 2013).

Although it was initially conceived to assist
musical analysis, we believe that HexaChord pro-
vides interesting pedagogical features. The visual
aspects of the chord complexes give an intuitive
understanding of some mechanisms of harmony,
particularly in the context of modern set the-
ory. Also, the MIDI device functionality is a
valuable utility for the composer who uses such
spaces as a tool for their compositions (Chou-
vel 2009). Following this line, HexaChord has
inspired the development of the computer-aided
system PaperTonnetz, which enables the user to
manipulate a trajectory in a chord complex as a
central object in the composition process (Bigo et al.
2012).

The bach.tonnetz Object

If one needs to deal with Tonnetz representations
interactively, a natural solution is to handle them
in a real-time environment. An easy way to do
this is to take advantage of the bach library (on
the Web at www.bachproject.net), a set of externals
and patches for Max, bringing computer-assisted
composition into the real-time world (Agostini and
Ghisi 2012, 2013, 2015). Among its features, the bach
library has a subset of tools dedicated to musical
representations, including the bach.tonnetz
object, which implements and displays a Tonnetz
centered on a given pitch and generated by two
given diatonic intervals. Nodes in the lattice can
be selected interactively (via mouse and keyboard),
or via incoming messages, containing information
in any of several formats: cents, note names, pitch
classes, diatonic intervals, or coordinates in the
lattice space. Elementary transformations, such as
translations and rotations as described in the section
“Transformations of Trajectories,” can be easily
performed both via the user interface and via Max
messages.

The bach.tonnetz object can easily echo the
incoming data to its outlets, to allow real-time
modification of the point coordinates or of the lattice

properties. As a result, it is fairly straightforward to
take any incoming flow of notes and rotate or shift
it. To allow a more faithful representation of MIDI
data, each selected node in the lattice can be given
a velocity value, which can in turn be visualized
graphically, either by varying node colors or by
adjusting node sizes. Moreover, bach.tonnetz
also supports purely diatonic networks, microtonal
intervals, and just intonation.

Because pitches are not necessarily unique in-
side the lattice, a matching mode is available
to determine which point in the lattice should
be selected when more than one choice is pos-
sible. Three possibilities are available: the most
central match, the match nearest to the last se-
lected point, or a modification of the latter that
prevents the selected points from exiting the visual
rectangle.

In addition, bach.tonnetz can be set in “surface
mode,” so that the pitch at each lattice point
can be specified via an equation. This allows
one to work with general pitch surfaces f(x, y),
sampled on an hexagonal lattice (with x, y ∈ N
being the coordinates corresponding to two axes
in the hexagonal lattice). The traditional Tonnetz
corresponds to the special case f(x, y) = ι1x + ι2y,
where ι1 and ι2 are the generating intervals in cents.
Another interesting choice for the equation is

f (x, y) = b+ 1200
log 2

log((|x| + 1)sgn(x)(|y| + 1)sgn(y)),

(6)
which constructs a sort of frequency-domain Ton-
netz, created by a matrix of intersecting harmonic
and subharmonic series and having the pitch b (in
cents) as the central pitch (see Figure 13).

Because bach.tonnetz is real-time oriented,
it is also an ideal tool to handle performative and
generative processes. As an example, one can build
a patch implementing two-dimensional cellular
automata (such as Conway’s Game of Life, or one of
its adaptations for hexagonal grids; see Figure 14).
This is made even easier by the cage library (a
set of high-level abstractions based on the bach
library, available at www.bachproject.net/cage).
This library contains the Max object cage.life,
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Figure 13. A frequency-
domain Tonnetz, centered
on A4 and having the
combination of harmonic
and subharmonic series as
rows and as diagonals. The

display is in quarter tones
(quarter-sharp accidentals
are denoted using a plus
sign, quarter-flat
accidentals with a minus).
The musical notation at

the bottom of the image
shows the main harmonic
and subharmonic series of
the horizontal axis.

producing two-dimensional cellular automata
(Agostini, Daubresse, and Ghisi 2014), and in-
cludes two abstractions, cage.tonnetz.flip
and cage.tonnetz.rot, capable of rotating and
flipping Tonnetz coordinates.

Conclusion

In this article we have presented a general frame-
work for the representation of musical structures
and processes in simplicial chord spaces. Generic
transformations on musical sequences depend only
on their spatial representations, which make use of
the topological structure of simplicial complexes.

Their underlying algebraic structure enables an
elegant formalization of these transformations,
thanks to the notion of morphism between differ-
ent support spaces, which preserve dimension and
neighborhoods between two complexes. Whereas
some of these morphisms correspond to familiar
musical operations, most of them, such as the
embedding of a given trajectory into a new chord
complex, still await suitable musical interpretation.
Most of the concepts introduced in this article
have been implemented in HexaChord and the
bach library, two environments for computer-aided
music analysis and composition that explore the
computational aspects of the theoretical concepts
discussed in this article.
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Figure 14. A patch
enabling the exploration of
musical material as
two-dimensional
automata on a Tonnetz.
Rules are defined by
patching (in subpatch p

life rule), and a few
basic interface commands
are given to control the
breeding. The output
result is recorded in a
bach.roll, for possible
further use. The user can

modify the Tonnetz
structure and its content at
any time (some presets are
marked with letters in the
upper part of the patch).
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